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Abstract.  We report a new method for determining the weighting 
functions to reconstruct absorbing inhomogeneities in tissue by per-
turbation time-domain diffuse optical tomography using the trans-
mission geometry of a flat layer. The method is based on an ana-
lytical approach to the calculation of the weighting functions for a 
semi-infinite scattering medium and on the use of the original 
method of an equivalent inverse source in order to obtain weight 
distributions for the flat layer geometry. The correctness of the pro-
posed method of the weighting function calculation is evaluated by 
a numerical experiment on the reconstruction of absorbing inhomo-
geneities. It is shown that the perturbation reconstruction model 
based on the proposed weighting function calculation method allows 
the inhomogeneities smaller than 0.3 cm and ~0.4 cm, located 
respectively in the transverse and longitudinal directions to the 
probe light direction, to be resolved in the centre of an 8-cm-thick 
object. 

Keywords: diffuse optical tomography, perturbation reconstruction 
model, weighting function, absorbing inhomogeneity, time-resolved 
optical projection, transverse and longitudinal spatial resolution. 

1. Introduction 

The last decade has seen a rapid development of the methods 
of diffuse optical tomography (DOT) of tissues [1 – 14]. The 
most accurate and promising are nonlinear iterative methods 
[2, 5, 6, 10, 11, 13 – 17], based on multi-step linearization of 
forward and inverse DOT problems and on alignment of the 
weight matrix, which is responsible for the reconstruction of 
diffusion tomograms, at each step. However, despite the 
rapid progress of computer technology, reconstruction and 
visualisation of spatial distributions of optical and functional 
parameters of tissue using these methods incur heavy compu-
tational burden   –   from tens of minutes to several hours 
[2, 17], which cannot fully meet the requirements of modern 
medical diagnosis. For this reason, researchers continue to 
pay serious attention to the development of approximate 
methods of DOT reconstruction, which are usually inferior to 
the accuracy of nonlinear methods, but provide images almost 
in real time. Among the approximate methods, perturbation 

methods [18 – 22] and methods for localisation of optical 
inhomogeneities [23 – 26] are most widely used. Perturbation 
methods neglect nonlinearity of forward and inverse DOT 
problems; as a result, the inverse problem reduces to a time 
saving, single inversion of a system of linear algebraic equa-
tions. Perturbation methods can compete in accuracy with 
nonlinear methods in the case when optical inhomogeneities 
are small in size and amplitude. Localisation methods rely on 
fitting techniques, which are based on a comparison of exper-
imental data with calculations obtained on the basis of the 
analytical solution of the transport or diffusion equation for 
a homogeneous medium with a spherical inhomogeneity. 
These methods do not actually give information about the 
real shape of the inhomogeneity, but are used with some suc-
cess in experimental clinical trials to determine the optical 
parameters of localised tumours [25, 27 – 30]. In recent years 
the range of approximate DOT methods has expanded sig-
nificantly. We are pleased to note that a substantial contribu-
tion to this expansion has been made by Russian researchers. 
As examples, we can single out the following approximate 
DOT methods developed by Russian scientists: nonlinear sta-
tistical methods [31 – 34], the method of photon average tra-
jectories [35 – 42], the inverse method using Tikhonov regula-
risation with non-negative components [43, 44], and the inho-
mogeneity localisation method based on the use of 
late-arriving photons [45 – 47]. 

In this paper, we develop the perturbation reconstruction 
model proposed by Lyubimov for the case of time-domain 
DOT (Lyubimov’s model) [35 – 37, 48]. The uniqueness of this 
model is that, instead of such integral data as integrated 
intensity, average time of flight of photons, results of Laplace 
and Mellin – Laplace transforms, etc. (see, for example, [15]), 
diffusion tomograms are reconstructed using time-resolved 
optical projections [42, 48, 49]. These projections are mea-
sured for only one time-gating delay and minimise the spatial 
resolution of the method. More recently, we have shown [49] 
that if we take into account the contribution of each point of 
a scattering object to the signal and use total banana-shaped 
distributions of photon trajectories during the reconstruction, 
Lyubimov’s model allows a 2.5 – 3-mm inhomogeneity to be 
resolved in the centre of an 8-cm-thick object. Such values are 
not only equal but even surpass the spatial resolution of non-
linear multi-step DOT methods [50]. According to Lyubimov’s 
model, the inverse DOT problem in the case of absorbing 
inhomogeneities is reduced to solving a linear Fredholm inte-
gral equation of the 1st kind [37 – 42, 48, 49] 

( , , , ) ( , , , , ) ( )dg t t W t t rr r r r r rs s d d s s d d a
V

3
a dm= my ,	 (1)
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Here, (rs, ts) and (rd, td) are space-time points, which deter-
mine the position of the source and detector on the boundary 
of a scattering object of volume V; g(rs, ts, rd, td) is the time-
resolved optical projection; Wma(rs, ts, rd, td, r) is the weighting 
function, which takes into account the contribution from 
each object point to the value of g(rs, ts, rd, td); dma(r) is the 
local spatial perturbation of the absorption coefficient ma; c is 
the velocity of light in the object; and P[r, t | (rs, ts) ® (rd, td)] is 
a function that has the meaning of the conditional probability 
density that a photon migrating from point (rs, ts) to point 
(rd, td) at some intermediate instant of time t will reach the 
point Vr ! .

To determine Wma(rs, ts, rd, td, r) in the case of the flat layer 
geometry and its 2D analogue (rectangular geometry), we 
employed [48] a hybrid analytical-numerical approach based 
on the use of analytical relations for Green’s function of the 
nonstationary diffusion equation and on the numerical inte-
gration of expression (2). In this paper, we propose an alter-
native method for calculating the weighting function 
Wma(rs, ts, rd, td, r). This method assumes its analytical calcula-
tion for the case of a half-space in 3D and 2D geometries 
(Section 2), and then the use of the original method of an 
equivalent inverse source in order to find the weighting func-
tions for the flat layer transmission geometry and transmis-
sion rectangular geometry (Section 3). In Section 4 we present 
the results of numerical experiments on the reconstruction of 
rectangular scattering objects with absorbing inhomogene-
ities. These results allow us to estimate the ultimate resolution 
of the method in the transverse and longitudinal directions 
with respect to the direction of the probe light and to confirm 
the correctness of the relations obtained for the weighting 
functions. 

2. Weighting functions in a half-space 

Lyubimov et al. [37] found that the probability density 
P[r, t | (rs, ts) ® (rd, td)] can be determined using the diffusion 
approximation of the transport equation. To calculate 
numerically the weighting functions Wma(rs, ts, rd, td, r), we used 
[48] the Robin boundary condition [6, 15], which is rightly 
regarded as the most accurate in the description of photon 
migration near the boundaries of a scattering object. However, 
the results of studies [42], where we compared the Dirichlet 
and Robin boundary conditions, have shown that in the case 
when the medium represents a half-space, the choice of the 
boundary condition has little effect on the accuracy of calcu-
lation of such statistical characteristics of photon distribu-
tions as conditional probability density  P[r, t | (rs, ts) ® (rd, td)], 
average trajectory of photons and standard deviation of pho-
tons from the average trajectory. This statement is true at 
least for relatively short time-gating delays (usually up to 
3000 ps). In calculating analytically Wma(rs, ts, rd, td, r), the 
results obtained in [42] allow us to use a simpler Dirichlet 
boundary condition for which the probability density can be 
given in the form [35, 36, 40, 42] 
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where G(r – r’, t – t’ ) is Green’s function of the nonstationary 
diffusion equation, and ∂/∂q is a derivative in the direction 
normal to the medium boundary. The problem of calculating 
the weighting functions is thus reduced to the integration of 
(3) over time t according to equation (2). 

2.1. 3D case 

In the case of a homogeneous half-space z H 0 with a diffusion 
coefficient D and Dirichlet boundary condition, for Green’s 
function G(r – r’, t – t’ ) we have the expression [35]: 
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Let an instantaneous point source be located at point rs(0, 0, zs) 
with the condition zs >> 1/m'sc being fulfilled, where m'sc is the 
reduced scattering coefficient. Let ts = 0, and let a detector be 
located at point  rd(xd, yd, 0) at the medium boundary z = 0. 
By substituting the corresponding expressions for 
G(r – rs, t – ts ), ∂G(rd – r, td – t)/∂q and ∂G(rd – rs, td – ts )/∂q into 
(3), we obtain 
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A similar expression was obtained in [40, 42] for a detector 
located at point rd(xd, 0, 0). After substituting (5) into (2) and 
changing the variable a = t/(td – t), we obtain 
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Using the identity a–3/2(1 + a)2 = a–3/2 + 2a–1/2 + a+1/2, in 
the braces of expression (6), instead of two, we obtain six 
terms, each of which comprises a standard tabulated integral 
of form [51] 
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After integration, taking into account (7) and some transfor-
mations, expression (6) can be written in the following conve-
nient form: 
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where 
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2.2. 2D case 

In the case of a 2D half-space y H 0, when the source and 
detector are located at points rs(0, ys) and rd(xd, 0), respec-
tively, instead of (5) we obtain the expression 
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After substituting (9) into (2) and changing the variable a = 
t/(td – t) we obtain an analogue of expression (6): 
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Here we come to the tabulated integrals [51] 
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where Kn(x) is the Macdonald function of the nth order (n = 
0, 1). As a result, the expression for the weighting function 
can be written in the form: 
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This result can be simplified if we utilise the asymptotic 

approximation of the Macdonald function ( )Kn ,x  
/ ( )exp2p x x- . Note that in this case the use of the asymp-

totic approximation is quite justified, because the incorrect-
ness arises only at very small values of x and y and only when 
the detector is placed at point rd(0, 0). After simplifications, 
we obtain the analytical representation for the weighting 
function, which is an analogue of expression (8): 
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Spatial distributions of (13) are shown in Fig. 1 for the follow-
ing parameters: c = 0.0214 cm ps–1, D = 0.034 cm and td = 
1000, 2000 and 3000 ps. The detector D is located at point 
rd (4.3 cm, 0). The source S changes the position and is located 
at points rs(0, 7.7 cm), rs(0, 7.2 cm) and rs(0, 6.7 cm) in cases 
when the time-gating delay of the detector is 1000, 2000 and 
3000 ps, respectively. 

3. Weighting functions for the flat layer geometry. 
Method of an equivalent inverse source 

Unlike a semi-infinite medium, a scattering object in the form 
of a flat layer has obviously not one plane boundary but two. 
The problem of applicability of the formulas derived above to 
describe the propagation of light in a flat layer is reduced to 
determination of a distance between these boundaries, i.e., 
the layer thickness d. Contini et al. [52] consider that if  d >> 
1/m'sc, the influence of one boundary on the diffusion process 
of photon migration near the other can be neglected. 
Furthermore, according to studies [53] we assume that in this 
case, the nature of changes in the statistical characteristics of 
the distribution of photons near the source S located on one 
boundary is the same as that near the detector D located on 
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the other boundary (Fig. 2). The above limitation is fully met 
by optical mammography using the flat layer transmission 
geometry, since the distance between the plates compressing 
the breast is usually no less than 5 cm [25 – 30]. We assume 
that in our case, the condition d H 5 cm is met. 

In this paper, in order to find the weighting functions 
Wma(rs, ts, rd, td, r) for the case of the flat layer transmission 
geometry, we use a technique, which we conditionally called 
the method of an equivalent inverse source. The method is as 
follows. 

1. We determine the position of the equivalent source S' 
(Fig. 2) inside the flat layer, such that, by virtue of the assump-

tions made, the migration of photons from point S' to point D 
with the detector can be considered equivalent to the process 
of photon migration from S to D in the half of the flat layer 
with conventional boundaries z = 0 and z = d/2. For this half 
we calculate the weighting function by expression (8) or (13). 

2. Similarly to step 1, we find the position of the equiva-
lent inverse source S'' (Fig. 2), such that the migration of pho-
tons from point S'' to point S with the detector can be consid-
ered equivalent to the process of photon migration from D to 
S in the other half of the layer with boundaries z = d/2 and z 
= d. For this half we also calculate the weighting function by 
the expressions analogous to formula (8) or (13). These for-
mulas can be easily obtained by following the appropriate 
coordinate transformation. 

3. To obtain the weighting function for the entire flat layer 
of thickness d, we perform a superposition of ‘useful’ halves 
of the weighting functions calculated in steps 1 and 2. 

The position of the equivalent source S' in step 1, as well 
as the position of the equivalent inverse source S'' in step 2 is 
found using the previously obtained formulas for the coordi-
nates of the centre of mass of the distribution P[r, t | (rs, ts) ® 
(rd, td)] that, in fact, describes the average trajectory of pho-
tons during their migration from S¢ to D and from S'' to S, 
respectively. These average trajectories are shown in Fig. 2. 
Derivation of the formulas and the procedure for finding the 
coordinates zS' and zS'' of the equivalent sources S' and S'' (i.e. 
distances OS' and DS'' ) are described in detail in [40 – 42]. An 
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example that illustrates the use of the method of an equivalent 
inverse source in practice is shown in Fig. 3. We considered a 
rectangular scatterer of size 10 cm ́  8 cm, the source S was 
located at point rs (1.3 cm, 8 cm), and the detector D – at 
point rd (7.7 cm, 0). The optical parameters of the medium 
were c = 0.0214 cm ps–1 and D = 0.034 cm, and the time-gat-
ing delay was td = 1000 ps. Figure 3a shows the result of cal-
culation for the equivalent source (step 1), Fig. 3b – the result 
of calculation for the equivalent inverse source (step 2), and 
Fig. 3c – the result of superposition of the halves of the 
weighting functions (step 3). Similarly, we can calculate the 
weighting functions for all positions of the sources and detec-
tors selected for the space-dependent measurements of the 
optical signal in order to subsequently reconstruct absorbing 
inhomogeneities. 

It should be noted that we used the above described 
method for the first time. Previously [48, 49], the weighting 
function in the half-space was determined numerically only 
for the equivalent source, i.e., only ‘direct’ calculations were 
performed. Then the ‘useful’ half of the distribution obtained 
was displayed centrally symmetric in order to find the weight-
ing function for the flat layer geometry. In this case, the com-
putational error in the vicinity of the source S reached 10 %. 
To compensate for the error we had to use empirical 
approaches that require additional time-consuming resources. 
The method of the equivalent inverse source is free from such 
drawbacks. 

4. Numerical experiment on the reconstruction 
of absorbing inhomogeneities 

4.1. Experimental

To assess the correctness of the calculation of the weighting 
functions by the method described in Sections 2 and 3, we 
stage a numerical experiment on the reconstruction of 10 ́  
8 cm scattering rectangular objects with spherical absorbing 
inhomogeneities. In this paper, we examine for the first time 
the spatial resolution not only in the direction perpendicular 
to the direction of the probe light, but also longitudinal 
(depth) resolution, which, as is known [54], is the most critical 
in the case of the flat layer geometry. To evaluate the resolu-
tion, we use four objects, each of which comprises four spher-
ical absorbing inhomogeneities of the same diameter in the 
central region. The inhomogeneities are spaced apart so that 
their centres are arranged at vertices of a square with sides 
equal to two diameters. The diameters of the inhomogeneities 
of different objects are 0.3, 0.5, 0.7 and 0.9 cm. The optical 
properties of the objects are as follows: c = 0.0214 cm ps–1, D 
= 0.034 cm and ma = 0.05 cm–1. The corresponding reduced 
scattering coefficient and the absorption coefficients of the 
inhomogeneities are ms' c = 10 cm–1 and ma = 0.075 cm–1, respec-
tively. These values of the optical parameters are characteris-
tic of breast tissue (see, for example, [17, 25, 27 – 30]). In the 
numerical experiment we use 32 sources and 32 detectors. The 
sources and detectors are arranged on opposite sides of the 
object and alternate with each other with the same step. 
Because we study the transmission regime, the couplings 
between the sources and detectors on the same face are 
ignored. Thus, the number of useful couplings, which are 
used for the reconstruction, is 32 ́  16. 

In order to simulate the measured data by the finite ele-
ment method we solve the nonstationary diffusion equation 

with an instantaneous point source. The temporal point-
spread functions G (rs, ts, rd, t) for each source – detector pair 
are calculated as photon fluxes at the boundaries of the 
objects in accordance with Fick’s law [55]. Time-resolved 
optical projections are calculated for the time-gating delay td 
= 1000 ps by the formula 
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Here, the subscript ‘0’ refers to a homogeneous scattering 
object that is not perturbed by the presence of absorbing 
inhomogeneities. For the reconstruction we use a discrete 
model in which the problem is reduced to solving a system of 
linear algebraic equations 

g = W ´ f,	 (15)

where g = {gi} is the vector of time-resolved optical projec-
tions; W = {Wij} is the matrix of the weighting coefficients, 
which is obtained by sampling and combining the weighting 
functions calculated for all the useful couplings between the 
source and the detector; and f = { fj} is the vector of discrete 
values of the reconstructed function. For the inversion of sys-
tem (15) we use a well-studied modified multiplicative alge-
braic reconstruction technique [40 – 42, 48, 49]. All four 
objects are reconstructed on a sufficiently fine grid (187 ́  147) 
at low values of the control parameter responsible for the rate 
of convergence of the iterative process. Therefore, the regula-
rised solution is reached only after a considerable number of 
iterations (typically 5000 – 10000). 

4.2. Results of the reconstruction and their analysis 

Figure 4 shows the results of the reconstruction of the four 
objects to assess the spatial resolution. They are presented in 
the form of 2D images (Fig. 4a), and 3D plots of the function 
dma(r) (Fig. 4b). Shown only are the central parts of the tomo-
grams measuring 5 ́  4 cm. It can be seen that the resolution 
limit in the direction perpendicular to the direction of the 
probe light (transverse resolution) is not limited to the value 
of 0.3 cm, which is consistent with estimates obtained in [49]. 
In the longitudinal direction (longitudinal resolution), inho-
mogeneities of size 0.3 cm are generally not resolved, and 
inhomogeneities of size 0.5 cm are reconstructed with 65 % 
contrast. i.e., the lateral resolution limit is between 0.3 and 
0.5 cm, and likely close to 0.4 cm. 

Note that the computation rate at this stage of research is 
not optimised. The time needed to reconstruct a single image 
on an Intel PC (1.7-GHz Pentium 4, 512-MB RAM) in 
MATLAB is from two to three hours. The computation rate 
can be increased if use is made of a software environment 
faster than MATLAB, of the methods for the adaptive con-
trol of the convergence rate, and of adaptive grid technology. 
Of particular interest (as was pointed out in [49]) is the appli-
cation of an object-oriented programming to the paralleliza-
tion of the reconstruction algorithm on graphics processing 
units. In this case, the gain in the computation rate can 
achieve two or more orders of magnitude [56]. 

5. Conclusions 

We report an original method for calculating the weighting 
functions to reconstruct absorbing inhomogeneities of tissue 
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by time-resolved optical projections using the perturbation 
model proposed by Lyubimov. The method involves an exact 
analytical calculation of the weighting functions for the half-
space geometry and then the utilisation of the original method 
of an equivalent inverse source in order to obtain weight dis-
tributions for the flat layer transmission geometry. To con-
firm the correctness of the formulas derived and weighting 
functions obtained, we have performed a numerical experi-
ment on the reconstruction of rectangular scattering objects 
with absorbing inhomogeneities. Within the framework of 
this experiment, the spatial resolution of the method is stud-
ied in the transverse and longitudinal directions with respect 
to the direction of the probe light. It is shown that in the cen-
tre of an 8-cm-thick object the transverse resolution is better 
than 0.3 cm, and the longitudinal resolution is close to 0.4 cm. 

In our opinion, Lyubimov’s perturbation reconstruction 
model using time-resolved optical projections and the pro-
posed method of calculation of the weighting functions can be 
recommended for practical applications, for example, in opti-
cal mammography.
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Figure 4.  Results of the reconstruction of objects with absorbing inho-
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