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Abstract.  The modulation instability is analytically investigated in 
a zigzag array of tunnel-coupled optical waveguides with alternat-
ing refractive indices and Kerr nonlinearity. Particular solutions to 
a system of coupled nonlinear equations are found. They describe 
the propagation of electromagnetic waves that are uniform along 
the waveguide and their instability is studied. It is shown that the 
coupling coefficient between the waveguides, which are non-nearest 
neighbours, has a significant effect on the instability of the waves in 
question. When the coupling coefficient exceeds a certain threshold, 
the modulation instability disappears regardless of the radiation 
power. The influence of the ratio of the wave amplitudes in adjacent 
waveguides to the instability of the particular solutions is studied. 
Different variants of the nonlinear response in waveguides are con-
sidered. The studies performed present a new unusual type of the 
modulation instability in nonlinear periodic systems. 

Keywords: modulation instability, tunnel-coupled waveguides, optical 
lattice, discrete diffraction, negative refraction, forward and back-
ward waves, reciprocal lattice vector, instability increment. 

1. Introduction 

The last 30 – 40 years are marked by intense theoretical and 
experimental studies of nonlinear discrete systems (see [1] and 
references therein). These structures are found in many mate-
rial systems and are of undoubted scientific interest. Thus, in 
studying the wave propagation in nonlinear discrete struc-
tures, new types of solitons are found, which are not observed 
in continuous systems. The principal feature of discrete sys-
tems is that their linear properties are very different from the 
latter in continuous systems, and as a result, the nonlinear 
response demonstrates new effects, which have no analogues 
in continuous systems. 

One of the important effects of nonlinear dynamics is the 
modulation instability (MI), which occurs in many material 
systems [2 – 16]. The modulation instability precedes the split-
ting of a spatially homogeneous wave into individual wave 
packets at high intensities. A propagating wave becomes 
unstable with respect to amplitude and phase modulation, the 

values of which begin to grow exponentially. Often this pro-
cess of the wave destruction leads to the formation of a chain 
of solitons with gaps between them, inversely proportional to 
the spatial frequency corresponding to the maximum instability 
growth rate. Therefore, the MI is known in physics as a fore-
runner of soliton formation [17, 18]. 

An interesting and fruitful area of research, which examines 
new examples of discrete systems, is discrete optics of coupled 
waveguides [19]. Optical waveguides arranged relative to each 
other at a distance of wavelength can be coupled due to tunnel 
penetration of light from one waveguide to the other [20]. 
Systems made of a large number of tunnel-coupled wave-
guides form an optical lattice. Discrete optical system can be 
considered as a one-dimensional photonic crystal [21], and 
such structures can provide total reflection of radiation over 
a specified frequency range for any polarisation directions 
and angles of incidence [22, 23], so that they can be used as a 
frequency filter of electromagnetic radiation. Reflection of 
radiation in a particular frequency range is explained by the 
presence of a gap in the energy spectrum. Nonlinear interaction 
in nonlinear discrete systems can also lead to the MI [24, 25]. 

In periodic media, different sampling types may exert 
an unequal effect on the MI and lead to various conditions 
for forming localised modes (i.e., discrete solitons) [26, 27]. 
In  particular, much attention is paid to experimental and 
analytical study of linear and nonlinear properties of arrays 
of identical waveguides [28 – 34]. Darmanyan et al. [35] con-
sidered such a system of coupled waveguides with a self-
focusing Kerr nonlinearity. The MI process was studied and 
it was shown that, depending on the value of the reciprocal 
lattice vector, the system in question allows for two different 
scenarios of evolution of modulationally unstable solitary 
waves. The authors of papers [36, 37] studied a system of two 
coupled waveguides with a positive refractive index (PI) and a 
negative refractive index (NI), called an oppositely directed 
coupler (ODC). This system allows one to study the interac-
tion of forward and backward waves; in addition, a nonlinear 
stationary solitary wave that propagates in both waveguides 
as a whole is formed in such a system. Litchinister et al. [38] 
showed that such a pair of waveguides is bistable, which 
manifests itself in an ambiguous dependence of the output 
pulse power on the input pulse power. Maimistov and 
Kazantseva [39] considered an ODC-based linear amplifier, 
determined the gain and found that compensation of losses is 
possible in the NI waveguide; they also studied the evolution 
of continuous waves in a dissipative ODC with a nonlinear PI 
waveguide. Xiang et al. [40] showed that the MI effect in an 
ODC with a Kerr nonlinearity occurs only at certain ratios of 
the amplitudes of forward and backward waves in the wave-
guides and specified nonlinearity coefficients. The modulation 
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instability appears only in a limited range of power in the 
waveguides if NI waveguide nonlinearity is defocusing and PI 
waveguide nonlinearity is focusing. With increasing power 
the MI is suppressed and increases in the case of a conven-
tional directional coupler. This unusual property of the MI 
effect stems from the interaction of forward and backward 
waves because in a conventional directional coupler the inter-
acting waves are forward ones, and nothing like this is ever 
observed. Tatsing et al. [41] studied the effect of saturating 
nonlinearity on the MI in an ODC. Maimistov et al. [42, 43] 
studied an array of coupled waveguides with alternating 
positive and negative indices and showed that the spectrum of 
linear waves propagating in such a system has a band gap. 
Zezyulin et al. [44] found the existence of new discrete gap 
solitons in such a system of coupled waveguides and studied 
their properties. In addition, the system allows the formation 
of a nonlinear stationary solitary wave that propagates along 
the entire array of coupled waveguides as a whole [45]. 

Theoretical models describing the evolution of the waves 
in all the above variants of the arrays of tunnel-coupled wave-
guides take into account only the interaction of the nearest 
neighbours. The electromagnetic field is strongly localised in 
the channels of the array, and interaction with the rest of the 
waveguides is insignificant. Efremidis and Christodoulides  [46] 
proposed a zigzag configuration for the coupled waveguide 
array, in which the interaction with the waveguides that are 
not the nearest neighbours can be just as significant as the 
interaction between the nearest neighbours. This leads to the 
appearance of new types of discrete solitons. Kazantseva and 
Maimistov [47] considered the modification of a zigzag array 
in which waveguides with even and odd numbers have posi-
tive and negative indices, respectively. They showed that the 
spectrum of linear waves has a band gap. In addition, they 
described the propagation of a nonlinear stationary solitary 
wave and the interaction between these waves, which, depend-
ing on the coupling coefficients, can behave as either gap soli-
tons, or unstable solitary waves. 

In this paper we study analytically the instability of elec-
tromagnetic waves (uniform along the waveguide) propagat-
ing in a zigzag array of coupled waveguides with alternating 
positive and negative indices (Fig. 1) in the presence of Kerr 
nonlinearity in the waveguides. The MI growth rate, an ana-
lytical expression of which is found by the method of linear 
stability analysis, is studied numerically. It is shown that the 
MI growth rate essentially depends on the parameters of the 
system in question: the coupling coefficient with waveguides 
following the nearest neighbours, the nonlinearity parame-
ters, the ratio of the amplitudes of forward and backward 
waves in neighbouring waveguides. The MI is found to 
decrease significantly with increasing interaction force with 
non-adjacent waveguides independently of the field strength 
in the waveguide, which is a novelty for nonlinear periodic 

structures, because typically the MI only increases with 
increasing wave amplitude in such systems [48 – 50]. 

2. Theoretical model 

In normalised variables the system of equations describing 
the evolution of optical waves in a zigzag coupled waveguide 
array under study (Fig. 1) has the form [47]: 

i(¶z + ¶t) an + K1(bn – 1 + bn) + K2(an – 1 + an + 1) 

	 + r1|an|2 an = 0,	 (1.1)

i(–¶z + ¶t) bn + K1(an + an + 1) + K3(bn – 1 + bn + 1) 

	 + r2|bn|2 bn = 0,	 (1.2)

where an (bn) is the normalised envelope of the electric field of 
a quasi-harmonic wave in a PI (NI) waveguide with number n; 
r1 and r2 are the nonlinearity parameters in PI and NI wave-
guides, respectively; K1 (K1 > 0) is the coupling coefficient 
between PI and NI waveguides; K2 (K2 > 0) is the coupling 
coefficient between PI waveguides; and K3 (K3 > 0) is the 
coupling coefficient between NI waveguides. Dissipation and 
second-order group velocity dispersion effects are neglected. 

The coefficient K1 is responsible for the interaction of the 
nearest neighbours, and the coefficients K2 and K3 – for inter-
action with waveguides following the nearest neighbours. 
Details of the derivation of equations (1) can be found in 
[42, 51]. Note that in equations (1) the coupling coefficients K2 
and K3 may be arbitrary, but for simplicity we assume K2 = K3. 

Unlike equation (1.1), in equation (1.2) the spatial deriva-
tive ¶z has a minus sign in front, which is due to the fact that 
a backward wave with the vectors of the phase and group 
velocities having opposite directions propagates in the NI 
waveguide, whereas in the PI waveguide conventional forward 
waves propagate. 

Equations (1.1) and (1.2) describe the propagation of 
optical waves in the absence of losses, but NI metamaterials, 
as a rule, have fairly large losses. However, Xiao et al. [52] 
demonstrated the possibility of obtaining a NI metamaterial, 
in which optical waves propagate without losses. This leaves 
a lot of hope that in the near future it will be possible to pro-
duce transparent NI materials. 

3. Uniform waves. Dispersion relation 

Let us consider the simplest solution to equations (1), which 
describes the propagation of plane waves in this system of 
coupled waveguides: 

an = a exp(ikz + iqn – iwt) + c.c.,	 (2.1)

bn = b exp(ikz + iqn – iwt) + c.c.,	 (2.2)

where k is the wave propagation constant; a2 + b2 = P is the 
total radiation power in a pair of PI and NI waveguides; q is 
the wave vector of the reciprocal lattice; and w is the deviation 
from the frequency w0 of the carrier wave of a quasi-harmonic 
wave packet. Kazantseva and Maimistov [47] found the spec-
trum of linear waves (2) of system (1) at r1 = r2 = 0: 

w(+),(–) = –(K2 + K3) cos q 

	 ± [ ( ) ] ( / )cos cosK K q K q4 22 3
2

1
2 2k- - + ,
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Figure 1.  Zigzag array of coupled waveguides (cross section). Open 
circles show PI waveguides, dark ones – NI waveguides (see [45]). 
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which has a band gap (Fig. 2). Radiation with frequencies 
from the band gap region cannot propagate in the waveguide 
array in question and therefore is reflected from it. In this 
regard, this waveguide array acts like a distributed Bragg 
mirror. However, when the values of the reciprocal lattice 
vector are equal to q = p ± 2pn (n = 0, 1, ...) the spectrum is 
gapless (Fig. 2). The points in Fig. 2 correspond to the one-
dimensional resonance Bragg grating. It should be noted that 
the interaction with the waveguides following the adjacent 
ones influences the spectrum of propagating plane waves. 
Based on Fig. 2, we can make a conclusion that when the cou-
pling coefficients K2 and K3 are increased, the branches of the 
spectrum corresponding to q = 0 descend, the branches of 
the spectrum with q = p/2 remain stationary and the branches 
of the spectrum with q = p ascend, thereby reducing the 
gap. Thus, an increase in the coupling between nonadjacent 
waveguides can lead to degeneration of the band gap in the 
spectrum of propagating plane waves, thereby making it 
gapless. 

With increasing field power in the waveguide, the nonlinear 
effects start exerting a significant influence, and the spectrum 
of the plane waves becomes distorted. Substituting solutions 
(2) into the system of nonlinear equations (1), we obtain the 
following nonlinear dispersion relation: 
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where the parameter f = b/a (the ratio of the amplitude of the 
backward wave in the NI waveguide to the amplitude of 
the  forward wave in the PI waveguide) describes how the 
power is distributed between the PI and NI waveguides. 
Figure 2 shows that the linear and nonlinear spectra coincide 
with good accuracy at low values of the radiation power in 
the waveguides. The value f = 1 corresponds to the bottom 
and f = –1 – to the top of the band gap. Positive and negative 
values of f lie on the low and upper branches of the spectrum 
(Fig. 2), respectively. In order to find a more general value of 
f, we consider the group velocity ugr = dw/dk: 
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Figure 2.  Dispersion relations for uniform waves propagating in the waveguide array under study at fixed q and different K2 and K3 (K1 = 1). The 
points correspond to r1 = r2 = 0.1, P = 0.1 at (a) K2 = K3 = 0.25, (b) K2 = K3 = 0.5, (c) K2 = K3 = 0.75 and (d) K2 = K3 = 1.
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The values of ±f correspond to the same group velocity 
but are located at different branches of the spectrum, while 
the value of f and f –1 correspond to the opposite group 
velocities and are on the same branch of the spectrum (Fig. 2). 
The case |f| < 1 corresponds to the forward propagation of 
the waves in the system, and |f| > 1 – to the backward prop-
agation. When |f| = 1, which corresponds to the boundaries 
of the band gap in the spectrum, the group velocity is equal to 
zero. In this case, the energy is transferred in neither direct 
nor reverse directions. 

4. Analysis of the stability of uniform waves 

The procedure for investigating the stability of solutions (2) 
describing the propagation of uniform waves along the wave-
guides in the zigzag array under study is a well known method 
of linear stability analysis [18]. We introduce perturbations in 
the amplitudes of solutions (2) as follows: 

an = (a + anu ) exp(ikz + iqn – iwt),	 (4.1)

bn = (b + bnu ) exp(ikz + iqn – iwt),	 (4.2)

where anu  and bnu  are small quantities (|anu | << a, |bnu | << b). 
Substituting (4) into the system of nonlinear equations (1) 
and linearizing it with respect to small perturbations, we can 
easily obtain the system of linear differential equations: 

i(¶z + ¶t)anu  – fm1anu  + K1(bn 1-
u  + bnu ) – m2anu

	 + K2(an 1-u  + an 1+u ) + r1(anu  + an*u ) = 0,	
(5)

i(–¶z + ¶t)bnu  – ( m1/f )bnu  + K1(anu  + an 1+u ) – m3bnu

	 + K3(bn 1-
u  + bn 1+

u ) + r2(bnu  + bn*u ) = 0,

where m1 = 2K1 cos(q/2); m2 = 2K2 cos q; m3 = 2K3 cos q; r1 = 
r1P/(1 + f 2); and r2 = r2Pf 2/(1 + f 2). 

The system of equations (5) will be sought for in the form 

anu  = c1 exp(ikz + iQn – int) + d1 exp(–ikz – iQn + int),	 (6.1)

bnu  = c2 exp(ikz + iQn – int) + d2 exp(–ikz – iQn + int),	 (6.2)

which is a more general case of propagating plane waves than 
solution (2). Here, the constants ci and di (i = 1, 2) are the real 
values, k is the propagation constant, Q is the wave vector of 
the reciprocal lattice and n is the frequency of small perturba-
tions. Substituting (6) into equation (5) leads to a system of 
four linear homogeneous algebraic equations of the first order 
with respect to the four unknowns 
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	 (7)

L1 = n – k – m1  f – m2 + M2 + r1,

L2 = n + k – m1 / f – m3 + M3 + r2,

L3 = –n + k – m1  f – m2 + M2 + r1,

L4 = –n – k – m1 / f – m3 + M3 + r2,

where M1 = 2K1 cos(Q/2), M2 = 2K2 cosQ and M3 = 2K3 cosQ. 
The resulting system of algebraic equations (7) has a non
trivial solution when its determinant is zero. From this equa-
tion follows an algebraic equation of the fourth order with 
respect to the frequency of small perturbations n, which deter-
mines the dispersion relation for the waves generated by small 
perturbations: 

n4 – An2 + Bn + C = 0,	 (8)
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N2 = m1  f + m2 – M2;  and  N3 = m1/f + m3 – M3.

The matrix of system (7) is called the stability matrix, 
which is used to investigate the stability of solutions (2) to 
equations (1). The modulation instability appears when at 
least one eigenvalue of the stability matrix has a non-zero 
imaginary part, which leads to an exponential increase in the 
amplitude of propagating plane waves (2) subjected to small 
perturbations (4). Thus, it is necessary to find the roots of 
equation (8), which is an algebraic equation of the fourth 
order and, according to the fundamental theorem of algebra, 
has four roots. The roots of equation (8), expressed in radi-
cals, are determined by the Ferrari method and have the form 
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where s is the cubic resolvent of equation (8), expressed in 
radicals by using Cardano’s formula: 

 s
g g d g g d A
2 2 3 2 2 3 6

2 33 2 33
= - + - + - - - -` c ` cj m j m

(here d = A2/12 + C and g = A3/108 – AC/3 – B2/8). 
Now we can investigate the instability of solutions of (2) 

by analysing the MI growth rate, which is found according to 
the known procedure [49] as

G = |Im(n)max|,	 (9)
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where Im(n)max is the imaginary part of that root ni of equa-
tion (8), which has a maximal imaginary part. If the growth 
rate (9) takes nonzero values, then solutions (2) are unstable. 

5. Modulation instability growth rate 

The MI growth rate (9) was studied by computer simulation 
because explicit analytic expressions are very difficult to derive 
since the roots of equation (8) are expressed in radicals using 
Cardano’s formulas. Different variants of the nonlinear response 
in the waveguides of the system are considered: 1) all the 
waveguides are nonlinear, focusing or defocusing (r1 = r2 > 0 
or r1 = r2 < 0); 2) some waveguides are focusing and others 
are defocusing (r1 = –r2 ¹ 0); 3) some waveguides are linear 
and others are nonlinear (r1 = 0, r2 ¹ 0 or r2 = 0, r1 ¹ 0). We 

study how the coefficient of interaction with the waveguides 
located behind the nearest neighbours, the parameter f and 
the power P affect the MI growth rate. 

It should be noted that there are particular cases when it is 
possible to obtain an explicit analytical expression of the MI 
growth rate. For example, when r1 = r2, K2 = K3 and |f | = 1. 
In this case, the expression for the MI growth rate (9) takes 
the form: 
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Figure 3 shows the effect of the power P on the MI growth 
rate (10) for a particular case when the vector of the reciprocal 
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lattice of plane waves is q = p and the spectrum is gapless 
(Fig. 2). It can be concluded that in this case, when the power 
of the field in the waveguides is increased, solutions (2) become 
unstable. The influence of power on the stability of solutions 
(2) is of threshold character (Fig. 3b). Above a threshold power 
solutions (2) become completely unstable (Figs 3c and 3d). 
The same case was investigated in Figure 4, but for q = p/2, 
when the spectrum of plane waves has a gap. Similarly to 
the case q = p, the influence of power on the stability of solu-
tions (2) with q = p/2 is of threshold character, but the presence 
of a gap in the spectrum increases the power threshold, which 
is easily seen by comparing Figs 3 and 4. 

5.1. Influence of the coupling coefficient K2 on the MI 
growth rate 

As was already noted, in the coupled zigzag waveguide array 
in question, interaction with nonadjacent waveguides can be 
as significant as with adjacent ones (note that in conventional 
arrays of coupled waveguides, essential only is the interaction 
of the nearest neighbours). It is therefore of interest to inves-
tigate the effect of this additional interaction on the instability 
of plane waves propagating in the zigzag array under study 
and compare it with the MI in the conventional arrays of cou-
pled waveguides or Bragg gratings. Usually, plane waves are 
unstable in nonlinear Bragg gratings, and instability increases 
with increasing wave amplitude [48 – 50]. 

Figure 5 shows the effect of the coupling coefficient K2 
on the MI growth rate (10) at q = p, when the spectrum is 
gapless. Interaction with the waveguides following the nearest 
neighbours significantly affects the instability of plane waves. 
By increasing K2, the instability of plane waves (Figs 5a – c) 
is  significantly reduced, and there is quite a large area of 
stability, which does not change with increasing field strength 
(Fig. 5d). Thus, we can conclude that the influence of the 
coupling coefficient K2 on the instability of plane waves has 
a threshold character. To find the threshold value of K2, we 
study the expression for the MI growth rate (10) at arbitrary q. 
For simplicity, we consider expression (10) at k = 0: 

G = [(r1P/2)2 – (|r1P/2 – N2| – 2K1|cos(Q/2)|)2]1/2, 

where N2 = 2K1 cos(q/2) + 2K2 cos q – 2K2 cos Q. It follows that 
the instability disappears regardless of the value of P, if the 
inequality 

|cos(Q/2)| ³ K1/2K2 + cos(q/2)	 (11)

is fulfilled. 
The wave vector of the reciprocal lattice of small per

turbations Q is a real value, and therefore the absolute value 
of the cosine cannot be greater than unity. Thus, the latter 
inequality holds only when K2 ³ K1/4 sin2(q/4) and q ¹ 0. As 
a consequence, for the threshold value of the coupling coeffi-
cient K2 we have 

K2
th = K1/4 sin2(q/4).	 (12)

When q = 0, inequality (11) is not met at any Q, and the 
instability persists regardless of the K2 value. The minimum 
threshold value K2

th is reached at q = p: K2
th(p) = K1/2; in this 

case, only Q = 0 satisfies inequality (11), so that the instability 
disappears only at the centre of the Brillouin zone (Fig. 5a). 
When the threshold is exceeded, the stability region increases 
(Figs 5b – d). Inequality (11) allows one to find easily the 
boundaries of the stability region: 

–2 arccos[K1/2K2 + cos(q/2)] £ Q 

	 £ 2 arccos[K1/2K2 + cos(q/2)].	 (13)

At K2 < K1/4 sin2(q/4) the stability of plane waves is not 
observed, and the threshold power at which solutions (2) in this 
case become completely unstable, is given by the expression 
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(see Fig. 3b). The minimum threshold power is reached at 
q = p and the maximum – at q = 0. 

Let us calculate numerically these powers. To do this, we 
will use the data of Eisenberg et al. [33], who investigated 
experimentally the formation of discrete solitons in a system 
of coupled AlGaAs waveguides: K1 = 1 mm–1, r1 = 5 m–1 W–1. 
In calculations we assume K2 = 0.25 mm–1. Then, Pth(p) = 
200 W and Pth(0) = 800 W. The resulting thresholds are in 
good agreement with the results of Meier et al. [53], who 
investigated experimentally the MI in a system of coupled 
waveguides made of AlGaAs. An increase in the coupling 
coefficient K2 reduces to a certain point the power threshold 
and when the threshold value K2

th (12) is reached, the instability 
begins to disappear (Fig. 5a) independently of the power 
quantity (Figs 5b and 5c). 

Figure 6 shows the effect of the coupling coefficient K2 on 
the MI growth rate (10) at q = p/2, when the spectrum has 
a band gap (Fig. 2). Similarly to q = p, an increase in K2 leads 
to a substantial decrease in the instability of plane waves with 
q = p/2; however, a gap in the spectrum increases the thresh-
old value of K2 as compared with the previous case, which can 
be easily seen if we compare Figs 5 and 6 [this also follows 
from relation (12)]. Moreover, it follows from (13) that the 
area of stability at q = p/2 is narrower than at q = p, and when 
q = 0, it entirely degenerates. 

Thus, interaction with the waveguides located behind the 
nearest neighbours in the zigzag coupled waveguide array in 
question has a significant effect on the instability of the prop-
agating uniform waves. Besides, the MI effect has some fea-
tures that have not been observed previously in conventional 
arrays of coupled waveguides and Bragg gratings. However, 
in a zigzag array considered in [46], a similar effect of the MI 
absence was observed at small values of the coefficient of inter-
action with the waveguides that are not the nearest neighbours.

5.2. Influence of the parameter f on the MI growth rate 

The dependence of the MI growth rate (9) on f is investigated 
by computer simulation. We have considered the nonlinear 

response of the system of coupled waveguides (variants 1 to 3, 
Section 5). Figures 7 and 8 show the effect of the parameter f 
on the instability of plane waves (2) at q = p and p/2, respec-
tively. The most stable region is observed in the case of vari-
ant 3 (Figs 7c, d and 8c, d). If PI waveguides are nonlinear and 
NI waveguides are linear, the instability occurs when the 
amplitude of the forward wave is greater than that of the 
backward wave (Figs 7c and 8c). In an opposite case, when 
NI waveguide are nonlinear and PI waveguides are linear, the 
instability increases with increasing | f|, if the amplitude of 
the backward wave is greater than that of the forward wave 
(Figs 7d and 8d). Variants 1 and 2 proved unstable, but the 
greatest instability occurs when NI waveguides are defocus-
ing (Figs 7b, e and 8b, e). It should be noted that the calcula-
tions are made for Q = 0. For other values of Q there appear 
different peculiarities in the MI behaviour, which are dis-
cussed below. From a comparison of Figs 7 and 8 it can be 
concluded that the fundamental difference of the dependence 
of the MI growth rate (9) on the parameter f for plane 
waves with q = p and q = p/2 is that in the former case the 
MI growth rate is symmetrical with respect to f, and in the 
second – not. 

5.3. Influence of the NI waveguide nonlinearity r2 
and power P on the MI growth rate 

Figure 9 shows the dependence of the MI growth rate (9) on 
the NI waveguide nonlinearity r2 and power P at q = p/2. At 
Q = p/2 and positive values of f we observe an uncharac
teristic dependence of the MI growth rate (9) on P for a 
defocusing NI waveguide and a focusing PI waveguide 
(Figs 9a and 9b). The modulation instability occurs only in a 
limited range of P values and is suppressed with increasing 
power. A similar effect is observed in an oppositely directed 
coupler [40]. At Q = p and negative values of f the instability 
is completely absent (irrespective of power) when all the 
waveguides are focusing (Figs 9c and 9d). Similar features of 
the MI effect have not been observed previously in conven-
tional Bragg gratings. 
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6. Conclusions 

We have analytically investigated the effect of the modulation 
instability in a zigzag array of tunnel-coupled waveguides in 
which positive index waveguides alternate with negative index 
waveguides. All the waveguides are made of an optically non-
linear material with Kerr nonlinearity. The zigzag-like spatial 
configuration of a system of coupled waveguides allows one 
to take into account the interaction with the waveguides fol-
lowing the nearest neighbours. 

The method of research is based on the theory of coupled 
modes. We have obtained particular solutions of coupled non-
linear equations describing the propagation of uniform waves 
in an array of coupled waveguides. The method of linear sta-
bility analysis is used to study the solutions for instability. We 
have found that the coupling between non-adjacent wave-
guides significantly affects the instability of the waves that are 
uniform along the waveguides. When the threshold is 
exceeded, the value of which depends on the wave vector of 
the reciprocal lattice of uniform waves, the instability begins 
to disappear regardless of the radiation power. Such a feature 
in the MI behaviour has not been observed previously in con-
ventional Bragg gratings [48 – 50] and is a new result, because 
usually the instability only increases with increasing wave 
amplitude. 

We have studied the influence of the ratio of the ampli-
tudes of forward and backward waves on the stability of the 
particular solutions obtained. It is shown that if the spectrum 
has a gap, the instability growth rate is asymmetric with 
respect to f, and if the spectrum is gapless, the instability 
growth rate is symmetric. Different variants of the nonlinear 
response in waveguides are considered. If use is made of 
focusing positive index waveguides and defocusing negative 
index waveguides at certain values of the ratio of forward and 
backward waves and the reciprocal lattice vector, the instability 
is observed only in a limited range of power and suppressed 
with its further increase. A similar effect was observed in an 
oppositely directed coupler [40]. 

The investigation of the instability of uniform-along-the-
waveguide waves propagating in the zigzag coupled wave-

guide array in question has made it possible to observe a new 
feature in the behaviour of the modulation instability in non-
linear periodic systems. With an increase in the coupling 
strength between the waveguides following the nearest neigh-
bours, the instability vanishes at any values of the field power 
in the considered waveguides of the array, whereas the insta-
bility only increases with increasing wave amplitude (both in 
a nonlinear continuous medium and in nonlinear discrete 
structures). 
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