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Abstract.  The possibility of two-dimensional spatial localisation of 
atomic populations under the influence of the travelling wave fields 
in the tripod-configuration of quantum states is studied for the first 
time. Three travelling waves propagating in the same plane at an 
angle of 120° to each other form a system of standing waves under 
the influence of which atomic populations are localised. The size of 
the region of spatial localisation of the populations, in principle, 
can be hundredths of a wavelength of optical radiation. 

Keywords: spatial localisation of atomic populations, tripod-con-
figuration of atomic levels. 

1. Introduction 

Recent years have seen an increased interest in the study of 
spatial localisation of atomic populations in both one-dimen-
sional and two-dimensional cases [1 – 9]. This interest stems 
from the possibility of obtaining narrow (much smaller than 
the optical radiation wavelength) spatial distributions of 
atoms, which are in certain quantum states. 

The physical basis for the localisation of quantum-state 
populations of an atomic system is spatially inhomogeneous 
optical pumping, which determines the spatial distribution of 
the populations. In this case, a standing light wave, which is 
resonant with at least one transition of a multilevel system, 
is  needed. The period of this wave determines the spatial 
period of changes in the populations. At the same time, the 
width of a single peak in the distribution of the populations 
depends on the intensity of the standing-wave field. Indeed, 
because the intensity in the standing-wave node is equal to 
zero, the optical pumping redistributes the populations from 
all the levels of the atomic system to the lower state, which is 
subjected to the action of the standing-wave field. On the 
other hand, if an atom is not exactly in the node, the optical 
pumping efficiency is reduced, because the standing-wave 
intensity increases. Thus, the higher the standing-wave inten-
sity, the greater the spatial gradient of the field and, therefore, 
the smaller the spatial region near the node of the standing 
wave for which the optical pumping efficiency is high. 

It should be emphasised that the English scientific litera-
ture uses the term ‘atom localisation’ rather than the term 
‘localisation of atomic populations’, which leads to a certain 
discrepancy between the physical phenomenon and its name. 
The fact is that in this case we are dealing with the localisation 
of the populations, i.e., the interaction of the atom with the 
optical radiation field leads to the spatial redistribution of the 
populations of the atomic states. Thus, the initial spatial dis-
tribution of atoms w(x, t = 0), taking into account the popula-
tions of the quantum states ri(x, t = 0) before [win(x)] and after 
[wf(x)] interaction, retains its form, while the spatial distribu-
tions of the populations after the interaction ri(x, t) will change: 

win(x) = w(x, t = 0) = 
i
/ri(x, t = 0)

	 = 
i
/ri(x, t) = w(x, t) = wf(x).

We assumed above that under the influence of optical 
radiation the atom does not change its translational state. In 
other words, the atom is considered to be so heavy that we 
can neglect the recoil energy Er = 

2' k2/(2m), as compared with 
the kinetic energy of the atom E = p2/(2m) (here, m is the mass 
of the emitting atom; k = 1/l– is the wavenumber of the photon 
emitted by the atom; l– is the photon wavelength; p = mu is the 
momentum of the atom; and u is the velocity of the atom). 

Let us now take into account the fact that during absorp-
tion (or emission) of a single photon, the velocity of the atom 
changes by an amount equal to the recoil velocity ur = 'k/m. 
Then, the minimum size of the population localisation region, 
dx, can be defined as the distance travelled by an atom with 
velocity ur during the lifetime of the excited state, t µ g–1: 

dx ³ ur g–1 = 
E1 r

'p g  » 3 ́  10
–3 l,

where g is the rate of spontaneous relaxation and l is the wave-
length of incident radiation; it is assumed that Er » 10–2'g for 
strong electric-dipole optical transitions in atoms. The effect 
of the recoil velocity on the finite width of the population 
localisation region should be accounted for in the case when 
it is needed to extract from the total ensemble only those atoms 
that are in a certain quantum state, because this extraction 
can also be realised by means of optical methods. 

Note that the main problem here is the choice of the 
scheme of interaction of atoms with the laser field, because it 
is desirable to have only one excited upper level for efficient 
optical pumping to the lower levels of the system. As a result, 
all the above-considered schemes of atomic states, used to 
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study the localisation of the populations, are based to some 
extent on a three-level L system. For example, the authors of 
papers [1 – 3] proposed one-dimensional localisation of the 
populations for the atoms with L configuration of the levels. 
In this case, the generalisation to the two-dimensional case is 
nontrivial due to the fact that in the equations for the density 
matrix elements one must explicitly take into account the 
polarisations of the light waves, i.e., the selection rules for the 
working transitions. Therefore, for the fields with both linear 
and circular polarisations to be applied to two-dimensional 
localisation of the populations, Ivanov and Rozhdestvensky [4] 
proposed the tripod-configuration of the atomic states. 

In this paper, we have obtained for the first time the two-
dimensional spatial localisation of the populations induced 
by the optical fields of the travelling waves in a four-level tri-
pod-system. In this case, three travelling waves propagating in 
the same plane at an angle of 120° to each other produce 
standing waves which, interacting with the central transition 
of the tripod-system (Fig. 1a), ensure the spatial localisation 
of the atomic populations. 

Note that the use of the travelling waves is very encouraging 
from the point of view of the practical implementation of the 
two-dimensional spatial localisation of the populations in the 
region, the size of which is much smaller than the wavelength of 
optical radiation l; moreover, this effect can be of considerable 
interest for the modern nanotechnology. 

2. Basic equations 

Let us now consider in detail the energy level diagram of the 
atom in the tripod-configuration (Fig. 1a). In this case, the 
atomic system consists of three lower states with nonallowed 

optical transitions between them and one upper level. The 
optically allowed transitions |nñ –|4ñ (n = 1 – 3) are subjected 
to the action of the fields with Rabi frequencies g1, g2 and g3 
and detunings from the resonance frequencies of transitions 
D1, D2 and D3, respectively. Figure 1b shows the orientation 
of the fields. It can be seen that the three travelling waves with 
the same Rabi frequency g2, acting on the transition |2ñ –|4ñ, 
propagate in the xy plane at an angle of 120° to each other, 
while the wave fields with the Rabi frequencies g1 and g3, acting 
on the transitions |1 ñ –|4ñ and |3 ñ –|4ñ, propagate in the 
negative and positive directions of the z axis, respectively. As 
a result, the expression for the total field in the tripod-system 
(Fig. 1) can be written in the form 

E = e2E2 [cos(w2t – k2
(1)r) + cos(w2t – k2

(2)r)

	 + cos(w2t – k2
(3)r)] + e1E1 cos(w1t + k1z)

	 + e3E3 cos(w3t + k3z).	 (1) 

The wave with frequency w1 and wavenumber k1 propagates 
in the negative direction of the z axis, whereas the wave with 
w3 and k3 – in the positive direction; in the xy plane, there are 
three waves having the same frequency w2 but different direc-
tions of the wave vectors: (( , )k k( )i j

2 2
)  = 120° (i ¹ j; i,  j = 1, 2, 3). 

In this case, the unit vectors e1,3 specify positive and negative 
circular polarisations of the waves, respectively, and the vector 
e2 – linear polarisation. 

The dynamics of the system can be described by using the 
equation for the density matrix elements ( , , )x y tijru  

 [ , ]i iHij ij ij ijr rG= +'ruo u u 	 (2)

with an interaction Hamiltonian in the form H = H0 + V, 
where H0 is the quantum state of the system in the absence of 
interaction, and 

( )V Ed e1
i i i

i
4

1

3

'
=-

=

/

determines the interaction with the optical radiation field (1) 
for the |nñ –|4ñ (n = 1 – 3) transitions with the matrix element 
of the dipole interaction operator di4. 

In expression (2) the matrix elements  Gij specify the relax-
ation rates of the elements ( , , )x y tijru . In this case, the relaxa
tion rate of the diagonal matrix elements (i.e., populations) is 
determined by the natural width of the upper excited state of 
the system 2g = g1 + g2 + g3 (Fig. 1a), and the relaxation rates 
of the off-diagonal matrix elements Gij (i ¹ j) can, in addition 
to natural decay, be determined by collisions, finite spectral 
width of the exciting fields, etc. 

As a result, the equations for the density matrix elements  
( , , )x y tijru  of the system of the levels in the tripod-configura-

tion have the form 

i 11ro  = g1(r14 – r41) + i g1 r44,

i 22ro  = g2(r24 – r42) + i g2 r44,

i 33ro  = g3(r34 – r43) + i g3 r44,

i 44ro  = g1(r41 – r14) + g2(r42 – r24) + g3(r43 – r34) 

	 – i(g1 + g2 + g3) r44,
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Figure 1.  (a) Diagram of the quantum levels of the atom in the tripod-
configuration and (b) mutual orientation of the optical fields. 
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i 14ro  = g1(r11 – r44) + g2 r12 + g3 r13 + (D1 – iG14) r14,	 (3)

i 24ro  = g2(r22 – r44) + g1 r21 + g3 r23 + (D2 – iG24) r24,

i 34ro  = g3(r33 – r44) + g1 r31 + g2 r32 + (D3 – iG34) r34,

i 12ro  = g2 r14 – g1 r42 + (D1 – D2) r12,

i 13ro  = g3 r14 – g1 r43 + (D1 – D3) r13,

i 23ro  = g3 r24 – g2 r43 + (D2 – D3) r23,

where rij = r*ij (i ¹ j). 
In deriving the system of equations (3) we have neglected 

the terms containing the temporal oscillations at the doubled 
optical frequency (resonance approximation) and used the 
so‑called rotating-wave approximation, which consists in 
the  replacement of the off-diagonal matrix elements n4ru  = 
rn4 exp(iDn t) (n = 1 – 3) for optical coherences and elements 
12ru  = r12 exp[i(D1 – D2) t], 13ru  = r13 exp[i(D1 – D3) t], 23ru  = 

r23 exp[i(D2 – D3) t] for low-frequency coherences. According 
to (1), on the central transition of the system (Fig. 1a) there 
are three fields with the same frequency but different direc-
tions of the wave vectors. In order to fix the direction of wave 
propagation with respect to the introduced coordinate system, 
we will use for the scalar products in (1) the expressions 

k2
(1)r = –k2y,  k2

(2)r = 
2
1 k2y – 2

3 k2x, 

k2
(3)r = 

2
1 k2y + 2

3 k2x. 	

(4)

Thus, expressions (4) clearly demonstrate that in the xy 
plane three multidirectional travelling waves yield a system of 
the standing waves, which provide the coordinate dependence 
of the populations of the quantum-system states. 

3. Calculation results and discussion 

The system of equations for the density matrix elements (3) 
completely determines the dynamics of the quantum system 
in the tripod-configuration in the field (1). To investigate the 
spatial dependence of the populations (i.e., diagonal elements 
of the density matrix), we use the steady-state solution of 
equations (3), which can be obtained by neglecting the time 
derivatives in the left-hand sides in comparison with terms in 
the right-hand sides containing the decay rates. Physically, 
this means that we consider the values of the density matrix 
elements for the times much greater than g–1, Gij

–1. In this case, 
the expressions for the populations of the system states can be 
expressed as 

, , , ,D
D

D
D

D
D

D
1

11
1

22
2

33
3

44r r r r= = = =  	 (5)

D = 1 + D1 + D2 + D3,
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Here we introduce the following notations: 

( ) ( )
,A

g
g g g g

3
1

1 12 13

13 1
2

2
2

12 1
2

3
2

1 12 13

D D
D D D D D
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+ + + -

( ) ( )
,B

g
g g g g
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2
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D D
D D D D D

=
+ - + -

( ) ( )
,C

g
g g g g

3
1

3 13 23

13 2
2

3
2

23 1
2

3
2

3 13 23

D D
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D ij = D i – D j (i ¹ j; i, j = 1, 2, 3).

In deriving expressions (5) we also assumed that G14 = G24 
= G34 = ( g1 + g2 + g3)/2, gi = g (i = 1, 2, 3) and the transitions 
between the lower states of the system (Fig. 1a) are absent. 
We now consider the different cases of excitation of the sys-
tem shown in Fig. 1a. As can be seen from expressions (5), the 
populations of the quantum-system states are strongly depen-
dent on the difference between the detunings D ij , which 
clearly suggests the existence of coherent population trapping 
(CPT) in such a system. Indeed, as is well known, the CPT 
occurrence in a three-level L system is conditioned by the 
equality of the vanishing difference between the frequency 
detunings of the exciting fields from the resonance values. The 
tripod-system (Fig. 1a) contains three different L  systems, 
each of which has its own condition of the CPT existence. 
Thus, for the L system with the |nñ –|4ñ (n = 1, 2) transitions, 
the CPT existence will be conditioned by the equality D12 = 0. 
In this case, the expressions for the populations of a four-level 
system have the form

( , )
( , )

,
( , )

,
g g x y
g x y

g g x y
g

11
1
2

2
2

2
2

22
1
2

2
2
1
2

r r=
+

=
+

	

(6)
r33 = 0,   r44 = 0.

For the L system with the |nñ –|4ñ (n = 2, 3)  transitions, 
the CPT existence is conditioned by the equality D23 = 0 and 
the expressions for the populations take the form 

r11 = 0,   
( , )

,
g g x y

g
22

3
2

2
2
3
2

r =
+

	

(7)
( , )

,
g g
g x y

33
2
2

3
2

2
2

r =
+

   r44 = 0.

Finally, when D13 = 0, we obtain the expressions for the 
populations: 

,
g g

g
11

1
2

3
2

3
2

r =
+

   r22 = 0,    ,
g g

g
33

1
2

3
2

1
2

r =
+

   r44 = 0.	 (8)

One can see from relations (6) – (8) that only in expres-
sions (6) and (7) there is a dependence of the populations on 
the coordinates x, y; in the first case, the states |1ñ and |2ñ are 
populated and, in the second – the states |2ñ and |3ñ. The cor-
responding spatial distributions are shown in Figs 2 and 3. 

Figure 4 shows the spatial dependences of the populations 
of all the states of the system in the tripod-configuration. 
One can see that in our case, the two-dimensional (xy plane) 
localisation of the populations indeed takes place for all the 
states of the system. For the parameters selected, only the 
population r11 has a spatial dependence in the form of ‘hills’, 
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whereas for other populations we observe ‘craters’. Thus, in 
certain points of the xy plane, the maximum values of the 
populations of the first two states may reach unity. This means 
that the entire quantum-system population is concentrated in 
all these points. 

On the other hand, among the spatial structures presented 
in Fig. 4 the dependences of the populations r22, r33 and r44 of 
the levels |2ñ, |3ñ and |4ñ are of particular interest. Thus, the 
two-dimensional spatial dependences of the populations r33 
and r44 of the third and fourth levels exhibit a double struc-
ture – the so-called double craters, in contrast to the usual 
crater (Fig. 4b). Of greatest interest here is the distribution of 
the population of the second level, r22. The resulting craters 
have extremely narrow walls, which means a high degree of 
spatial localisation, namely, the size of the localisation region 
for the parameters used is 0.04 of the wavelength of incident 
radiation. 

4. Conclusions 

We have investigated the possibility of two-dimensional 
localisation of the populations in the tripod-system interact-
ing with the field of the travelling light waves. It is found that 
the dependence of the populations on the spatial coordinates 
x and y is governed by the excitation of the central transition 
of the tripod-system by the field of multidirectional, linearly 
polarised travelling waves. The arising two-dimensional spa-
tial distributions of the populations may have complex struc-
tures, such as double craters. 

Note that for the two-dimensional localisation to be 
realised, the method for obtaining the spatial intensity depen-
dence of the linearly polarised field, which is resonant with 
the central transition of the tripod-system, is not important. 
Therefore, the resulting two-dimensional distribution of the 
populations can be regarded as a kind of visualisation of the 
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Figure 2.  Coordinate dependences of the populations (a) r11 and (b) r22 of the tripod-system states in the case of CPT in the L system formed by the 
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spatial intensity distribution of the light field. Its characteristics 
are determined by the parameters under which we can observe 
the redistribution of the populations. 

In our case, the speed of the response is equal to the time 
of action of optical pumping, t µ g/g2 = g–1 » 10–7 s–1 (g = g), 
and the minimum size of the localisation region is dx ³ urg–1 
» 3 ́  10–3 l » 2 nm. In this case, the possibility of obtaining 
such a resolution is directly related to the values of the velocities 
of the atoms and can be realised in atomic ensembles cooled 
to the appropriate recoil energy temperature Tr = Er /kB = 
2' k2/(2mkB). 

Acknowledgements.  The work was carried out under the govern
mental financial assistance (Support to the Leading Universities 
of the Russian Federation Programme, Grant No. 074-U01). 

References
  1.	 Qamar S., Zhu S.-Y., Zubairy M.S. Phys. Rev. A, 61, 063806 

(2000).
  2.	 Agarwal G.S., Kapale K.T. J. Phys. B: At. Mol. Opt. Phys., 39, 

3437 (2006).

  3.	 Xu J., Hu X. J. Phys. B: At. Mol. Opt. Phys., 40, 1451 (2007).
  4.	 Ivanov V., Rozhdestvensky Yu. Phys. Rev. A, 81, 033809 (2010).
  5.	 Qamar S., Zhu S.-Y., Zubairy M.S. Opt. Commun., 176, 409 

(2000).
  6.	 Ghafoor F., Qamar S., Zubairy M.S. Phys. Rev. A, 65, 043819 

(2002).
  7.	 Paspalakis E., Knight P.L. Phys. Rev. A, 63, 065802 (2001).
  8.	 Paspalakis E., Terzis A.F., Knight P.L. J. Mod. Opt., 52, 1685 

(2005).
  9.	 Liu C., Gong S., Cheng D., Fan X., Xu Z. Phys. Rev. A, 73, 

025801 (2006).

r11

0.8

0.6

0.4

0.2
0

0

0

–2–2

–4

–4

–6

–6
2

4

4
2

kx

ky

r22

0.8

0.6

0.4

0.2
0

0

0

–2–2

–4

–4

–6

–6
2

4

4
2

kx

ky
a b

r33

0.16

0.12

0.08

0.04

0

0

0

–2–2

–4

–4

–6

–6
2

4

4
2

kx

ky

r44
0.16

0.12

0.08

0.04
0

0

0

–2–2

–4

–4

–6

–6
2

4

4
2

kx

ky
c d

Figure 4.  Coordinate dependences of the populations (a) r11, (b) r22, (c) r33 and (d) r44 of the tripod-system states. The interaction parameters and 
relaxation constants of the system are as follows: g1,2,3 = g, G14 = G24 = G34 = 1.5g, g1 = g, g2 = 3g, g3 = 2g, D1 = g, D2 = 4g, D3 = –2g. 


