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Abstract.  Using the quasi-static approximation we have found 
exact analytical solutions to the problem of the field of a point elec-
tromagnetic source in the presence of a layer of a bi-isotropic (chi-
ral) metamaterial. At some parameters of the problem, the result-
ing solution can be represented as a set of several point sources 
(electric and magnetic), which are images of the original source. If 
the original source is located near the layer, these images become 
real sources of the field. This paradoxical solution is then gener-
alised to the case taking into account the retardation effects, which 
allows one to physically interpret the obtained solutions as a set of 
sources and ‘sinks’ of circularly polarised waves. 

Keywords: chiral metamaterial, negative refractive index, quasi-
static approximation, plasmons. 

1. Introduction 

Calculation of emission of a point source near a layer of a 
material of finite thickness is a classical electrodynamics 
problem, the history of which begins with the work of 
Sommerfeld published in the early 20th century [1]. Despite 
the simplicity of the geometry, this problem is very complex 
and has been widely discussed (see, for example, [2]). 

The situation has become even more interesting after 
Veselago [3] and Pendry [4] published their works, in which 
they assumed that if a layer is made of a double negative 
(DNG) metamaterial, which simultaneously has negative per-
mittivity and permeability, it can become an interesting focus-
ing device – a perfect lens (Fig. 1). Further analysis showed, 
however, that the geometry presented in Fig. 1 is realised only 
for relatively thick layers and not too small losses in them. In 
the case of thin layers and small losses in the layer, surface 
plasmons are excited and perfect focusing does not arise, 
whereas instead of focus there is a saddle point (see, for exam-
ple, [5]). An alternative to using a negative index layer was 
considered in [6 – 8], in which instead of a single source the 
authors proposed to employ two symmetrical sources and a 
‘sink’. (This approach has recently again aroused interest [9].)
Under such a formulation of the problem, surface plasmons 

are not excited and we deal with real perfect focusing. Using 
the analytical solutions [6 – 8] the authors of papers [10, 11] 
managed to produce a new type of optical nanodevices, i.e., 
coherent nanoabsorbers. 

Further development of the applications of this geometry 
is to investigate a layer made of a negative index bi-isotropic 
(chiral) metamaterial. The prospect of such a formulation of 
the problem stems from the fact that chirality is closely associ-
ated with a negative refractive index [12] and, therefore, we 
can expect to see many interesting effects, primarily related to 
perfect focusing of circularly polarised waves and to fabrica-
tion of coherent nanoabsorbers of these waves by analogy 
with simple coherent nanoabsorbers [8, 10]. 

The first results in this direction were obtained in our pre-
vious work [13], where we studied the possibility of focusing 
radiation from a point source by a chiral DNG layer whose 
thickness is much greater than the radiation wavelength. We 
showed that such a layer can be treated as a lens that focuses 
right- and left-hand polarised waves in a different way and 
has a greater flexibility in the manipulation of the focal length 
as compared with a conventional Veselago lens [3]. However, 
in spite of a negative refractive index the focusing system con-
sidered in [13] did not exhibit perfect focusing properties, i.e., 
the size of the focal spot turned out to be diffraction-limited. 
This was due to the fact that the thickness of the focusing 
layer is much greater than the radiation wavelength and 
absorption in the layer is sufficiently high. In this paper 
(which is a direct continuation of [13]), we consider the oppo-
site case, when the layer thickness is much smaller than the 
wavelength, absorption is small or absent and the source can 
be brought closer to the layer to a distance that is less than the 
thickness of the latter. This case is interesting from two points 
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Figure 1.  Geometry of focusing of light by a negative index layer [3]. 
Emission from a source located at point A at a distance l from the layer 
of thickness h is focused behind the layer and inside it at points B and C, 
respectively. Arrows indicate the direction of the energy flow, S. 
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of view. On the one hand, such layers (nanolayers) may be 
integrated into advanced optical nanodevices, while on the 
other, the physics of optical phenomena in them is signifi-
cantly different than that in thick layers as compared with the 
wavelength and in some sense is paradoxical (see below). 

The general solution to the problem of radiation from a 
point source near a chiral layer with arbitrary parameters was 
found in [13], but it is very cumbersome and difficult for the 
analysis. Therefore, in this paper our study is first performed 
in the framework of the quasi-static approximation when we 
can neglect the retardation effects. In the case of a source 
located with respect to the nanolayer at a distance less than 
the wavelength, this approximation is quite justified, and the 
analytical solution obtained allows a deeper understanding of 
the physics of the proceeding phenomena. 

This paper is organised as follows. In Section 2 we obtain 
a general quasi-static solution to the problem of the total field 
of electric and magnetic dipoles (chiral dipole) near a chiral 
layer. In Section 3 we consider the case of a lossless chiral 
DNG layer (i.e. the imaginary parts of the permittivity and 
permeability in the layer are exactly equal to zero) and show 
that the solution radically changes as compared with a low-
loss layer. In Section 4 the paradoxical solution found in 
Section 3 is generalised with the retardation effects taken into 
account. This generalisation allows us to understand the 
physical meaning of the solution: A negative index chiral 
layer is not a perfect lens for circularly polarised waves (in the 
sense of the Pendry – Veselago perfect lens), but allows one to 
focus radiation of two symmetrically arranged circularly 
polarised point sources in an arbitrarily small region (sink). 

2. A point source near a low-loss chiral layer 
(quasi-static approximation) 

Consider a source with electric and magnetic dipole moments 
d0 and m0, respectively (Fig. 2), located at point z0 (z0 > 0) on 
the z axis of the Cartesian coordinate system in a semi-infinite 
medium 1 (vacuum, e1 = m1 = 1). The chiral metamaterial layer 
2, which is thin as compared with the wavelength and has 
thickness h, is located in the region –h < z < 0. The permittiv-
ity and permeability of the chiral material are denoted by e2 
and m2, respectively, and the chirality parameter – by c2. As in 
our previous work [13], we consider a layer of a chiral mate-
rial, described by the Drude – Born – Fedorov constitutive 
equations [14 – 16] 

( ), ( ),rot rotk k k kD E E B H H0 2 2 0 2 2 2 0 2 2 0 2 2 2e c m c= + = + 	(1)

where D2, B2 are the inductions and E2, H2 are the electric and 
magnetic field strengths, respectively; and k0 = w/c is the 
wavenumber in vacuum. The factor exp(–iwt), which deter-
mines the time dependence of the fields, is omitted. Behind 
the chiral layer there is a semi-infinite medium 3 (vacuum, 
e3 = m3 = 1). Note that the case of media 1 and 3 with different 
values of permittivity and permeability can be treated simi-
larly. 

To describe the fields near a thin (k0h  <<  1) chiral layer, 
we will use the quasi-static approximation. The expressions 
for the electric and magnetic fields of the source can be writ-
ten using the potentials as follows (z > 0): 

, ( )
| |

E d
r r
1E E

0 0 0 0
0

d df f=- =-
-

 ,

, ( )
| |

H m
r r
1H H

0 0 0 0
0

d df f=- =-
-

 ,	

(2)

where d  is the gradient operator; and r and r0 are the radius 
vectors of the observation point and source position, respec-
tively. 

For the convenience of further calculations, we write 
expressions for the potentials fE

0 and f
H
0 in integral form (see, 

for example, [17]): 
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where 0 G r < ¥ and 0 G j < 2p are the polar coordinates; 
Jn(qr) is the Bessel function [18]; and the ‘plus’ sign in front of 
the last term in (3) corresponds to the case z > z0 and the 
‘minus’ sign  –  to the case z < z0.

We also write the expressions for the scattered electric and 
magnetic fields using the potentials. For field strengths E1, H1 
in a half-space 1 (z > 0), we have 
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For the scattered field strengths E2, H2 in the chiral layer (–h 
< z < 0) we can write the expressions 
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Finally, for the field strengths E3, H3 in a half-space 3 (z < 
–h), we have 
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Figure 2.  Geometry of the problem for a dipole source located near a 
thin chiral layer. 
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To find the coefficients in (4) – (6) one should make use of 
the conditions of the continuity of the potentials on the sur-
faces of the interface separating the media and of the continu-
ity of the normal component of the induction. To determine 
the inductions in the layer, we substitute Maxwell’s equations 
into (1) and obtain 
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From (7) it follows that inside the chiral layer the electric and 
magnetic fields are related. In the case of a non-chiral medium 
(c2 = 0) one can derive from (7) regular expressions for the 
induction. 

Relations (7) allow us to write the boundary conditions. 
After substituting the potentials of Eqns (3) – (6) into them, 
we find the required coefficients. Because the expressions for 
the coefficients are very cumbersome, they are given in the 
Appendix. 

In our previous work [13] we showed that the following 
conditions are good for focusing dipole radiation by a nega-
tive index chiral metamaterial layer whose thickness is com-
pared with the wavelength: z0 < h, e2 = m2 = –2 + id (d ® 0) 
and c2 = ± 1/2. When these conditions are met, predominantly 
right- or left-hand polarised waves (depending on the sign of 
c2), for which the wavenumber is close to – k0, propagate in 
the layer. We will consider a thin chiral DNG layer under the 
same conditions. 

Figure 3 shows the dependences of the logarithm of the 
modulus of the electric field [see Eqn (2), (4) – (6)] on z/z0 (x = 
y = 0) for a thin layer of a negative index chiral metamaterial. 
It is clearly seen (Fig. 3a) that when z0 < h, the highest (in 
modulus) values of the induced field are localised on the sur-
faces of the interfaces separating the media rather than at 
points of intersection of the rays (see Fig. 1), and focusing in 
its strict sense does not arise at all . A similar result is obtained 
from the total (taking into account the retardation) solution 
to the problem of the dipole in the vicinity of the chiral DNG 
layer [13]. It is also seen that when the losses in the layer tend 
to zero (d ® 0), the induced field increases indefinitely. In fact, 
plasmon waves of unlimited amplitude are excited on the 
layer surfaces. 

When z0 > h, the maximum of the modulus of the induced 
electric field is localised on the layer surface that is farthest 
from the source, i.e., between media 2 and 3 (Fig. 3b). 
However, in this case, when the losses tend to zero in the 
layer, the modulus of the field experiences no significant 
changes. Note that in this case focusing is not expected. 

3. A point source near a lossless chiral layer 
(quasi-static approximation) 

As can be seen from the previous section, in the case of 
z0 < h and losses tending to zero in the chiral DNG layer, the 
solution tends to infinity in the entire space, i.e., does not 
exist. This is due to the resonant excitation of surface plas-
mon waves. 

However, this raises the question: Is there a sensible solu-
tion in this region of the parameters? 

In the case of a lossless DNG layer (d = 0) the formal 
expressions for the potentials obtained from (3) – (6) have the 
form (here and what follows the ‘upper’ sign corresponds to 
c2 = +1/2, and the ‘lower’ sign – to c2 = –1/2) 
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Figure 3.  Logarithm of the modulus of the total electric field [see Eqns 
(2), (4) – (6)] (E – in rel. units) as a function of z/z0 (x = y = 0) for a thin 
chiral DNG layer with e2 = m2 = –2 + id and c2 = +1/2 at different d in 
the case of a dipole with d0 || x and m0 = 0. Points show the resulting 
solutions with the retardation [12] taken into account at k0z0 = 0.1. The 
layer thickness is h = (a) 2z0 and (b) z0/2. Here and in Figs 4 – 6, numbers 
1, 2, 3 denote the media in accordance with Fig.2. Asterisks indicate the 
positions of the foci in accordance with Fig. 1. 



1115Focusing of dipole radiation by a negative index chiral layer
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Integrals in (8) – (10) converge only at certain values of z. 
If z0 < h, solution (9) in the region z0 < |z| < h and solution 
(10) in the region h < |z| < 2h – z0 increase indefinitely (plas-
mon waves). At the same time, when z0 > h, solutions (9) and 
(10) exist for all z and surface plasmon waves are not excited. 

For a bounded solution to be obtained in a lossless chiral 
metamaterial layer (d = 0) in the case of z0 < h, we use the 
method of analytic continuation [6 – 8]. To this end, we inte-
grate formal solutions (8) – (10) in the regions of convergence 
and then analytically continue the obtained expressions to the 
region z0 < h, where the integrals diverge. As a result, the 
expressions 
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will hold for the potential in the entire space, where rC = –z0ez; 
rB = – (2h – z0)ez; d0u  = d0 – 2d0zez; m0u  = m0 – 2m0zez; and ez is 
the unit vector along the z axis. From (11) it follows that for 
the bounded solution to exist at z0 < h for a source with elec-
tric and magnetic dipole moments dA = d0 and mA = m0, 
located at point A with coordinates rA = r0 near a lossless 
metamaterial layer, a source with the electric and magnetic 
dipole moments dC = (d0u  ± im0u )/2 and mC = (m0u  " id0u )/2 should 
be placed at point C with coordinates rC and a source with 
electric and magnetic dipole moments dB = (d0 ± im0)/2 and 
mB = (m0 " id0)/2 should be placed behind the layer at point B 
with coordinates rB. Note that points A, B and C correspond 
to points of intersection of the rays in the geometric model of 
a perfect lens (see Fig. 1). The found expressions (11) satisfy 
the boundary conditions both at z0 > h and at z0 < h. 

Importantly, solution (11) does not have singularities at 
z0 > h, while at z0 < h in the layer and behind it, solution (11) 
already contains real singularities. It is also important that 
solution (11) at z0 < h with three singularities is stable and 
addition of small losses in the system has no significant effect. 
From a physical point of view, the system of sources (11) has 
such symmetry that plasmon waves on the layer surfaces are 
not excited! 

The electric field for the obtained solution (11) is shown in 
Fig. 4. One can see from Figs 3 and 4 that at z0 > h (Fig. 4b) 
solution (11) is virtually identical to the conventional general 
solution (Fig. 3b). However, when z0 < h, the solutions differ 
significantly (cf. Figs 3a and 4a). The conventional solution in 
the limit d = 0 has singularities at the layer boundaries (run-
ning plasmons of unlimited amplitude), while solution (11) 
has singularities only at points corresponding to the intersec-
tion of rays in Fig. 1 (asterisks in Fig. 4a). In fact, in the limit 
d = 0 uniqueness of the solution is lost (bifurcation). 

Figure 5 shows the electric potentials for low-loss and 
lossless systems when the source is located at different dis-
tances from the chiral DNG layer. 

In a conventional Veselago perfect lens the reflected field 
is absent. As follows from (11), to suppress the field reflected 
from the chiral DNG layer we should set d0 = ± im0. In this 
particular case, we obtain 

, id d m dA A A0 "= = ,

, id d m dC C C0 "= =u ,	 (12)

, id d m dB B B0 "= = .

If we set d0 = " im0 in (11), the fields in media 2 and 3 are equal 
to zero. Then, the thin lossless chiral DNG layer in question 
will be a ‘mirror’ for the radiation source. This interesting 
effect will be discussed in a separate paper in more detail. 

Thus, in this section, using the method of analytic con-
tinuation we have found the solution, the position of the sin-
gularities in which coincides with the points of intersection of 
rays in Fig. 1. To clarify the physical meaning of the solution 
obtained it is necessary to consider the problem in view of the 
retardation, which will be done in the next section. 
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Figure 4.  Logarithm of the modulus of the total electric field [see Eqns 
(2) and (11)] (E – in rel. units) as a function of z/z0 (x = y = 0) for a thin 
lossless chiral DNG layer with e2 = m2 = –2 and c2 = +1/2 in the case of 
a dipole with d0 || x and m0 = 0. The layer thickness is h = (a) 2z0 and (b) 
z0/2. Points A, B and C correspond to the positions of the primary (A) 
and additional (B and C) radiation sources. Asterisks indicate the posi-
tions of the foci in accordance with Fig. 1. 
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4. Account for the retardation effects 

A surprising feature of the quasi-static solution found in 
Section 3 is that it allows simple but accurate generalisation 
to the case of retardation. To this end, it suffices to replace the 
electrostatic Green functions for the solution outside the layer 
by the retarded Green functions (J = A, B): 
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( | |)exp ik
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J
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For the solution inside layer it is necessary to make a sim-
ilar transformation, but in this case we must take into account 
that, depending on the sign of c2 = ± 1/2 (e2 = m2 = –2), either 
left-hand polarised (L) or right-hand polarised (R) waves can 
propagate in a lossless chiral DNG layer [13]: 
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As a result, explicit expressions for the electric and mag-
netic field strengths in the case of dipoles (12), when there is 
no reflected field, take the form 
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As follows from (15), radiation sources (12) produce cir-
cularly polarised waves, and the chiral layer has an effective 
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Figure 5.  Logarithm of the modulus of the total electric potential (fE – in rel. units) in the plane y = 0 for a thin chiral DNG layer with e2 = m2 = –2 
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located at a distance z0 = (a, d) h/2, (b, e) h and (c, f) 3h/2. The bright areas correspond to large values of |fE|, and dark – to small. 
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refractive index equal to –1. Note that expressions (15) satisfy 
the boundary conditions for all z0. 

Figure 6 shows the energy flow (Poynting vector) S = 
[c/(8p)]Re[EH*] for solution (15) in the plane y = 0. One can 
see that the flows of energy for a primary source located in the 
z0 < h region are directed to an additional source inside the 
layer (sink) rather than outside the layer, as it would occur in 
a perfect lens (see Figs 1 and 6a). When moving the primary 
source to the region z0 > h, singularities in the solution for the 
fields in the layer and behind the layer do not arise, and the 
energy flow in this case is directed behind the layer (Fig.6b). 

A similar behaviour of the Poynting vector also occurs in 
considering the problem of emission of the main and addi-
tional electric dipoles near the layer with a refractive index –1, 
studied in papers [6 – 8]. The resulting solution there may be a 
basis for creation of unique devices  –  perfect coherent nano-
absorbers [10, 11] – or for resonant excitation of atoms with 
high probability. Solution (15) found in the present study is 
more complex, i.e., requires the presence of chiral radiation 
sources with electric and magnetic dipole moments equal in 
absolute value. However, the solution presented here makes it 
possible to produce a perfect coherent absorber of circularly 
polarised waves and elements of quantum computers. 

5. Conclusions 

Thus, using the quasi-static approximation and a complete 
system of Maxwell’s equations we have obtained and investi-
gated analytical expressions for the electromagnetic fields of a 
chiral dipole (electric and magnetic) source located near a 
thin layer of a negative index chiral material. 

It is shown that for a chiral dipole source located at a dis-
tance greater than the thickness of the layer, the solution can 
be represented in the form of two additional (imaginary) chi-
ral point sources. When the source is located at a distance 
from the source layer that is smaller than its thickness, imagi-
nary sources must be replaced with real ones to obtain the 
bounded solution. The resulting solution is generalised to the 
case taking into account the retardation effects for an arbi-
trary thick layer as compared with wavelength. 

Note that the solution was found for special values of per-
mittivity and permeability and chirality parameter and is not 
unique. The study of the whole class of new solutions for the 
chiral metamaterial layer will be described in a separate pub-
lication. 

The results obtained in the present study can be used to 
calculate the scattering of electromagnetic radiation of a 
dipole source by a layer of thin chiral metamaterial, to inter-
pret the experimental results and to develop new focusing 
devices on the basis of circularly polarised waves. The main 
feature of such devices will be either an absorbing nanoparti-
cle, or even a single atom located at a point of the energy sink, 
predicted by our solution (point C in Fig. 6).
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Appendix. Explicit form of the coefficients in 
expressions (4) – (6) 

The coefficients appearing in (4) – (6) can be represented 
in the form: 
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Figure 6.  Energy flow in the plane y = 0 for a lossless chiral DNG layer 
with e2 = m2 = –2 and c2 = +1/2 [see Eqn (15)]. The layer thickness is h = 
(a) 2z0 and (b) z0/2. The source with dА || у is located at point k0z0 = 3. 
Points A, B and C correspond to the positions of the primary (A) and 
additional (B and C) radiation sources.
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( ) 4 (1 )cosh qh2
2 2 2

2
2 2e m c e mD = -"

	 + 2( )( 1 ) ( )tanh qh2 2 2 2 2
2
2 2e m e m c e m+ + -

	 + [( )2 2
2

2
2
2
2e m e m+ +

	 – ( ) ( )] ( )tanh qh2 1 12 2 2
2
2 2 2

2
2 2

2e m c e m c e m- + - ,;	 (A5)

( ) ( ); ( )exp expA d d qz B d qznq
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(A6)

( ) ( ); ( )exp expA m m qz B m qznq
H

n z n x nq
H

n y0 0 1 0 0 1 0 0d d d= - + - = - ;

and dnp is the Kronecker delta equal to 1 at n = p and to zero 
in other cases. 

The expressions for the other coefficients in (4) – (6) can be 
obtained from (A1) – (A4) by using the permutation of the 
superscripts E « H, permittivity and permeability e2 « m2 and 
the replacement c2 ® –c2. 
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