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Abstract.  We have demonstrated the first superfluorescent fibre 
source emitting in the 1.34 mm range. In a double-pass configura-
tion with an amplifier, its output power is 48 mW under pumping at 
l = 1240 nm. Its emission spectrum has a nearly Gaussian shape, with 
a full width at half maximum of 26 nm at the highest pump power.

Keywords: bismuth, optical fibre, superfluorescent fibre source.

Superfluorescent fibre sources (SFS’s) find wide application 
in many areas of science and technology: in fibre-optic gyro-
scopes, ophthalmology, optical time-domain reflectometry, 
optical telecommunications and devices that need a signal 
with low temporal coherence and high spatial coherence. 
Requirements for SFS’s stem from the application they are 
intended for. In particular, it is necessary for the operation of 
precision fibre-optic gyroscopes that the output bandwidth of 
the SFS’s be in excess of 15 nm and that their output power be 
at least 10 mW, in combination with sufficiently high optical 
efficiency. Moreover, the signal should have a stable mean 
wavelength, insensitive to variations in temperature and other 
external factors.

Most of these requirements are met by superfluorescent 
rare-earth-doped fibre sources, the most widespread of which 
are erbium-, ytterbium-, thulium- and neodymium-doped [1].

The development of 1.3-mm broadband fibre sources is 
hindered by the fact that no rare-earth elements have high 
gain transitions in this range. Only one SFS, based on praseo-
dymium-doped fluorozirconate (ZBLAN) fibre, has so far 
been demonstrated in this spectral region [2]. Amplified spon-
taneous emission (ASE) on the 1G4 ® 3H5 transition was 
observed at a wavelength of 1.306 mm under direct excitation 
from the 1G4 metastable level by the 1.017-mm Ti : sapphire 
laser line. In a single-pass configuration, the output power of 
the SFS was just 0.166 mW at a pump power of 540 mW. The 
conversion efficiency was so low because of the low lumines-
cence quantum yield (about 3 %).

One possible solution to the problem is to use semicon-
ductor superluminescent laser diodes, which are available for 

almost any wavelength in the range 0.4 to 2.0 mm. 
Unfortunately, they have a number of drawbacks: limited 
output power, low temperature stability of their mean wave-
length, marked modulation of their emission spectrum, small 
energy conversion coefficient at long wavelengths and resid-
ual polarisation of their output.

Bismuth-doped fibres offer rather high efficiency and 
appear to be a promising active medium for creating SFS’s in 
new optical ranges. Another advantage is that different glass 
hosts enable amplification in different wavelength ranges: 
1.14 – 1.22 (aluminosilicate host), 1.25 – 1.35 (phosphosilicate 
host), 1.32 – 1.55 (germanosilicate host) and 1.63 – 1.77 mm 
(silicogermanate host) [3 – 6].

The first superfluorescent bismuth-doped germanosilicate 
fibre source was reported in Ref. [7]. The SFS had a mean 
wavelength of 1.44 mm and a bandwidth of 25 nm at an out-
put power of 82 mW, and its optical efficiency was 31 %.

Here, we demonstrate a superfluorescent phosphosilicate 
fibre source with a mean output wavelength of 1336 nm. A 
fibre preform was produced by MCVD and had a core – clad-
ding refractive index difference Dn = 5.5 ́  10–3 and a Bi con-
centration in the core below 0.1 wt %. The cutoff wavelength 
of the fibre was about 0.9 mm. Its absorption and gain spectra 
are presented in Fig. 1. At a pump wavelength of 1240 nm, the 
small-signal optical absorption in the fibre is 0.6 dB m–1. At 
signal powers above 50 mW, the absorption drops to 
0.09  dB m–1. Under 1240-nm pumping, the highest gain is 
0.2 dB m–1 at 1320 nm.

The SFS consists of two stages: signal source and ampli-
fier. The first stage has a double-pass, backward pumping 
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Figure 1.  Absorption and gain spectra of the fibre.
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configuration (Fig. 2, top left), which was chosen by virtue of 
its higher efficiency and lower ASE threshold in comparison 
with single-pass SFS’s. As a pump source, we used a 1240-nm 
laser diode with 300 mW of output power. The pump radia-
tion was launched into the active fibre through a 1240/1340 
nm WDM coupler. The active-fibre length (150 m) was cho-
sen such as to maximise the SFS efficiency at the specified 
pump power. The fibre end had a fibre loop mirror (broad-
band 50/50 fused fibre coupler with connected output ports). 
To reduce the effect of the return signal, a fibre-optic isolator 
was placed at the output of the first stage.

Output spectra were measured with an Agilent 86140B 
spectrum analyser, and the output power was measured with 
an EXFO FPM-600 power meter.

Figure 3 shows output spectra of the SFS at various pump 
powers. With increasing pump power, the output spectrum 
becomes narrower and the mean wavelength increases (Fig. 
4). At low pump powers, the gain in the fibre is low and, 
because the backward pumping configuration is used, the 
output of the first stage is contributed primarily by unampli-
fied luminescence of a small section of the active fibre, which 
absorbs most of the pump power. The peak of this lumines-
cence lies at 1.32 mm and is slightly shifted with respect to the 
peak emission wavelength of bismuth in a phosphosilicate 
host (1.3 mm) by virtue of reabsorption. With increasing 

pump power, the length of the fibre section with population 
inversion increases, an ASE occurs, and the output spectrum 
shifts to longer wavelengths, to the region where active bis-
muth centres have a maximum gain. The mean wavelength 
stabilises at a pump power of 260 mW and remains essentially 
unchanged at higher pump powers. The ASE threshold is 
about 150 mW. Figure 5 shows the output power of the SFS 
as a function of pump power.

To reach a higher output power of the SFS, we used an 
additional amplification stage: a 120-m length of bismuth-
doped active fibre pumped by a 1240-nm laser diode. To pre-
vent lasing and reduce the effect of the return signal on the 
output parameters of the SFS, a fibre-optic isolator was 
placed at the output of this stage.

The output spectra of the SFS at various pump powers in 
the second amplification stage and the spectrum of the input 
signal are presented in Fig. 6.

The output power of the SFS increases linearly with the 
pump power in the second stage, reaching 48 mW at a pump 
power of 300 mW (Fig. 7). The mean wavelength is 1336 nm, 
and the bandwidth is D lFWHM » 26 nm (Fig. 8). At low pump 
powers in the second stage, there is no population inversion in 
most of the fibre, and some of the emission from the first 
stage is absorbed by active centres. As a result, only the longer 
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Figure 2.  SFS configuration: (LD) laser diode, (WDM) wavelength di-
vision multiplexing coupler, (ISO) optical isolator, (FLM) fibre loop 
mirror.
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Figure 3.  Output spectra of the first stage of the SFS at various pump 
powers.
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Figure 4.  Bandwidth DlFWHM and mean wavelength as functions of 
pump power for the output spectrum of the first stage of the SFS.
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Figure 5.  Output power of the first stage of the SFS as a function of 
pump power.
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wavelength part of the output spectrum persists, i.e. the emis-
sion peak is shifted to longer wavelengths with respect to the 
input signal. Note that the emission of active bismuth centres 
in the second stage is markedly weaker than the signal from 
the first stage. With increasing pump power, population 
inversion occurs throughout the length of the fibre and the 

output spectrum shifts to shorter wavelengths, to the peak 
gain region of the active bismuth centres.

Thus, we have demonstrated a superfluorescent bismuth-
doped fibre source with an output mean wavelength of 1336 
nm and a bandwidth of 26 nm FWHM at the highest pump 
power. Its output power is 48 mW at a net pump power of 600 
mW, and its emission spectrum has a nearly Gaussian shape 
(a fit of its spectrum by a Gaussian at a pump power of 320 
mW is shown in Fig. 6). We have demonstrated the first SFS 
operating in the region of the second transmission window 
(1.3 mm) of silica fibres and comparable in efficiency to widely 
used superfluorescent rare-earth-doped fibre sources. It is 
worth noting that this is only one possible implementation of 
superfluorescent bismuth-doped phosphosilicate fibre 
sources. The configuration can be optimised to meet particu-
lar requirements for the output signal.
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Figure 6.  Output spectra of the SFS at various pump powers (on this 
intensity scale, the output spectra at pump powers of 4 and 32 mW es-
sentially coincide with the abscissa). 
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Figure 7.  Output power of the SFS as a function of pump power.
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Figure 8.  Bandwidth DlFWHM and mean wavelength as functions of 
pump power for the output spectrum of the SFS.


