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Abstract.  Analytical relations are obtained between characteristics 
of modulated light at the output and input of an optical diode power 
amplifier operating in the highly saturated gain regime. It is shown 
that a diode amplifier may act as an amplitude-to-phase modula-
tion converter with a rather large bandwidth (~10 GHz). The low 
sensitivity of the output power of the amplifier to the input beam 
power and its high energy efficiency allow it to be used as a building 
block of a high-power multielement laser system with coherent 
summation of a large number of optical beams.

Keywords: diode optical amplifier, amplitude/phase modulation.

1. Introduction

The development of high-speed free-space mobile optical 
communications requires bright sources of modulated optical 
beams. One optimal type of such sources is a diode laser or a 
single-crystal integrated diode heterostructure in which a 
semiconductor power amplifier is the output stage of the inte-
grated structure (see e.g. Refs [1, 2]).

Recent work [3, 4] has shown that, using an optical 
scheme with a single-frequency diode laser and diode 
amplifier/modulator, one can obtain modulated optical 
beams ~100 mW in average power, capable of information 
transfer at a rate of ~20 Gb s–1. This average power is, 
however, not quite sufficient for free-space communica-
tions. The guiding target here is a power level of 1 W and 
above, characteristic of, e.g., intersatellite communication 
[5]. Such average power is difficult to reach through direct 
modulation of a diode laser source because of both the 
necessity for a large amplitude of the modulated electrical 
signal and the associated degradation of the optical quality 
of the beam.

In this context, it is of interest to use an optical power 
amplifier. A modulated optical beam with a low or moderate 
average power, e.g. ~100 mW or less, is fed to its input, and 
the output power reaches 1 W or more. The amplifier is ener-
gised by a direct current sufficient for maintaining a constant 
average output optical power.

It is worth noting here that, to ensure efficient electrical-
to-optical power conversion, the amplifier should operate 

deep in saturation. This inevitably entails changes in the mod-
ulation state of a beam when it travels through the amplifier, 
due to its optical nonlinearity. The purpose of this work was 
to find out how and to what extent the beam modulation 
changes in this process.

2. Analysis of modulated beam amplification

The propagation of a modulated optical beam through an 
amplifier will be analysed here in terms of theory developed 
previously [4]. The amplifier configuration is schematised in 
Fig. 1. The amplifier is thought to be a laser diode based on 
a ridge heterostructure with an optical waveguide that sup-
ports only one, fundamental transverse mode. The diode 
facets are nonreflective, e.g. owing to an antireflection coat-
ing, and are inclined at an angle q to the waveguide axis, like 
in a previous study [6]. Thus, the laser diode under consider-
ation is a single-pass amplifier, or a travelling wave ampli-
fier.

To analyse the operation of such an amplifier, consider 
first the amplification of a quasi-monochromatic wave har-
monically modulated in the microwave range, with an optical 
carrier frequency w0 and side frequencies w1 and w–1, which 
are related by

w1 = w0 + W,  w–1 = w0 – W.	 (1)

The frequencies w–1 and w1 correspond to the Stokes and 
anti-Stokes components, respectively. For a beam propagat-
ing along the z axis of the amplifier, the field amplitude E  as 
a function of time t can be represented as
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Figure 1.  Simplified schematic of the amplifier: q is the angle between 
the optical axis of the amplifier and the normal to the diode facet.
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( , ) { ( ) [ ( )] [1 ( ) [ ( )]exp expi iz t E z k z t V z qz t
2
1E 0 0 0 1w W= - + -+

	 +  ( ) [ ( )]] .с.}exp i cV z qz t1 W- - +- ,	 (2)

where E0(z) is the ‘slow’ complex-valued amplitude of the 
wave with a carrier frequency w0; k0 is its waveguide propaga-
tion constant; and V+1 and V–1 are the ‘slow’ relative ampli-
tudes of the waves at the side frequencies. Their propagation 
constants k1 and k–1 satisfy the relations

k k q1 0 !=! .	 (3)

Here, k0 = (w0/c)n and q = (W/c)ngr, where n and ngr are the 
effective waveguide phase and group indices of refraction and 
c is the speed of light.

Since we analyse a mode whose transverse profile remains 
unchanged as it propagates in the amplifier and is amplified, 
the particular character of the profile is unimportant in this 
case and is missing in (2). The field intensity E(z, t) is here 
taken to mean its value on the optical axis of the amplifier. In 
solving the waveguide problem, the characteristics of the 
transverse mode profile, n and ngr, and the optical confine-
ment factor G, which relates the mode and material gain coef-
ficients to each other, are determined separately (see e.g. 
Refs [7, 8]).

The dimensionless functions V+1(z) and V–1(z) character-
ise the modulation depth, and the relationship between them 
specifies the type of modulation: at V+1 = V–1

*, the signal is 
amplitude-modulated, and V+1 = –V–1

* corresponds to a 
phase-modulated wave. The other cases correspond to a 
mixed, amplitude/phase modulation. In the case of linear 
operation of the amplifier, neglecting the refractive index and 
gain dispersion we find that the spectral components in (2) 
propagate and are amplified in the same way and indepen-
dently of each other. The relationship between their slow 
amplitudes remains completely unchanged and, hence, the 
modulation parameters also persist. In the case of nonlinear 
amplification, the situation is fundamentally different.

We consider modulation frequencies W at which the intra-
band carrier dynamics have a quasi-equilibrium character, i.e. 
W t2 G 1, where t2 is the intraband relaxation time. It is rea-
sonable to assume, for example, that t2 is far less than 10–13 s 
[9], so W is limited from above by frequencies of the order of 
hundreds of gigahertz.

The theory developed in Ref. [4] is valid in the case of 
moderate modulation depths, i.e. for |V±1| < 0.5. Here, the 
optical power is also thought to be concentrated in the central 
spectral component (in the carrier). Therefore, the expression 
for its amplitude E0(z) has the form [4]

( ) | ( )| [ ( )]exp iE z E z z0 0 j= ,

where

| ( )| (8 / ) ( )E z I cn u zs0
2 p= ;

( ) (0)
( )

lnz R z u
u z

2 0
j j a= - + c m; E;	

(4)

 

( ) ( ) / ; /( ); (0)u z I z I I u us s 0 0'w st= = = ; I(z) and Is are the 
carrier wave and saturation intensities, respectively; u(z) is the 
normalised (dimensionless) carrier wave intensity; s is the 

stimulated transition cross section (differential gain); t is the 
spontaneous lifetime; R is the amplitude – phase coupling fac-
tor, whose waveguide value was determined e.g. in Ref.  [10]; 
and a is the background loss coefficient.

As shown earlier [4], the coordinate dependence of the 
normalised intensity, u(z), can be found by solving the tran-
scendental equation

( )
( )

( )expu
u z

g u z
g u

g z
g

0

0
1

a
-
-

=
+

,	 (5)

where g = (GG0 – a)/a is a dimensionless quantity characteris-
ing the mode gain; G0 is the unsaturated material gain in the 
active layer, related to the pump current J by

( )G
ed W L

J J
a

tr0
0

st
= - ;	 (6)

e is the electron charge; dа is the thickness of the active layer; 
W0 is the effective width of the pump region; L is the amplifier 
length; and Jtr is the transparency current for resonance opti-
cal losses (which corresponds to concentration Ntr at the 
inversion threshold).

From the above, we have

( ) 1g J Jtrb= - - ,	 (7)

where

ed W La 0
b

a
stG

=  .

The power of the optical flux P(z) propagating through 
the amplifier can be expressed through the normalised inten-
sity u(z): 

P(z) = dWIsu(z),	 (8)

where W and d are the in-plane and out-of-plane effective 
cross-sectional beam dimensions in the amplifier. They can be 
found together with the effective index of refraction and opti-
cal confinement factor in solving the waveguide problem, as 
pointed out above. In our case,

/ ,d d W W0a w, ,G G .	 (9)

Here, Gw is taken to mean the pump efficiency. It differs from 
unity because of both the spatial spread of the current and the 
presence of additional shunt paths.

Thus, Eqns (4) – (9) are sufficient for finding the static 
characteristics of the amplifier in our model. Setting the input 
power Р0 = Р(0), the material parameters of the amplifier, 
and the pump current J, we can find the power distribution 
along the length of the amplifier and the output power Р = 
Р(L).

Figures 2 and 3 present numerical calculation results for 
power P at the amplifier parameters indicated in Table 1. The 
parameters are typical of state-of-the-art high-power single-
transverse-mode semiconductor oscillators. It follows from 
the data in Figs 2 and 3 that the background optical loss a 
plays a key role in determining the efficiency and output 
power limit of the amplifier. To achieve an output power at a 
level of several watts, this loss should be under 2 cm–1. Clearly, 
one should remember other limitations on the output power, 
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related to the distortion of spatially single-mode operation 
(see e.g. Ref. [8]) and optical damage to the laser cavity 
medium, which have been the subject of several experimental 
and theoretical studies [11 – 14].

The data in Fig. 2 can be used to optimise the cavity length 
at a given a value. To this end, the curves should be regarded 
as plots of the amplifier output power against length z = L at 
a constant pump current density.

It can be seen from the data in Fig. 3 that the energy effi-
ciency of the amplifier as a light source can approach that of 
state-of-the-art diode lasers, i.e. the physical limit (~ħw0/e). 
Moreover, at high input powers it is essentially independent 
of the input beam power and is determined primarily by the 
background loss. Indeed, it can be shown directly from 
(4) – (9) (see Appendix 1) that, in the strong gain saturation 
approximation,

( )exp
d
d
J
P

e L
L1

w
0'

.
w

a
a

G - -  .	 (10)

It can be seen in the inset in Fig. 3 that, despite its approx-
imate nature, Eqn (10) ensures good agreement with the 
numerically calculated amplifier efficiency.

As to the dynamic characteristics of the amplifier, note 
that, at any frequency W, they are determined by the transfor-
mation of the relative amplitudes of the side components, 
V+1(z) and V–1(z). According to theory [4], in our case (at a 
constant pump current of the amplifier) the coordinate depen-
dence of these parameters takes the form

( )
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Here K(u(z), W) º [F(u(z), W)]–1; tany = R; and F(u(z), W) is a 
complex-valued function:
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It is easy to see that F(u0, W) = 1 at the amplifier input. 
Therefore, the constants C1 and C2 will be expressed through 
the relative amplitudes of the side components at the input as 
follows:
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(13)

Equations (11) – (13) and the known dependence u(L) allow 
one to calculate the transformation of a harmonically modu-

Table  1.  Parameters used in assessing characteristics of a power 
amplifier.

Parameter Notation Value

Stimulated transition cross section 
(differential gain) s/cm2 10–15

Spontaneous carrier recombination 
time t/ns 1.0

Optical confinement factor G 0.01

Thickness of the active region da/nm 8.0

Background loss coefficient 
in the waveguide a/cm–1 0.1<a<10

Transparency carrier concentration 
in the active region

Ntr /1018 cm–3 2.0

Master oscillator wavelength l0 /nm 850

Width of the pump region W/mm 6.0

Amplifier length L/cm 1.0

Effective beam size along the layers 
of the heterostructure W0/mm 6.0

Effective beam size across the layers d » da  G  –1 / mm 0.8

Saturation intensity Is /W cm–2 2.33 × 105

Saturation power Ps = WdI/mW 11.18

Transparency current Jtr/А 0.154

Proportionality factor between the 
normalised gain and pump current b/mА–1 0.26
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Figure 2.  Power (P) distribution of an optical beam along the length (z) 
of the amplifier at various background loss coefficients, a pump current 
of the amplifier J = 10 A and an input optical beam power of 1 (solid 
lines) and 100 mW (broken lines). Inset: portions of the P(z) curves on 
expanded scales.
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Figure 3.  Power – current characteristics of the amplifier at various a 
values and an input optical beam power P(0) = 10 mW. Inset: amplifier 
efficiency dP/dJ as a function of a: the solid squares represent numeri-
cal calculation using Eqns (5) – (9) and the solid line represents the re-
sults obtained using the approximate relation (10).
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lated input signal described by E0(z = 0), V+1(z = 0) and V–1(z 
= 0) into an output signal, which can be described by E0(z = 
L), V+1(z = L) and V–1(z = L).

It is easy to note from (11) and (13) that, when a purely 
phase-modulated signal (C1 = 0) is fed to the input of the 
amplifier, only a phase-modulated signal, with the same mod-
ulation depth, will emerge at its output. At the same time, if 
the input signal has amplitude or mixed (С1 ¹ 0) modulation, 
the output signal will always have mixed modulation. Thus, 
the amplifier will in general significantly change the nature 
and parameters of optical beam modulation.

There is special interest in one possible type of mixed 
modulation, when a monochromatic beam is modulated in a 
diode amplifier/modulator [4]. According to previous 
work  [4], V+1(0) and V–1(0) then have the form

( )
( )

( , ) , tane
e

V
V

V R
0
0*

i

i m m
1

1

m

m
g yW= =

y

y
+

-

-

= =G G ,	 (14)

where V(W, g) is a common complex-valued factor, which 
depends on the relative amplitude of the modulating current 
(g), modulation frequency (W) and parameters of the ampli-
fier/modulator, and Rm is the amplitude – phase coupling 
factor for the gain medium of the amplifier/modulator. 
Comparison of Eqns (11) and (13) with (14) leads us to con-
clude that, if y = ym, i.e. if the amplitude – phase coupling 
factor of the medium of the amplifier/modulator, Rm, is iden-
tical to that of the medium of the power amplifier, R, we have 
С2 = 0 and, hence, the nature of the signal modulation is not 
influenced by signal amplification. Only the depth of such 
modulation can change. In the general case (Rm ¹ R), both 
the depth and nature of modulation change. From (11), (13) 
and (14), one can readily obtain the ratio of the intensities of 
the side components of the output beam to the intensities of 
the input beams:

( )
( )

{| ( ( ), )| (1 ) ( ) 2 | ( ( ), )|
V
V L

K u L R R R K u L
0 m

1

1
2

2 2 2W W= + + - +
!

!

	 ´ ( ) ( ( ))}(1 )sinR R R R1m m m
2 2 1"y d W- + + - ,	 (15)

where d(W) = arg[K(u(L), W)].
According to (11) and (13), the linear relation between 

V+1(z = 0) and V–1(z = 0) at the amplifier input and V+1(z = L) 
and V–1(z = L) at the output makes it possible to find, within 
our model, a transformation that characterises the change of 
an arbitrarily modulated signal in the amplifier. Indeed, rep-
resenting the field intensity E  at z = 0 by analogy with (2) in 
the form

(0, ) { (0) ( )exp it E t
2
1E 0 0w= -

	 ´ [1 ( ) ( )] .с.}ca t b t+ + + ,	 (16)

where a(t) is a real function and b(t) is an imaginary function 
[a(t) = a*(t), b(t) = –b*(t)], both slowly varying with time, 
which represent amplitude and phase modulations, it is easy 
to find the field intensity at the amplifier output, E(z = L, t), 
in general form. To this end, a(t) and b(t) should be repre-
sented as a Fourier integral in terms of frequency W, and then 
the Fourier components a(W) and b(W) should be transformed 
according to (11). As shown in Appendix 2, the result has the 
form

( , ) { ( ) [ ( )]exp iz L t E L k L t
2
1E 0 0 0w= = -

	 ´ [1 ( ) ( )] . .}c cA t B t+ + + ,	 (17)

where E0(L) is defined in (4), and A(t) and B(t) are the real 
and imaginary parts of the modulation amplitude at the 
amplifier output. The real function A(t), corresponding to 
amplitude modulation of the output signal, can be expressed 
through the input signal a(t) as

3

( ) ( ) [ ( ), ] ( )'exp i dA t a K u L tW W W W= -
3-
y ,	 (18)

where a(W) is the Fourier transform of the function a(t' ), cor-
responding to amplitude modulation of the input signal (16), 
at time t'  = t – L/ugr (ugr = c/n*). The time variable t' differs 
from t by the time delay L/ugr, needed for a wave packet with 
a group velocity ugr to pass through an amplifier of length L. 
According to (18), the complex-valued function K(W) º 
K(u(L), W), defined by (11) and (12), acts as a frequency filter 
for the modulation signal when an optical beam passes 
through the amplifier and is amplified.

The imaginary function B(t), which represents the phase 
modulation of the output optical beam, satisfies the relation 
(see Appendix 2)

B(t) = b(t' ) + iR(a(t' ) – A(t)),	 (19)

which reflects the fact that the phase-modulated component  
b(t) at the amplifier input is transferred to the output without 
changes, in the form  b(t' ). This can also be seen from (11), 
where the spectral components V+1 and V–1, proportional to 
the coefficient C2, are also transferred from the input of the 
amplifier to its output without any changes. At the same time, 
according to (19) the output signal B(t) has a component pro-
portional to the amplitude modulation depth a(t' ) at the 
input. Note in advance that, in cases of practical interest, 
where the optical beam power at the amplifier output is suf-
ficiently high and there is strong gain saturation, as discussed 
below, we have |K(W)| << 1 in a considerable frequency range, 
W G Wb. We then have

( ) ( ) ( )' 'iB t b t Ra t= + ,	 (20)

Therefore, if an amplitude-modulated wave

( ) (0) ( ) [1 ( )] .с.exp i ct E t a t
2
1E in 0 0w= - + +" ,	 (21)

is directed to the amplifier input, at the output we obtain a 
phase-modulated amplified wave,

( ) { (0) [ ( ( ))]exp it Q E k L t L
2
1Eout 0 0 0w j= - +

	 ´ [1 ( )] .с.}'i cRa t+ + ,	 (22)

where a(t' ) is a real function representing the amplitude mod-
ulation of the input signal at time t'. The quantity

Q = u(L)/u0	 (23)

can be thought of as a power gain coefficient. It should be 
kept in mind of course that, because the amplifier operates 
deep in saturation, this quantity loses its usual meaning 
because it depends significantly on the input signal. In any 



1001Diode amplifier of modulated optical beam power

case, however, relations (4), which define Q through u0 and 
u(L) in (23), remain valid.

It follows from analysis of (21) and (22) that amplitude 
modulation at the amplifier input transforms into phase mod-
ulation at the output. This is the well-known self-phase mod-
ulation of a wave packet when it passes through a nonlinear 
optical medium, in particular through the gain medium of a 
diode laser [15, 16]. In the case under consideration, nonlin-
earity is associated with gain saturation and the effect of 
inversion on the refractive index of the semiconductor.

According to (22), an important feature of the amplitude-
to-phase modulation transformation is that it is possible in a 
wide spectral range. The reason for this is that the coefficient 
R, which characterises this transformation, is constant. R 
may vary significantly only in the optical range, so it is con-
stant with high accuracy at frequencies w0 ± W when W lies in 
the microwave or rf range.

Thus, the universal nature of relations (21) and (22) is 
ensured by the condition |K(W)| << 1, which is necessary for 
relation (20) to be fulfilled with sufficient accuracy.

Figures 4 – 7 illustrate to what extent and in what fre-
quency (n = W/2p) range these relations can be valid in real 
cases of practical interest. It can be seen from Fig. 4 that, in the 
frequency range W/2p G Wb/2p » 10 GHz, |K(W)| does not 
exceed 0.2. Thus, at frequencies below 10 GHz amplitude 
modulation converts into phase modulation with an accuracy 
far better than 20 %. The conversion result is essentially inde-
pendent of input optical beam power P(0). It follows from (11) 
and (12) that, in the frequency range in question, |K(W)| ® 0 
with increasing output power (~u). This means that, when an 
optical signal is amplified, its amplitude modulation is effec-
tively suppressed. Moreover, not only the relative modulation 
depth but also its absolute value decrease, i.e. the amplifica-
tion of an optical beam in the amplifier under consideration is 
accompanied by some stabilisation of its output power. This 
is an expected result given the strong gain saturation in the 
problem under consideration.

In addition to the suppression of the amplitude-modu-
lated signal, there is severe distortion of its shape. This is illus-
trated by the frequency dependence of ngr

amd  in Fig. 5, which 
characterises the spectral dispersion in the amplifier:

¶
¶ ( ( ))arg

n L
c K

gr
amd

W
W

=-  .	 (24)

If ngr
amd  were constant in the frequency range of interest, W G Wb, 

and the condition of constant |K(W)| were fulfilled, it might be 
interpreted as an additional term in the group index ngr. It is, 
however, seen from the curves in Fig. 5 that the change in the 
magnitude of ngr

amd  across this frequency range exceeds ngr: 
the heterostructures of interest for us typically have ngr G 4. 
This points to distortion of the wave packet envelope such 
that ngr

amd  loses the physical meaning of a change in the veloc-
ity of the wave packet.

According to (20), the amplitude of the converted phase-
modulated signal, B(t), is a weak function of the gain (output 
power) of the amplifier. Possible distortions of the signal 
shape can be characterised by the parameter

¶
¶ ( ( ) )arg

n
L
c K 1

gr
phd

W
W

=
-

 ,	 (25)
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Figure 4.  Magnitude of the transfer function of the amplifier, |K(W)|, 
vs. frequency at different input signal powers P(0) and a pump current 
J = 2 A.
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which is shown in Fig. 6 as a function of frequency. It follows 
from the curves in Fig. 6 that, in this case, ngr

phd  can be viewed 
as an additional term in ngr for the propagation of the wave 
packet of a phase-modulated signal. It is seen in Fig. 6, how-
ever, that the additional time delay due to ngr

phd  is substan-
tially shorter than the duration of the packet, 1/Wb. This 
means that, in analysing the dynamics of the propagation of a 
phase-modulated packet, the optical nonlinearity-induced 
dispersion can be neglected.

Figure 7 shows frequency dependences of |K(W)| at differ-
ent pump currents of the amplifier. It is seen that the spectral 
band nb = Wb/2p of the transformation and amplification of a 
phase-modulated signal at a pump current of e.g. 3 A may 
exceed 10 GHz. According to the data in Fig. 3, this corre-
sponds to an output power of ~3 W. A favourable circum-
stance is that the spectral bandwidth increases with increasing 
pump current (output power).

3. Discussion

The above relations (4), (5) and (16) – (19) allow one to model 
the key characteristics of a diode optical power amplifier hav-
ing uniform parameters along its optical axis. At the same 
time, they offer the possibility of analysing more complex 
optical schemes, e.g. a module with an integrated multisection 
structure where each section may have its own guidance prop-
erties and pump intensity. To this end, these relations should 
be used recurrently, with the output signal of each section 
being the input signal of the next section.

Clearly, the present results are valid within the approxi-
mations made. Parameters necessary for calculations can be 
determined in independent experiments, as e.g. in Ref. [17]. 
We hope that the approximations made in the proposed 
model do not degrade the accuracy that is limited by the 
scatter in the real parameters of amplifiers, such as the dif-
ferential gain s, carrier lifetime t and background loss a. 
Because of this, we believe that the approximations used in 
the proposed model do not affect the adequacy of the calcula-
tion results.

An important point in this study is that we have taken into 
account the optical nonlinearity due to gain saturation and to 
the effect of inversion level on the refractive index of the semi-

conductor. To this end, we have taken advantage of the fea-
ture of this nonlinearity that there is coupling only between 
harmonics symmetric with respect to the carrier frequency, 
without mixing with harmonics at other frequencies. As a 
result, the complex, nonlinear system of equations for a 
broadband signal breaks down into independent systems, 
each consisting of two linear equations for harmonics sym-
metric with respect to the carrier frequency. In these equa-
tions, nonlinearity is represented by a parameter. This type of 
optical nonlinearity was first studied in Ref. [18] and was ana-
lysed later in other reports (see e.g. Refs [19 – 24]). Runge et 
al. [25] used a similar approach in the most general form to 
investigate the optical amplification of a signal in a nonlinear 
semiconductor with various characteristics.

The low sensitivity of the output power of the amplifier to 
the input optical beam power makes it a convenient and effi-
cient source of bright light. Basically, the brightness of such a 
source is only limited by the output power of single-trans-
verse-mode lasers, which is related to catastrophic optical 
damage (COD) or disturbance of single-mode operation. In 
the current stage of technology development, these limita-
tions are ~3 W [26], which can be thought of as the world’s 
best results so far.

The ‘rigid’ connection between the phase of the output 
beam in the amplifier and that of the input beam and the pos-
sibility of controlling it create conditions for coherent sum-
mation of the power of a large number of amplifiers and, 
thus, for creating light sources with kilowatt output powers, a 
near diffraction-limited divergence and the possibility of con-
trolling the spatial light beam direction. It is worth pointing out 
that such an emitting system differs fundamentally from a sys-
tem of N optically coupled diode lasers (see e.g. Refs [27, 28]), 
where the optical coupling increases the number of degrees of 
freedom by N times. Because of this, coherent summation of 
beams in a system of coupled diode lasers occurs only when 
one of the N supermodes is excited, which is, as a rule, 
extremely difficult to achieve, and the result is unstable. In an 
emitter made up of amplifiers, optical coupling between them 
is not used at all, and the possibility of such coupling because 
of imperfections of the optical system can be minimised by 
using optical isolators.

In the model used here, we did not take into account spon-
taneous emission, assuming that the input power of the opti-
cal beam being amplified was well above the effective power 
of spontaneous emission. This power can be estimated as 
described by Bogatov [29]. Such estimates suggest that the 
~1 mW level for the operation of an amplifier with the param-
eters indicated in Table 1 satisfies the above condition.

The spectral range where the amplifier suppresses ampli-
tude modulation (|K(W)| << 1) is limited by Wb. For W above 
this limit, |K(W)| rises, approaching unity. Physically, this is 
due to the weaker interaction of the side components with 
the carrier. The weakening is caused by the reduction in 
inversion oscillation amplitude when the frequency of such 
oscillations (beating) considerably exceeds the inverse char-
acteristic response time t–1 of inversion, i.e. W t >> 1. The 
role of the above nonlinearity mechanism in a travelling 
wave amplifier then decreases, becoming comparable to the 
role of the spectral dispersion of the material gain, which is 
neglected in this study because W << Dw, where Dw is the 
material gain linewidth. The material gain dispersion is 
essential in analysis of single-frequency diode laser opera-
tion. This is a separate problem, identical to that considered 
previously [21, 24].
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Figure 7.  Magnitude of the transfer function of the amplifier, |K(W)|, 
vs. frequency at different pump currents J, a signal power at the ampli-
fier input P(0) = 10 mW and a background loss coefficient a = 0.5 cm–1.
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4. Conclusions

The present results demonstrate that an optical diode ampli-
fier can serve as an output beam amplifier, ensuring multiwatt 
average output power at a near diffraction-limited beam 
divergence.

A distinctive feature of such an amplifier is that its output 
beam may have predominantly only phase modulation, inde-
pendent of whether the input beam is amplitude- or phase-
modulated. The gain band of a phase-modulated signal is 
only limited by the material gain bandwidth and may exceed 
several hundred gigahertz.

In the case of an amplitude-modulated signal, the ampli-
fier serves in addition as an amplitude-to-phase modulation 
converter. In this case, however, its bandwidth is limited, but 
may exceed ~10 GHz. In this context, the most interesting 
application of such amplifiers is in systems that utilise bit 
phase shift keying (BPSK) modulation.

It seems likely that, in their application area, diode ampli-
fier-based systems will be able to compete with fibre laser-
based systems owing to their higher total efficiency and reli-
ability and smaller dimensions. Moreover, a diode amplifier 
may serve as a building block of a high-power (kilowatt) laser 
system with a synthesised aperture of coherently summed 
optical beams and controlled angular position of the resultant 
optical beam.
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Appendix 1

We assume that the gain of the amplifier is deep in saturation 
and that the following inequalities are satisfied:

g >> 1,  ln(u/u0) << gaL.	 (A1.1)

Taking the logarithm of (5) and taking into account (A1.1), 
we obtain

( 1)ln ln lng L u
u g g u

g u
g g u

g u
0

0 0.a = + +
-
-

-
-b c cl m m.	(A1.2)

Thus,

( )expg u
g u

L0 . a
-
- .	 (A1.3)

Therefore,

( ) [1 ( )]exp expu u L g L0 a a= - + - - ,	 (A1.4)

1 ( )exp
d
d
g
u La= - - .	 (A1.5)

It follows from (6) – (8) that

,
d
d

d
d

u
P Wd

J
g

eW d La
0

0

'
st

w
a

stG
= =  ,	 (A1.6)

Finally, the derivative of the output power with respect to 
current has the form

( )exp
d
d

d
d
d
d
d
d

J
P

u
P
g
u
J
g

e L
L1

w
0'w

a
a

G= =
- -  .

Appendix 2

The field of an arbitrarily modulated signal propagating 
through an amplifier can be represented in the form

( , ) { ( ) [ ( )]exp iz t E z k z t
2
1E 0 0 0w= -

	 ´ [1 ( , )] . .}c cz tx+ + ,	 (A2.1)

where E0(z) and x(z, t) are slowly varying functions of z. The 
complex-valued function x(z, t), which determines the particu-
lar character of signal modulation, can be represented as the 
sum of a real and an imaginary function: x(z, t) = a(z, t) + 
b(z, t), where

( , ) [ ( , ) ( , ) ]a z t z t z t
2
1 *x x= + ,

( , ) [ ( , ) ( , ) ]b z t z t z t
2
1 *x x= - .	

(A2.2)
 

Further, we represent the functions x(z, t), a(z, t) and b(z, t) as 
Fourier integrals:

3

( , ) ( , ) [ ( / )]exp i dz t z n z c tgrx z W W W= -
3-
y

	 = 
3

{ ( , ) [ ( / )]exp iV z n z c tgr1
0

W W -+y
	 +  ( , ) [ ( / )]}exp i dV z n z c tgr1 W W W- -- ,	 (A2.3)

3

( , ) ( , ) [ ( / )]exp i da z t a z n z c tgrW W W= -
3-
uy ,

3

( , ) ( , ) [ ( / )]exp i db z t b z n z c tgrW W W= -
3-

uy .

It follows from the definition of the functions a(z, t) and b(z, t) 
(A2.2) that their spectral components satisfy the relations

( , ) ( , ), ( , ) ( , )a z a z b z b z* *W W W W= - =- -u u u u .	 (A2.4)

For W H 0, we have

( , ) [ ( , ) ( , )]a z V z V z
2
1 *

1 1W W W= ++ -u ,

( , ) [ ( , ) ( , )]b z V z V z
2
1 *

1 1W W W= -+ -
u .	

(A2.5)

Since relations (11) – (13) are valid for all the pairs 
V±1(z, W) in (A2.5), we obtain for ( , )a z Wu  and ( , )b z Wu :

( , ) ( , ) ( , )a z K z a 0W W W=u u ,

( , ) (0, ) [ ( , )] (0, )ib z b R K z a1W W W W= + -u u u .	

(A2.6)

Then, according to (A2.3) we have

3

( , ) (0, ) ( ( ), ) ( )'exp i da z t a K u z tW W W W= -
3-
uy ,

3

( , ) (0, ) ( )'exp i db z t b tW W W= -
3-

uy 	

(A2.7)
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	 + 
3

[1 ( , )] (0, ) ( )'expi i dR K z a tW W W W- -
3-

uy ,

or

( , ) (0, ) [ (0, ) ( , )]' 'ib z t b t R a t a z t= + - .	 (A2.8) 

Here, t' = t – z/ugr (ugr = c/n*). Finally, denoting  a(0, t) º a(t), 
a(L, t) º A(t), a(W) º ( , )a 0 Wu , b(0, t) º b(t) and b(L, t) º B(t) we 
obtain

3

( ) ( ) ( ( ), ) ( )'exp i dA t a K u L tW W W W= -
3-
y ,

B(t) = b(t' ) + iR[a(t' ) – A(t)].
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