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Abstract.  We have analysed the possibility of appearance of anti-
Stokes lines in the spectrum of Raman scattering of a photon by a 
‘quasi-bound’ charged particle in the regime of planar (axial) chan-
nelling. It is shown that radiation may emerge at the frequency, 
which is a combination of the incident photon frequency w0 and 
transition frequency wi  in the transverse quantised motion of a 
channelled particle: w = w0 ± 2g2wi , where g is the relativistic 
(Lorentz) factor of a channelled particle.
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1. Introduction

Consider the motion of a charged particle (positron) having 
the energy E and momentum p directed at a small angle q to 
the crystallographic plane in a single crystal. If this angle is 
less than the so-called Lindhardt angle qL [1], the particle in 
the single crystal moves in the channelling regime. In the lon-
gitudinal direction, the potential responsible for planar chan-
nelling is constant (the continuous potential of a plane is 
characterised by a lack of dependence on the longitudinal 
coordinate [2]), so that the longitudinal momentum of the 
channelled particle is conserved:

E E1 1 2 2& &w w+ = + ,	 (1)

( )p k p k ck, ,z z z z1 1 2 2 1 2 1 2& & w+ = + = .	 (2)

The transverse component of the momentum of a positively 
charged particle during such a motion in the potential of crys-
tallographic planes is quantised: pn = pqn (Fig.1) [2, 3].

It should be noted that the quantised energy of a chan-
nelled particle in the co-moving coordinate system (CCS) that 
is moving with velocity V = E1/p1 depends on the energy of a 
channelled particle, which is due to the fact that the potential 
Upl created by the crystallographic planes depends on the par-
ticle energy: Upl = gU(x), where U(x) is the potential of the 
planes in the laboratory frame and g is the relativistic factor 
of an electron.

The channelled particle may undergo transitions 
between the zones of transverse motion, located inside the 
well [2, 3].

The transverse motion of a channelled particle is charac-
terised by a strongly expressed quantised band energy spec-
trum. The bands lying deep in the wells are very narrow, and 
so it is virtually possible to speak about discrete levels in the 
well. Thus, in the case of a channelled particle moving in the 
regime of planar channelling, we have to deal (in the CCS) 
with a ‘one-dimensional’ atom, the emission spectrum of 
which is significantly affected by the Doppler effect. This sug-
gests that various effects known in atomic physics may take 
place for the channelled particles; particularly, Raman scat-
tering (generation of multiple harmonics) may occur in the 
laser beam interacting with a photon.

2. Kinematics of Raman scattering of a photon 
by a ‘bound’ channelled positron

Main characteristics of Raman scattering can be obtained by 
analysing the laws of conservation of energy and longitudinal 
momentum. Assume that a positron with the momentum p1 
and energy E1 and a photon with the momentum k1 and 
energy w1 fall onto a single crystal (we assume that h = c = 1 
unless otherwise stated). As a result of the interaction of the 
photon with the channelled positron, a photon with the 
momentum k2 and energy E2 is emitted, while the momentum 
and energy of the positron in the final state take the values p2 
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Figure 1.  (a) Energy bands (levels) and (b) coefficients of population 
levels for the positron energy E1 = 28 MeV in Si at a zero angle of inci-
dence relative to the (110) plane. The dashed curve is a parabolic poten-
tial, dashed horizontal lines show the level positions in it.
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and E2. Note that, if this the reaction takes place in a constant 
arbitrary field, the energy of system (1) is conserved.

In the longitudinal direction, the potential responsible for 
the channelling of a positively charged particle is constant 
and the system possesses a certain longitudinal momentum 
(2) [the photon momentum in a medium is equal to k1, 2n(w), 
where n(w) is the refractive index of the crystal, which for sim-
plicity we assume to be equal to unity].

Let us analyse relation (2), which describes the law of con-
servation of the longitudinal momentum. In accordance with 
the kinematics of motion of a channelled ultra-relativistic 
positron

2 ( ), ( )p p E p p p E p21zn n zm m1
2

1 1 2 2
2

2 2e e= - = - ,	 (3)

where en( p1) and em( p2) are the quantised energies of trans-
verse motion in the initial and final states.

By using (3), we can rewrite equation (2) as

2 ( )cos E m E E1 0 1p n1
2 2

1w J e+ - -

	 =  ( )cos E m E E2p m2 2
2 2

2 2w J e+ - - ,	 (4)

where J0 and J are the angles between the photon propaga-
tion direction and the longitudinal axis before and after scat-
tering, respectively; and mp is the rest mass of the positron.

Consider the most interesting case of Raman scattering 
under the condition of planar channelled motion of posi-
tively charged particles (positrons) with the energies E1, E2 
>> w1, w2.

Because the total energy of a channelled particle is much 
larger than the quantised energy of its transverse motion, the 
square roots in relation (4) can be expanded into a Taylor 
series. After the expansion we obtain

( ) ( )cos cos2 1 01 2w w b w J w J- + -

	 –  [ ( ) ( )] 0E E2n m1b e e- = ,	 (5)

where b = V/c.
Expression (5) can be significantly simplified in the case of 

‘forward’ Raman scattering, when cosJ0 = 1 (i.e. J0 = 0) and 
cosJ = 1 (i.e. J = 0):

( ) (1 ) ( )m n2 1w w b b e e- - = - .	 (6)

For the ultra-relativistic case, relation (6) appears as

( ) 2 ( )
1

m n m n2 1
2w w

b

b
e e g e e- =

-
- = - .	 (7)

If w2 = 2w1, we may expect the appearance of the second-
harmonic generation under the condition

( )21
2

m nw g e e= - .	 (8)

Suppose that the channelled positron can undergo transi-
tions between the discrete levels of the transverse motion. 
Then, the frequency shift and its dependence on the chan-
nelled particle energy in the simplest cases of the well shape 
approximation can be found explicitly. For simplicity, assume 
that the continuous potential of the plane represents the 
Kronig – Penney model of a rectangular well. Consequently,

m d
n

2 2

2
2

p
n

pe = ,	 (9)

where n = 1, 2, 3, ...; and d is the distance between the planes.
The frequency shift in the transitions between the adjacent 

levels with the fixed values (n, m) is defined by 

2 ( ) ( )
m d

m n E
p

pm n
2

3 2

2
2 2 2pw g e eD = - = - .	 (10)

Thus, the frequency shift increases quadratically with increas-
ing energy of the channelled particle, and for em – en << mp  
the condition Dw << E is always fulfilled.

In the transitions between the adjacent levels (m = n + 1)

(2 1)
m d

n E
p
3 2

2
2pwD = + .	 (11)

The estimate of the anti-Stokes component (n = 1) gives Dw ~ 
5g2 (in eV).

3. Differential cross section of Raman scattering 
of a photon by a channelled bound positron 

Assume that a positron with the momentum p1 and energy E1 
falls onto a single crystal. As a result of interaction of the pho-
ton with the channelled positron, a photon with the momen-
tum k2 and energy w2 is emitted, while the momentum and 
energy of the positron in the final state take the values p2 and 
E2. 

In a coordinate system, in which the initial longitudinal 
momentum of the positron is zero, the positron can be consid-
ered as a one-dimensional quantised (in the case of axial 
channelling – as a two-dimensional) object [2, 3]. In this coor-
dinate system we are dealing with a nonrelativistic object, for 
which the amplitude (cross section) of scattering of the pho-
ton by a bound particle is well known [4, 5].

In this regard, it is sufficient to transform the amplitude 
(cross section) of scattering into the laboratory coordinate 
system by means of the simple rules {see, for example [6] (§3, 
pp 88 – 90)}, taking herewith into account that the quantum 
object associated with the channelled positron possesses a 
one-dimensional (planar channelling) or two-dimensional 
(axial channelling) momentum.

For example, the amplitude of forward elastic scattering 
of a photon on a channelled particle is 

)'( )
|1 |

1
(

cos
f F

2

w
b q

b
w=

-

-
,	 (12)

where F(w' ) is the scattering amplitude in the rest system (in 
the CCS) of the channelled particle and w' = (1 – bcos q) gw is 
the photon frequency in the CCS.

Consider scattering of the photon with the momentum k1, 
energy w1 and polarisation e1 by a positron having the energy 
e1n and situated in the state with the wave function y1

(+)(x) = 
u1n(x)exp(– ie1nt). As a result of the scattering, a photon with 
the momentum k2, energy w2 and polarisation e2 arises, and 
the positron passes over into the state with the energy e2m and 
the wave function y2

(+)(x) = u2m(x)exp(– ie2mt). 
Using the standard technique of Feynman diagrams (see 

[4], § 59), consider the nonrelativistic case, when the photon 
energies are small compared to the rest energy of the positron,  
w1 << mp, w2 << mp, and the energy values em2 and en1 of 
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transverse motion of the channelled positron differ little 
from mp:

|en1 – mp| << mp,   |em2 – mp| << mp .	 (13)

These assumptions allow significant simplification of the 
expression for the matrix element of the transition:

2 [ ( ) ]exp iW k k x1 2 1 2pa w w=- -

	 ´ 
| | | | | | | |s s s sxe xe xe xe2 1 2 1

s ss 1 1

2 1

1 2

1 2

e e w e e w- +
+

- -

* *

e o/  ,	 (14)

where a is the fine structure constant.
The differential cross section of Raman scattering is 

related to the matrix element W by the expression

2 | | ( )
( )

d
d

W
k

2
2

1 1 2 2 3

3
2p d

p
s e w e w= + - -  .	 (15)

After eliminating the d-function by integration over dw2, we 
find

d d1 2
3

2s w w W=

´  | | | | | | | |s s s sQe Qe Qe Qe2 1 2 1
s ss 1 1

2 1

1 2

1 2
2

e e w e e w- +
+

- -

* *
c m/ ,	 (16)

where Q is the dipole moment of the undulator and W2 is the 
solid angle of photon scattering.

4. Resonant scattering of a photon 
by a channelled positron

The expression for the matrix element (14) contains a sum 
over all excited states of the undulator in the CCS. If the pho-
ton energy w1 is equal to the energy difference between one of 
the excited states and the ground state of the undulator, i.e. w1 
= es – e1, the scattering cross section tends to infinity, which 
indicates the inapplicability of the obtained expression at w1 
= es – e1. This case corresponds to the resonance. The reason 
for the inapplicability of formula (14) in the vicinity of the 
resonance is that we have considered ys

(+)(x) as the wave func-
tions of the stationary states, containing the time as exp(– ie1st). 

Meanwhile, the band nature of the transverse motion 
energy should be taken into account, along with the fact that 
the excited states are approximately stationary. Such states 
can be described as the states with complex energy, herewith 
the wave functions would contain the time as exp[– i(es – iGs/2)t], 
where Gs is a real positive value (the level width). Consequently, 
at the frequencies close to the resonance, we can drop all the 
terms except the resonance ones in expression (14), and 
replace es by es – iGs/2 in this expression. Thus, we obtain the 
expression for the scattering amplitude:

2
/

| | | |

i
W

s sxe xe

2

2 1

s ss
1 2

1 1

2 1pa w w
e e w G

=
- - -

*

e o/  ,	 (17)

where the summation is spread over all states with the energy 
es. Accordingly, the differential scattering cross section can be 
represented in the form

( ) /

| | | |
d d

s sQe Qe

4

2 1
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1 2
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1 1
2 2
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2
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e e w
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G
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- - +

*

= G/ .	 (18)
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