# Пространственные корреляции и плотность распределения вероятности разности фаз развитого спекл-поля: численный и натурный эксперименты

Н.Ю.Мысина, Л.А.Максимова, Б.Б.Горбатенко, В.П.Рябухо

Исследованы статистические свойства разности фаз колебаний в спекл-полях в двух точках в дальней зоне дифракции при разных формах апертуры рассеивателя. Установлена статистическая и пространственная неравномерность плотности распределения вероятности разности фаз поля. В численном эксперименте показано, что для спекл-полей с осциллирующей знакопеременной поперечной корреляционной функцией наблюдается значительная неравномерность плотности распределения вероятности разности фаз в области корреляции комплексной амплитуды поля с наиболее вероятными значениями 0 и п. Результаты численного эксперимента подтверждены в натурном статистическом интерференционном эксперименте с использованием схемы Юнга.

**Ключевые слова:** спекл-поле, спекл-модуляция, фазовое распределение, плотность распределения вероятности разности фаз, дифракция, автокорреляционная функция, фурье-преобразование, спеклограмма.

### 1. Введение

В когерентных оптических системах с рассеивателем в результате интерференции рассеянных волн формируются спекл-модулированные оптические поля [1-7]. Случайное расположение рассеивающих центров и случайные фазовые сдвиги в рассеянных ими волнах определяют случайные величины амплитуды и фазы результирующего интерференционного поля - спекл-поля. Такие поля возникают при записи оптических голограмм объектов с рассеивающими поверхностями [8,9], при реализации методов спекл-фотографии [3-6] и лазерной интерферометрии диффузно рассеивающих объектов и сред [4-6, 10, 11], а также методов спекл-интерферометрии в оптической астрономии [12, 13], в системах восстановления волнового фронта [14] и формирования изображений рассеивающих объектов [15, 16], в том числе в системе зрительного восприятия человека [17].

Развитые дифракционные спекл-поля формируются при фазовых сдвигах рассеянных волн в интервале  $[-\pi, \pi]$  и большем. Комплексная амплитуда в какой-либо точке развитого спекл-поля в зоне дифракции имеет гауссову статистику [18], а фаза колебаний – равномерную плотность распределения вероятности в интервале  $[-\pi, \pi]$  [1,2,19,20].

Пространственное поперечное распределение фазы спекл-поля имеет детерминированную и стохастическую

**Н.Ю.Мысина**, **Л.А.Максимова**, **В.П.Рябухо**. Институт проблем точной механики и управления РАН, Россия, 410028 Саратов, ул. Рабочая 24; Саратовский государственный университет им. Н.Г.Чернышевского, Россия 410012 Саратов, ул. Астраханская, 83; e-mail: MaksimovaLA@yandex.ru; rvp-optics@yandex.ru

**Б.Б.Горбатенко.** Институт проблем точной механики и управления РАН, Россия, 410028 Саратов, ул. Рабочая 24; Саратовский государственный технический университет, Россия, 410054 Саратов, ул. Политехническая, 77

Поступила в редакцию 16 мая 2014 г., после доработки – 9 декабря 2014 г.

составляющие. Детерминированная составляющая определяется конфигурацией оптической системы формирования и наблюдения спекл-поля, включая влияние оптических элементов схемы. Полагается, что стохастическая составляющая фазы в пределах отдельного спекла поля остается практически неизменной, а при переходе к соседнему спеклу она равновероятно изменяется на случайную величину в интервале [ $-\pi, \pi$ ]. Иными словами, стохастическая составляющая разности фаз  $\Delta \varphi(P_1, P_2)$  в точках спекл-поля  $P_1$  и  $P_2$ , попадающих в соседние спеклы поля, равновероятно распределена в интервале [ $-\pi, \pi$ ].

В общем случае для источников рассеянного когерентного поля с апертурой рассеивателя произвольной формы, как показали наши эксперименты, такое представление справедливо. Однако в [21-25] установлено, что при использовании рассеивателя с симметричной апертурой – источника спекл-поля – в дальней зоне дифракции наблюдается статистически неравномерное распределение разности фаз поля в соседних спеклах. Для разности фаз поля в точках, попадающих преимущественно в пределы одного спекла, имеет место максимум плотности распределения вероятности для  $\Delta \varphi = 0$ . Этого следует ожидать, поскольку в пределах спекла стохастическая составляющая пространственного распределения фазы остается постоянной. Однако для разности фаз поля в точках, попадающих преимущественно в соседние спеклы, в эксперименте отчетливо видны максимумы плотности распределения вероятности для  $\Delta \varphi = \pm \pi$ . В [25] эти статистические закономерности выявлены с помощью численного эксперимента для рассеивателей с апертурами различной формы.

Причина возникновения неравномерности статистического распределения разности фаз в дифракционном спекл-поле с максимумами для  $\Delta \varphi = \pm \pi$ , как мы полагаем, обусловлена особенностями пространственных корреляционных свойств спекл-поля. При формировании спекл-полей с поперечными корреляционными свойствами, определяющими знакопеременную корреляционную функцию поля, пространственное изменение плотности распределения вероятности разности фаз поля должно иметь неравномерный характер с максимумами для  $\Delta \varphi = 0$  или  $\pm \pi$  в зависимости от расстояния между точками поля в пределах области его корреляции, размеры которой могут превышать размеры отдельного спекла. В [25] взаимосвязь корреляционных свойств спекл-поля и плотности распределения вероятности разности фаз получила подтверждение.

Цель настоящей работы состояла в установлении закономерностей пространственных изменений плотности распределения вероятности разности фаз развитого спеклполя в дальней зоне дифракции и в установлении связи этих изменений с поперечными корреляционными свойствами поля.

### 2. Корреляционные свойства спекл-полей в дальней зоне дифракции

Корреляционные свойства рассеянного поля в дальней зоне дифракции зависят от распределения средней интенсивности поля на поверхности рассеивателя [2, 18]. Существенное влияние на характер распределения средней интенсивности и, следовательно, на корреляционные свойства поля оказывают размеры и форма апертуры рассеивателя. Поперечная пространственная корреляционная функция комплексной амплитуды спекл-поля в дальней зоне дифракции может быть определена с помощью теоремы Ван Циттерта-Цернике как фурье-образ распределения средней интенсивности поля по б-коррелированному источнику [1,2,18,26]. При симметричном распределении средней интенсивности поля и симметричной апертуре источника корреляционная функция дифракционного поля оказывается действительной функцией, что в общем случае следует из свойств фурье-преобразования [27]. Более того, при этих условиях корреляционная функция принимает действительные и знакопеременные осциллирующие значения при резких изменениях средней интенсивности поля на краях апертуры источника. В частности, корреляционные функции  $G(\Delta\xi, \Delta\eta)$ (Δξ,Δη – разности пространственных координат в дифракционном спекл-модулированном поле) дифракционного спекл-поля источников, имеющих равномерное пространственное распределение средней интенсивности излучения и симметричные апертуры в форме квадрата и кольцевого квадрата (рис.  $1, a, \delta$ ), можно записать в следующем аналитическом виде [27]:

$$G_{1}(\Delta\xi, \Delta\eta) = a^{2}\operatorname{sinc}(\pi a \Delta\xi)\operatorname{sinc}(\pi a \Delta\eta),$$

$$G_{2}(\Delta\xi, \Delta\eta) = a^{2}\operatorname{sinc}(\pi a \Delta\xi)\operatorname{sinc}(a \Delta\eta)$$

$$-b^{2}\operatorname{sinc}(\pi b \Delta\xi)\operatorname{sinc}(\pi b \Delta\eta),$$
(1)

где a и b – размеры апертур источников, показанные на рис.1. На рис.2 для нормированных корреляционных функций (кривые 2. 3. 4), построенных для кольцевых квадратов с разной шириной кольцевой области, наблюдается заметное увеличение амплитуд знакопеременных осцилляций при уменьшении ширины (a - b)/2 кольцевой области.

При несимметричной форме апертуры источника корреляционная функция дифракционного поля может не иметь знакопеременных осцилляций или иметь малые осцилляции. Так, например, для корреляционных функ-



Рис.2. Нормированные корреляционные функции комплексной амплитуды спекл-поля при  $\Delta \eta = 0$  для источников с апертурами в форме квадрата с a = 10 мм (I) и кольцевого квадрата с отношением a/b, равным 4 (2), 2 (3) и 4/3 (4).



Рис.1. Апертуры рассеивателей – источников спекл-полей – и фрагменты смоделированных спекл-картин, формируемых такими источниками с апертурами, имеющими форму квадрата (*a*), кольцевого квадрата (*б*), треугольника (*в*) и кольцевого треугольника (*г*).

ций поля в дальней зоне дифракции для источников с апертурами в форме правильного треугольника и кольцевого правильного треугольника можно получить следующие выражения:

$$G_{3}(\Delta\xi) = \sqrt{3} \left(\frac{a}{2}\right)^{2} \operatorname{sinc}^{2} \left(\pi \frac{a}{2} \Delta\xi\right),$$

$$G_{4}(\Delta\xi) = \sqrt{3} \left(\frac{a}{2}\right)^{2} \operatorname{sinc}^{2} \left(\pi \frac{a}{2} \Delta\xi\right)$$

$$-\sqrt{3} \left(\frac{b}{2} - h\right)^{2} \operatorname{sinc}^{2} \left[\pi \left(\frac{b}{2} - h\right) \Delta\xi\right],$$
(2)

где  $h = (a - b)/2\sqrt{3}$  – ширина кольцевой области. Нормированные корреляционные функции спекл-полей источников с такими апертурами представлены на рис.3. В случае источника с апертурой в форме треугольника (рис.1,*в*) корреляционная функция поля имеет незнакопеременные осцилляции (рис.3, кривая *I*). Для апертуры в форме кольцевого треугольника (рис.1,*г*) появляются небольшие знакопеременные осцилляции, амплитуды которых возрастают с уменьшением ширины кольцевой апертуры (рис.3, кривые 2–4).

С физической точки зрения корреляционные свойства дифракционного спекл-поля, описываемые его корреляционными функциями, могут быть объяснены с позиций представления о закономерностях дифракции волн на апертуре рассеивателя – источника спекл-поля. Дифракционное поле можно представить в виде суперпозиции



Рис.3. Нормированные корреляционные функции комплексной амплитуды спекл-поля при  $\Delta \eta = 0$  для источников с апертурами в форме треугольника с a = 10 мм (1) и кольцевого треугольника с отношением a/b, равным 4 (2), 2 (3) и 4/3 (4).

элементарных полей дифракции плоских волн на апертуре рассеивателя (или, в общем случае, сферических волн, сходящихся в плоскости наблюдения картины дифракции поля). Эти элементарные дифракционные поля составляют тонкую амплитудно-фазовую структуру результирующего дифракционного поля и фактически определяют его корреляционные свойства [28]. Поперечный размер спеклов поля  $\varepsilon_{\perp}$ , практически совпадающий с длиной поперечной корреляции поля, примерно равен ширине центрального максимума элементарного дифракционного поля. Это представление подтверждается, в частности, совпадением интегральных выражений, используемых для определения комплексной амплитуды элементарного поля дифракции и поперечной корреляционной функции дифракционного поля, определяемой на основе теоремы Ван Циттерта-Цернике. При симметричных апертурах эти элементарные дифракционные поля описываются действительными знакопеременными функциями и, как следствие, корреляционная функция также принимает действительные знакопеременные значения.

# 3. Численный эксперимент по определению пространственного распределения плотности вероятности разности фаз в дифракционном спекл-поле

Для определения пространственного распределения плотности вероятности разности фаз в спекл-поле в дальней области дифракции выполнен численный статистический эксперимент. В этом эксперименте в графической форме определялась функция плотности распределения вероятности разности фаз  $p(\Delta\varphi, \Delta\xi)$  в зависимости от разности фаз  $\Delta\varphi$  в интервале  $[-\pi, \pi]$  и разности пространственных координат  $\Delta\xi$  в дифракционном спекл-модулированном поле. Схема натурного эксперимента, представлена на рис.4.

Моделирование поля источника дифракционного спекл-модулированного поля производилось согласно следующему алгоритму. Генерировались две матрицы случайных независимых вещественных величин  $u_{kj}$  и  $v_{kj}$ , распределенных от –1 до +1 по нормальному закону. На их основе формировалась матрица случайных комплексных переменных  $U_0(k,j) = u_{kj} + iv_{kj}$ . Таким образом создавалось случайное, попиксельно коррелированное поле гауссовых комплексных величин [18]. Данное поле модулировалось бинарной апертурной функцией P(k,j) той или иной формы, равной единице в пределах апертуры и



Рис.4. Схема натурного эксперимента для определения разности фаз в точках спекл-поля в дальней зоне дифракции: 1 – освещающий параллельный пучок света; 2 – рассеиватель; 3 – апертура – непрозрачный экран с отверстием; 4 – линза; 5 – спеклкартина в дальней зоне дифракции.

нулю вне ее. Распределение комплексной амплитуды поля источника задавалось в виде дискретного массива независимых гауссовых случайных комплексных величин  $U(k,j) = U_0(k,j)P(k,j)$ . Попиксельная корреляция поля при его достаточно большой апертуре (в наших экспериментах  $100 \times 100$  пикселей) позволяет считать такое поле фактически δ-коррелированным. Графическое представление нормированной корреляционной функции комплексной амплитуды этого поля показано на рис.5.

Поле комплексных амплитуд окружалось последовательностями нулей, с физической точки зрения определяющих область непрозрачности экрана, так что полная матрица поля источника имела размер 2000 × 2000 пикселей. Такое увеличение пиксельного размера поля источника позволяло получать дифракционное спекл-модулированное поле, в котором на каждый спекл приходится не один, как при использовании матрицы с размерами апертуры, а достаточное большое число пикселей – в нашем случае, например для квадратной апертуры, в среднем 400 пикселей на один спекл.

Комплексная амплитуда спекл-поля в дальней зоне дифракции формировалось путем фурье-преобразования поля источника с использованием алгоритма быстрого преобразования Фурье. Таким образом получали матрицу комплексных амплитуд дифракционного поля размером 2000 × 2000 пикселей. Апертуры источников спеклполей и фрагменты соответствующих смоделированных дифракционных спекл-картин, формируемых такими источниками, представлены на рис.1.

Производилась случайная выборка двух точек ( $P_1$  и  $P_2$ ), расположенных вдоль оси  $\xi$  на некотором расстоя-

нии друг от друга в дифракционном спекл-поле, и численно определялась разность фаз  $\Delta \varphi$  полей в этих точках. Расстояние  $\Delta \xi$  (в шкале пространственной частоты  $\xi$ ) между точками  $P_1$  и  $P_2$  задавалось относительно ширины центрального максимума корреляционной функции дифракционного поля, фактически (с физической точки зрения) относительно минимальных поперечных размеров спеклов  $\varepsilon_{\perp}$  [2, 18].

На основе выборки из N = 90000 значений формировались гистограммы статистического распределения разности фаз в интервале  $[-\pi, \pi]$  при его разбиении на m = 40интервалов. Огибающие гистограмм можно рассматривать в качестве кривых плотности распределения вероятности разности фаз  $p(\Delta \varphi, \Delta \xi = \text{const})$  для определенного расстояния  $\Delta \xi$  между точками поля:

$$p(\Delta\varphi) = \Delta N(\Delta\varphi_i < \Delta\varphi < \Delta\varphi_{i+1})\frac{m}{2\pi N},$$
(3)

где  $\Delta N(\Delta \varphi_i < \Delta \varphi < \Delta \varphi_{i+1})$  – число попаданий значений выборки в интервал разности фаз [ $\Delta \varphi, \Delta \varphi_{i+1}$ ]. Для разных  $\Delta \xi$  расстояний получали гистограммы и, соответственно, пространственные распределения плотности вероятности разности фаз  $p(\Delta \varphi, \Delta \xi)$  для источников спекл-полей с апертурами той или иной формы.

На рис.6 представлены функции  $p(\Delta \varphi, \Delta \xi)$  спекл-полей, полученные для источников с апертурами в форме квадратного кольца (см. рис.1,  $\delta$ ) и равностороннего треугольника (см. рис.1, s). Внешняя сторона треугольника (рис.1, a) a = 100 пикселей, а его внутренняя сторона b = 80 пикселей; для треугольной апертуры (рис.1, s) a = 100 пикселей;



Рис.5. Нормированная корреляционная функция комплексной амплитуды поля источника дифракционного спекл-модулированного поля (*a*) и центральная область функции корреляции (*б*).



Рис.6. Пространственное распределение плотности распределения вероятности разности фаз в двух точках дифракционного спеклполя при апертуре источника в форме квадратного кольца (a) и треугольника ( $\delta$ ).

средний размер спеклов в дифракционном поле был равен 15–20 пикселей для обеих апертур. Функция  $p(\Delta \varphi, \Delta \xi)$ на рис.6, а демонстрирует существенную неравномерность плотности распределения разности фаз  $p(\Delta \varphi, \Delta \xi)$  для расстояний между точками поля Δξ, превышающих поперечные размеры спеклов поля,  $\Delta \xi > \varepsilon_{\perp}$ . Наблюдаются максимумы  $p(\Delta \varphi, \Delta \xi)$  для разностей фаз  $\Delta \varphi = \pm \pi$  и  $\Delta \xi \approx 1.5 \varepsilon_{\perp}$ или  $\Delta \xi \approx 3.5 \varepsilon_{\perp}$ . С физической точки зрения это означает, что разность фаз спекл-поля в соседних спеклах с наибольшей вероятностью равна  $\pi$ .

Для спекл-поля с незнакопеременными корреляционными свойствами, например для поля источника с треугольной апертурой, наблюдается практически равномерное распределение  $p(\Delta \varphi, \Delta \xi)$  для  $\Delta \xi > \varepsilon_{\perp}$ :  $p(\Delta \varphi, \Delta \xi > \varepsilon_{\perp})$  $\approx 1/2\pi$  (рис.6,  $\delta$ ). С физической точки зрения это означает, что разность фаз в соседних спеклах поля с одинаковой вероятностью может принимать значения во всем интервале [- π, π].

Зависимости плотности распределения вероятности разности фаз от параметров апертуры рассеивателя наиболее наглядно проявляются в сечениях для фиксированных расстояний между точками поля,  $p(\Delta \varphi, \Delta \xi = \text{const})$ . На рис.7 эти зависимости представлены для апертур рассеивателя в форме квадрата и кольцевого квадрата с различным отношением сторон *a/b* для некоторых характерных расстояний между точками. Полученные кривые можно интерпретировать с физической точки зрения следующим образом.

При расстоянии между точками  $P_1$  и  $P_2$  спекл-поля  $\Delta \xi$ , равном половине среднего размера спекла ( $\Delta \xi \approx 0.5 \varepsilon_{\perp}$ ), наиболее вероятно их попадание в один и тот же спекл, но не исключается возможность попадания точек и в соседние спеклы. В этом случае наиболее вероятны значения разности фаз вблизи нуля (рис.7,*a*). При  $\Delta \xi \approx \varepsilon_{\perp}$  равновероятно попадание точек как в один, так и в соседние спеклы: наблюдается практически равномерное распределение разности фаз (рис.7,б). При расстоянии ∆ξ ≈ 1.5 г, которое численно равно координате первого локального максимума корреляционной функции спеклполя, наиболее вероятно попадание точек при случайной выборке в соседние спеклы, но они могут попадать и в один и тот же спекл. В этом случае наиболее вероятны значения разности фаз вблизи –  $\pi$  и  $\pi$  (рис. 7, в). При расстоянии  $\Delta \xi \approx 2.5 \varepsilon_{\perp}$ , численно равном координате второго локального максимума корреляционной функции спеклполя, наиболее вероятно, что при случайной выборке точки попадают в спеклы через один, но не исключается возможность их попадания в соседние спеклы и даже в один и тот же спекл. В этом случае наиболее вероятны значения разности фаз вблизи нуля (рис.7,г).

Результаты численного эксперимента показывают, что чем больше по модулю экстремумы корреляционной функции комплексной амплитуды спекл-поля, тем больше максимумы плотности распределения вероятности разности фаз  $p(\Delta \varphi, \Delta \xi)$  в двух точках спекл-поля (рис.7). Наибольшие амплитуды осцилляций корреляционной функции поля имеют место для кольцевых апертур источника спекл-поля.

На рис.8 представлены плотности распределения вероятности разности фаз  $p(\Delta \varphi, \Delta \xi = \text{const})$  поля источников с апертурой в форме кольцевого квадрата при увеличении  $\Delta \xi$  от  $0.5\varepsilon_{\perp}$  до  $1.5\varepsilon_{\perp}$  (рис.8,*a*) и от  $1.5\varepsilon_{\perp}$  до  $2.5\varepsilon_{\perp}$  (рис.8, $\delta$ ).

0.1 0.1 0 0 -π  $-\pi/2$ 0  $\pi/2$  $\Delta \varphi$  (рад) -π  $-\pi/2$ 0  $\pi/2$  $\Delta \varphi$  (рад)







Рис.8. Плотность распределения вероятности разности фаз в двух точках спекл-поля для источника с апертурой в форме кольцевого квадрата с a/b = 4/3 при  $0.5\varepsilon_{\perp} \leq \Delta\xi \leq 1.5\varepsilon_{\perp}(a)$  и  $1.5\varepsilon_{\perp} \leq \Delta\xi \leq 2.5\varepsilon_{\perp}(b)$ . Отношение  $\Delta\xi/\varepsilon_{\perp}$  равно примерно 0.5 (1), 1 (2), 1.5 (3), 2 (4) и 2.5 (5).

На рис.8,*a* с ростом  $\Delta\xi$  сначала уменьшаются максимумы  $p(\Delta\varphi, \Delta\xi)$  для  $\Delta\varphi = 0$  до практически равновероятного распределения при  $\Delta\xi \approx \varepsilon_{\perp}$ , а затем увеличиваются максимумы для  $\Delta\varphi = \pm \pi$  при увеличении  $\Delta\xi$  до  $1.5\varepsilon_{\perp}$ . На рис.8,*б* сначала уменьшаются максимумы  $p(\Delta\varphi, \Delta\xi)$  для  $\Delta\varphi = \pm \pi$  до равновероятного распределения при  $\Delta\xi \approx 2\varepsilon_{\perp}$ , а затем увеличиваются максимумы  $p(\Delta\varphi, \Delta\xi)$  для  $\Delta\varphi = 0$  при  $\Delta\xi \approx 2.5\varepsilon_{\perp}$ .

Корреляционная функция спекл-поля источника с апертурой в форме треугольника не имеет знакопеременных осцилляций (см. рис.3). На зависимостях  $p(\Delta \varphi, \Delta \xi = \text{const})$ выраженный максимум плотности распределения вероятности разности фаз вблизи  $\Delta \varphi = 0$  наблюдается для точек, попадающих в один и тот же спекл (рис.9,*a*). В остальных случаях имеет место практически равномерное распределение  $\Delta \varphi$  по всему интервалу [ $-\pi, \pi$ ] (рис. 9, $\delta - \epsilon$ ).

При апертуре в форме кольцевого треугольника есть небольшие знакопеременные осцилляции корреляционной функции поля (см. рис.3). Поэтому вблизи  $\Delta \varphi = \pm \pi$  значения  $p(\Delta \varphi, \Delta \xi)$  для точек, попадающих в соседние спеклы, немного увеличиваются (рис.9,*в*). Для точек, попадающих в один спекл, наблюдается выраженный максимум вблизи  $\Delta \varphi = 0$  (рис.9,*a*), тогда как в остальных случаях распределение во всем интервале [- $\pi$ , $\pi$ ] является практически равномерным (рис.9, $\delta - \epsilon$ ). Как и для симметричных апертур источника спеклполя, чем меньше ширина кольцевой области, тем больше по модулю первый отрицательный максимум



Рис.9. Плотность распределения вероятности разности фаз в двух точках спекл-поля для источников с апертурами в форме треугольника (1) и кольцевого треугольника с отношением a/b, равным 4 (2), 2 (3) и 4/3 (4). Отношение расстояния между точками спекл-поля к среднему размеру спеклов  $\Delta\xi/\epsilon_{\perp}$  равно примерно 0.5 (a), 1 ( $\delta$ ), 1.5 (e) и 2.5 (e).



Puc.10. Зависимости плотности распределения вероятности разности фаз в двух точках спекл-поля при  $\Delta \varphi = 0$  (*I*) и  $\Delta \varphi = \pi$  (2) от расстояния  $\Delta \xi$  между этими точками для источников с апертурами в форме квадрата (*a*) и кольцевого квадрата с отношением *a*/*b*, равным 2 (*b*), 4/3 (*b*) и 10/9 (*z*).

автокорреляционной функции и больше максимум для  $\Delta \varphi = \pm \pi$  (рис.9,*в*).

На рис.10 показано, как изменяется плотность вероятности разности фаз спекл-поля для фиксированных значений  $\Delta \varphi = 0$  и  $\pi$  при увеличении расстояния  $\Delta \xi$  между точками для источников спекл-поля с апертурой в форме квадрата и кольцевого квадрата. Чем меньше ширина кольцевой области апертуры источника, тем больше амплитуды осцилляций плотности распределения вероятности разности фаз для  $\Delta \varphi = 0$  и  $\pi$  и тем медленнее они затухают при увеличении  $\Delta \xi$ , что свидетельствует о расширении области корреляции фазы спекл-поля.

Результаты численных экспериментов (рис.6–10) показывают, что изменение знака корреляционной функции комплексной амплитуды спекл-поля связано с изменением знака комплексной амплитуды поля при переходе от спекла к спеклу. Чем больше по модулю величина первого отрицательного максимума корреляционной функции, тем больше максимумы плотности распределения вероятности разности фаз  $p(\Delta \varphi)$  для  $\Delta \varphi = \pm \pi$  и, соответственно, больше неравномерность плотности распределения разности фаз спекл-поля.

## 4. Натурный статистический эксперимент по определению разности фаз колебаний в спекл-поле

Нами проведен лабораторный статистический эксперимент по определению разности фаз колебаний в двух точках спекл-поля с компьютерной обработкой интерферограмм, что обеспечило возможность работы с большими числами выборки – до N = 1000 для каждой гистограммы. Использовались четыре формы апертуры, ограничивающей рассеиватель - источник спекл-поля: квадрат, кольцевой квадрат, треугольник, кольцевой треугольник. Для каждой апертуры определялась статистика изменения разности фаз в двух точках спекл-поля только для двух характерных расстояний между точками. Разность фаз колебаний проявляется в интерференционном эксперименте. Для определения разности фаз в двух точках поля наиболее подходящим является интерферометр Юнга, где наблюдается интерференция волн, исходящих от двух отверстий в непрозрачном экране, на который падает исследуемое поле. Если отверстия в экране малы по сравнению с длиной поперечной корреляции освещающего поля, то такие квазиточечные отверстия служат вторичными источниками квазисферических волн. При освещении отверстий пространственно когерентным полем, каким является лазерное спекл-модулированное поле, интерференция выделенных волн наблюдается при любом расстоянии между отверстиями. Однако положение интерференционных полос зависит от разности фаз колебаний поля в отверстиях. Данное обстоятельство позволяет определять изменение разности фаз этих колебаний при смене реализации поля на экране с отверстиями и изменении пространственного распределения фазы освещающего поля при изменении расстояния между отверстиями. Таким образом, с помощью интерферометра Юнга можно выполнить статистический эксперимент по определению пространственного распределения плотности распределения вероятности разности фаз поля в различных точках в зависимости от расстояния между ними. В эксперименте для этого необходимо определять величины смещения



Рис.11. Схема эксперимента по определению разности фаз в двух точках спекл-поля с использованием интерферометра Юнга: *I* – лазер; *2*, *7* – зеркала; *3* – микрообъектив; *4* – линза; *5* – рассеиватель; *6* – апертура; *8* – экран с двумя точечными отверстиями; *9* – цифровая камера; *10* – изображение интерференционных полос на матрице цифровой камеры.

интерференционных полос по отношению к их периоду при смене реализаций спекл-поля, падающего на экран с отверстиями.

На рис.11 представлена схема эксперимента по определению разности фаз в двух точках спекл-поля с использованием интерферометра Юнга. Пучок излучения лазера 1 отражается от зеркала 2, расширяется с помощью микрообъектива 3, коллимируется линзой 4 и проходит через рассеиватель 5, ограниченный апертурой 6. Расстояние  $z_0$  от апертуры 6 до экрана с двумя точечными отверстиями 8 много больше размера апертуры. Внешний размер апертуры  $a \approx 5$  мм (отношение размеров кольцевой апертуры a/b = 2), расстояние  $z_0 \approx 1500$  мм, поэтому можно считать, что экран с отверстиями, на который попадает спекл-поле, находится в дальней зоне дифракции. В эксперименте использовались линейно поляризованное излучение He-Ne-лазера (мощность 25 мВт, длина волны 0.63 мкм) и цифровая фотокамера (КМОП-матрица, 5.7 × 4.28 мм, 2592 × 1944 пикселей).

Расстояние  $\Delta\xi$  между отверстиями в экране оставалось неизменным ( $\Delta\xi = 0.5$  мм), а изменялись размеры спеклов  $\varepsilon_{\perp}$  – путем изменения расстояния  $z_0$  от рассеивателя до экрана. Соответственно изменялось отношение  $\Delta\xi/\varepsilon_{\perp}$ , которое в наших экспериментах составляло 1.5 и 2.5. На матрице цифровой фотокамеры формировалась картина интерференционных полос (рис.12), положение которых зависит от разности фаз  $\Delta\varphi$  поля в отверстиях экрана 8. При поперечном смещении рассеивателя *5* на величину, превышающую размер его апертуры, происходит полная смена реализации спекл-поля на поверхности экрана. Изменение разности фаз поля в отверстиях экрана определялось по величине поперечного сдвига интерференционных полос  $\Delta x'$  в долях их периода  $\Lambda$ :

$$\Delta \varphi = 2\pi \Delta x' / \Lambda. \tag{4}$$

Смещение интерференционных полос  $\Delta x'$  для каждого изображения интерференционной картины относительно их положения в некотором опорном изображении определялось с помощью компьютерной обработки изображений интерференционных картин как смещение центрального пика функций взаимной корреляции опорного и текущего изображений интерференционных полос относительно положения центрального пика функции автокорреляции распределения интенсивности в опорном изображении.

На основе полученных статистических данных для разности фаз  $\Delta \varphi$  построены гистограммы, представленные на рис.13. Гистограммы на рис.13,*a*-*г* показывают



Рис.12. Смещение интерференционных полос  $\Delta x'$  в дифракционном гало при смене реализации спекл-поля. Период интерференционных полос на матрице фотокамеры  $\Lambda \approx 0.45$  мм (~200 пикселей)

отчетливую неравномерность плотности распределения вероятности разности фаз в двух точках спекл-поля для источников с апертурой в форме квадрата и особенно кольцевого квадрата. Для таких форм апертур источников, как указывалось выше, корреляционная функция спекл-поля имеет достаточно выраженные локальные экстремумы (см. рис.2). Чем больше они по модулю, тем больше максимумы плотности распределения вероятности разности фаз, что и наблюдается на рис.13 в случае апертуры в форме кольцевого квадрата. При  $\Delta \xi \approx 1.5 \epsilon_{\perp}$ , когда отверстия в экране интерферометра Юнга с наибольшей вероятностью попадают в соседние спеклы, максимум плотности распределения вероятности разности фаз наблюдается для  $\Delta \varphi = \pi$ . При  $\Delta \xi \approx 2.5 \varepsilon_{\perp}$ , когда отверстия в экране с наибольшей вероятностью попадают в спеклы через один, максимум имеет место для  $\Delta \varphi = 0$ .

На гистограммах рис.13, а-г наблюдается почти скачкообразное увеличение максимума вблизи  $\Delta \varphi = 0, \pi$  и почти равномерное распределение разностей фаз на всем остальном промежутке. Это можно объяснить тем, что в натурном статистическом эксперименте при смене реализаций спекл-поля отбирались только яркие и четкие изображения интерференционных полос. В этих случаях оба отверстия в экране интерферометра Юнга попадали или в один спекл, или в соседние спеклы, или в спеклы через один, и наиболее вероятно, что разности фаз при этом равнялись  $\pi$  или 0. Для реализации условий  $\Delta \xi \approx 1.5 \varepsilon_{\perp}$ путем увеличения расстояния z<sub>0</sub> средняя интенсивность поля уменьшалась, и изображения интерференционных полос в дифракционном гало становились менее яркими, чем при  $\Delta \xi \approx 2.5 \epsilon_{\perp}$ , в связи с чем регистрировалось меньше «хороших» изображений.

У корреляционной функции поля, создаваемого рассеивателем с несимметричной апертурой, например в форме треугольника, знакопеременные осцилляций отсутствуют, а в случае кольцевого треугольника она имеет знакопеременные осцилляции малой амплитуды. Поэтому для





Рис.13. Гистограммы плотности распределения вероятности разности фаз  $\Delta \varphi$  в двух точках спекл-поля, создаваемого источником с апертурой в форме кольцевого квадрата (*a*, *b*) квадрата (*b*, *c*), кольцевого треугольника (*b*, *c*) и треугольника (*b*, *c*). Расстояния  $\Delta \xi$  между отверстиями в экране интерферометра Юнга равны примерно  $1.5\varepsilon_{\perp}(a, e, d, c)$  и  $2.5\varepsilon_{\perp}(b, c, e, s)$ .

спекл-полей, формируемых рассеивателями с такими апертурами, ожидается почти равномерная плотность распределения вероятности разности фаз. Результаты натурных экспериментов, представленные на рис.13,*д*-*з*, подтверждают данное предположение для источников с несимметричными апертурами.

### 5. Заключение

Неравномерность статистического распределения разности фаз в развитом спекл-поле с наиболее вероятными значениями для  $\Delta \varphi$ , равными 0 и  $\pm \pi$ , в зависимости от расстояния между точками поля, в которых определяется разность фаз колебаний, обусловлена особенностями поперечных корреляционных свойств поля. Такая неравномерность плотности распределения вероятности разности фаз  $p(\Delta \varphi)$  наблюдается в пределах области корреляции спекл-поля, поперечные корреляционные свойства которого определяются осциллирующей знакопеременной функцией поперечной корреляции поля. Подобные корреляционные свойства поля возникают при использовании симметричной апертуры рассеивателя – источника спекл-поля, и в заметно большей степени тогда, когда используется симметричная структурированная апертура, в частности в виде кольцевого квадрата. В этом случае пространственная корреляционная функция поля имеет осцилляции сравнительно большой амплитуды и, как следствие, наблюдаются достаточно большие максимумы плотности распределения вероятности разности фаз  $p(\Delta \varphi)$  для  $\Delta \varphi = \pm \pi$ , если расстояния между точками совпадают с интервалами осцилляций корреляционной функции. В этих условиях имеет место неравномерная и осциллирующая в пространстве плотность распределения вероятности разности фаз спекл-поля. Неравномерность  $p(\Delta \varphi)$ наблюдается в пределах области поперечной корреляции спекл-поля, где сохраняются заметные корреляционные осцилляции комплексной амплитуды поля. За пределами этой области распределение  $p(\Delta \varphi)$  становится практически равномерным.

Отдельные спеклы в пространственном распределении интенсивности спекл-модулированного поля (в спекл-картине) обычно принято рассматривать в качестве области корреляции поля. Полученные в работе результаты показывают, что область корреляции поля имеет существенно бо́льшие пределы. В особенности это относится к спекл-полям, формируемым с помощью рассеивателей со структурированными апертурами. Размеры спеклов в поперечном распределении интенсивности в спекл-картине определении интенсивности в спекл-картине определяются шириной центрального максимума корреляционной функции поля. Однако за пределами этого максимума в спекл-поле могут еще сохраняться значительные корреляции, что и проявляется в неравномерности распределения  $p(\Delta \varphi)$ .

Наиболее вероятная разность фаз поля  $\Delta \varphi = \pm \pi$  в соседних спеклах в дифракционной зоне может позволить в ряде случаев восстановить утраченную при записи интенсивности спекл-поля фазовую информацию об объектном поле. Это может быть использовано, как показано в работах [21–23], для восстановления изображения рассеивающего объекта по записи интенсивности дифракционного поля. Знание статистических свойств разности фаз в соседних спеклах рассеянного поля также может иметь практическое значение в лазерной интерферометрии, в частности для оценки статистических параметров сигнала лазерных спекл-интерферометров микроперемещений рассеивающих поверхностей в случае, когда в апертуру фотодетектора попадают несколько спеклов рассеянного объектного поля. Полученные статистические закономерности фазовых распределений могут быть использованы также для решения задач исследования влияния спеклов на работу датчиков волнового фронта.

- Goodman J.W. Speckle Phenomena in Optics: Theory and Applications (Englewood: Roberts & Company Publ., 2006).
- Goodman J.W., in *Laser Speckle and Related Phenomena*. Ed. by J.C.Dainty (Berlin: Springer-Verlag, 1975, p. 9).
- 3. Франсон М. Оптика спеклов (М.: Мир, 1980).
- Джоунс Р., Уайкс К. Голографическая и спекл-интерферометрия (М.: Мир, 1986).
- Клименко И.С. Голография сфокусированных изображений и спекл-интерферометрия (М.: Наука, 1985).
- Бадалян Н.П., Кийко В.В., Кислов В.И., Козлов А.Б. Квантовая электроника, 38, 477 (2008).
- 7. Иванов А.П., Кацев И.Л. *Квантовая электроника*, **35**, 670 (2005).
- Кольер Р., Беркхарт К., Лин Л. Оптическая голография (М.: Мир, 1973).
- Schnars U., Juptner W. Digital Holography (Berlin: Springer-Verlag, 2004).
- Резчиков А.Ф., Рябухо В.П. Проблемы машиностроения и надежсности машин, 1, 68 (2010).
- Кульчин Ю.Н., Витрик О.Б., Ланцов А.Д. Квантовая электроника, 36, 339 (2006).
- 12. Labeyrie A. Ann. Rev. Astron. Astrophys., 16, 77 (1978).
- 13. Martinache F. J. Opt. A: Pure Appl. Opt., 6, 216 (2004).
- Ларичев А.В., Иванов П.В., Ирошников Н.Г., Шмальгаузен В.И. Квантовая электроника, 31, 1108 (2001).
- 15. Trisnadi J.I. Proc. SPIE Int. Soc. Opt. Eng., 4657, 131 (2002).
- Yurlov V., Lapchuk A., Yun S., Song J., Yeo I., Yang H., An S. *Appl. Opt.*, 48, 80 (2009).
- 17. Svet V.D. Open J. Biophys., 3, 165 (2013).
- 18. Гудмен Дж. Статистическая оптика (М.: Мир, 1988).
- 19. Uozumi J., Asakura T. Appl. Opt., 20, 1454 (1981).
- 20. Kadono H., Takai N., Asakura T. J. Opt. Soc. Am. A, 3, 1080 (1986).
- Горбатенко Б.Б., Рябухо В.П., Максимова Л.А. Оптика и спектроскопия, 101, 861 (2006).
- 22. Горбатенко Б.Б., Максимова Л.А., Рябухо В.П., Норов Ю.В. Компьютерная оптика, **31**, 26 (2007).
- Горбатенко Б.Б., Максимова Л.А., Рябухо В.П. Оптика и спектроскопия, 106, 323 (2009).
- Maksimova L.A., Mysina N.Yu., Gorbatenko B.B., Ryabukho V.P. Proc. SPIE Int. Soc. Opt. Eng, 8699, 869910 (2013).
- 25. Мысина Н.Ю., Максимова Л.А., Горбатенко Б.Б., Рябухо В.П. Компьютерная оптика, **37**, 451 (2013).
- 26. Борн М., Вольф Э. Основы оптики (М.: Наука, 1973).
- 27. Гудмен Дж. Введение в фурье-оптику (М.: Мир, 1970).
- 28. Клименко И.С., Рябухо В.П., Федулеев Б.В. ЖТФ, 55, 1338 (1985).

### <u>ПОПРАВКА</u>

**Х. Джафарзаде, М. Панахи, Сейед Хоссейн Асадпур.** Фазовое управление групповой скоростью света в наноструктуре на основе квантовых точек InGaN/GaN («Квантовая электроника», 2015, т. 45, № 9, с. 837–843).

По просьбе авторов М.Панахи заменяется на Е.Ахмади Сангачин (E.Ahmadi Sangachin).