PACS 42.55.Px; 42.62.Eh

Диодный лазер с активной синхронизацией мод со стабильностью межмодовой частоты ~6×10⁻¹⁴

В.Ф.Захарьяш, А.В.Каширский, В.М.Клементьев

Сообщаются результаты исследования стабильности межмодовой частоты в полупроводниковом лазере с внешним резонатором, работающим в режиме активной синхронизации мод. Показано, что в этом режиме при наличии эффекта затягивания межмодовой частоты к частоте внешнего высокостабильного CBU сигнала, формируемого от водородного стандарта (стабильность 4×10^{-14} за время усреднения $\tau = 10$ с), достигается стабильность межмодовой частоты 5.92 $\times 10^{-14}$ ($\tau = 10$ с).

Ключевые слова: диодный лазер, активная синхронизация мод, спектр биений, стабильность межмодовой частоты.

В ряде статей [1–11] исследуется работа многомодовых полупроводниковых лазеров с внешним резонатором (ПЛВР), которые являются удобным инструментом для изучения многих физических процессов в лазерном диоде. В работе [8] исследовалось влияние частоты СВЧ накачки $f_{\rm mw}$ на спектры межмодовых биений ПЛВР $f_{\rm im}$. Показано, что при накачке на частоте $f_{\rm mw} \approx 2f_{\rm im}$ имеет место эффект затягивания межмодовой частоты. В настоящей работе приводятся результаты дальнейших экспериментов, связанных с использованием этого эффекта для стабилизации межмодовой частоты. Существенно усовершенствованная экспериментальная установка позволила измерять стабильность частот с точностью ~10⁻¹⁴.

Блок-схема экспериментальной установки приведена на рис.1. Для упрощения схемы была выбрана межмодовая частота, равная 150 МГц (длина резонатора ~1 м), с тем чтобы накачку ПЛВР производить на частоте $f_{\rm mw} \approx$ 300 МГц. Как и ранее в [8], применялась СВЧ модуляция на удвоенной межмодовой частоте, которая позволяет избежать перекрытия СВЧ частоты $f_{\rm mw}$ с межмодовыми биениями на частоте $f_{\rm im}$ и, следовательно, избежать паразитного влияния $f_{\rm mw}$ на результат измерения параметров межмодовой частоты. Длина внешнего резонатора подобрана таким образом, чтобы значение $f_{\rm mw}/2$ попадало в диапазон, в котором ширина спектра межмодовых биений минимальна [8]. Использовался полупроводниковый лазер ИЛПН-820-100 с коэффициентом отражения передней грани ~3% и порогом генерации ~40 мА.

Сигнал на частоте 100 МГц от водородного (H) стандарта *I* (стабильность 4×10^{-14} за время усреднения $\tau = 10$ с и 1×10^{-14} за $\tau = 100$ с) умножается до частоты 300 МГц (блок 2) и подается через СВЧ усилитель мощности 5 на полупроводниковый лазер 9 через емкостную развязку (источник тока накачки лазера стандартный и не показан). С H-стандарта также подается высокостабильный сигнал

Поступила в редакцию 11 сентября 2014 г., после доработки – 9 февраля 2015 г.

Рис.1. Блок-схема экспериментальной установки: *I* – водородный стандарт частоты; *2* – умножитель; *3* – синтезатор частоты; *4* – частотомер; *5* – СВЧ усилитель мощности; *6* – смеситель; *7* – ФНЧ; *8* – усилитель-ограничитель; *9* – ПЛВР; *10* – фотоприемник; *11* – анализатор спектра.

(5 МГц) на частотомер 4 с целью синхронизации его собственной базы времени с базой времени сигнала СВЧ накачки. Излучение ПЛВР фокусируется на фотоприемник 10, далее сигнал поступает на анализатор спектра 11 и смеситель 6, на который также приходит высокостабильный сигнал синтезатора частоты 3 ($f_{\rm h}$ = 149999800 Гц). Затем сигнал направляется на фильтр низких частот (ФНЧ) 7, где выделяется сигнал с частотой $f_{\rm m}$ = 200 Гц. Далее низкочастотный сигнал поступает на усилитель-ограничитель 8 и частотомер 4.

В эксперименте измерялся период сигнала ($f_m = 200 \Gamma$ ц) при временах усреднения $\tau = 10$ и 100 с. Количество измерений N для каждого значения τ составило 100 и 40 соответственно. Результаты эксперимента приведены в табл.1, из которой следует,что при $\tau = 10$ с среднеквадратичное отклонение (СКО) от среднего значения межмодовой частоты составляет 8.889 × 10⁻⁶ Гц. Детальный анализ выборки (N = 100) показывает, что она состоит из чередую-

В.Ф.Захарьяш, А.В.Каширский, В.М.Клементьев. Институт лазерной физики СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 13/3; e-mail: valera@laser.nsc.ru, kavg@ngs.ru

Tuossi. Subienmoerb eruonsibiloern naeroribi er bpemenn.				
Среднее значение частоты (Гц)	СКО от среднего значения сигнала с $f_{\rm m}$ = 200 Гц (Гц)	Время усреднения (с)	Количество измерений	Стабильность
1.5×10^{8}	8.889×10^{-6}	10	100	5.928×10^{-14}
1.5×10^{8}	8.602×10^{-5}	100	40	6.807×10^{-13}
1.5×10^{8}	8.025×10^{-6}	10	7	5.35×10^{-14}

Табл.1. Зависимость стабильности частоты от времени.

Рис.2. Временной разброс периода измеряемого частотомером сигнала (200 Гц, *t* = 10 с) в пределах участков измерений внутри экспериментальной выборки.

щихся участков измерений, для которых значение СКО меняется (рис.2). Такие последовательности состоят из нескольких (5 –7) идущих подряд измерений, при которых СКО составляет 8.025×10^{-6} Гц (см. табл.1). Стабильность на таких промежутках достигает 5.355×10^{-14} .

Сравнение стабильности частоты за $\tau = 10$ и 100 с показывает, что при увеличении τ стабильность межмодовой частоты падает, тогда как стабильность задающего H-стандарта возрастает с 4×10^{-14} при $\tau = 10$ с до 10^{-14} при $\tau = 100$ с. Причиной этого, возможно, является слабая расстройка внешнего резонатора в диапазоне затягивания частот (± 2 МГц [8]), что приводит к появлению систематической ошибки и, как следствие, к ухудшению условий синхронизации мод (нарушению постоянства амплитуды). В пользу этого вывода говорит наличие асимметрии гистограммы (рис.3), на которой показано распределение значений межмодовой частоты относительно центрального значения 150 МГц.

Обсудим кратко некоторые особенности работы ПЛВР, проявившиеся в процессе экспериментов. Прежде всего, в трехзеркальной системе лазера, при определенных условиях [8], устанавливается многомодовый режим.

Рис.3. Гистограмма распределений значений межмодовой частоты $f_{\rm im}$ относительно центральной частоты 150 МГц ($N = 100, \tau = 10$ с).

При этом из-за значительной нелинейности показателя преломления полупроводника [9] в среде возникает динамическая решетка концентрации носителей на межмодовой частоте fim. Взаимодействие активной среды с полем резонатора приводит к многомодовому режиму в зависимости от тока накачки. При подаче на лазер с нелинейной средой внешнего сигнала, модулирующего ток инжекции на частоте $f_{\rm mw}$, близкой к межмодовой частоте $f_{\rm im}$, происходит взаимодействие волновых процессов, приводящее к активной синхронизации мод. Процесс синхронизации сопровождается уширением оптического спектра (от 1 до 10 нм) и существенным сужением наблюдаемых отдельных компонент спектра межмодовых биений (от ~20 МГц при свободной генерации до ~1 кГц при синхронизации мод), что также было показано в [8]. При сближении частот $f_{\rm mw}$ и $f_{\rm im}$ наблюдается дальнейшее взаимодействие колебательных процессов, приводящее к эффекту затягивания межмодовой частоты к частоте более сильного внешнего сигнала.

Эффект затягивания столь существенный, что даже при относительно небольшом ослаблении внешних возмущений (например, при помещении лазера в специальный контейнер) удается получить высокую стабильность частоты межмодовых биений и достаточно широкий оптический спектр в полосе фазового захвата.

Таким образом, стабильность межмодовой частоты в значительной степени определяется стабильностью СВЧ генератора, что может быть использовано для построения полупроводникового лазера, работающего в режиме активной синхронизации мод с высокостабильной межмодовой частотой. Вместе с тем для обеспечения надежной работы лазера в режиме активной синхронизации мод требуется детальное изучение влияния акустических шумов, а также ряда параметров внешнего резонатора (угловые расстройки внешнего зеркала, эффективность обратной связи) на стабильность межмодовой частоты.

- 1. Van der Ziel J.P. J. Appl. Phys., **52** (7), 4435 (1981).
- 2. Miller A., Sibbertt W. J. Modern Opt., 35 (12), 1871 (1988).
- Browers D., Finch A., Sleat W., Sibbert W. *IEEE J. Quantum Electron.*, 26 (11), 1860 (1990).
- Богатов А.П., Елисеев П.Г., Охотников О.Г. и др. Труды ФИАН, 141, 74 (1983).
- Peterman K. Laser diode modulation and noises (Dordrecht, London: Kluwer Academic Publishers, 1988, p. 315).
- Богатов А.П., Елисеев П.Г., Охотников О.Г., Пак Г.Т и др. Труды ФИАН, 141, 62 (1983).
- Багаев С.Н., Захарьяш В.Ф., Каширский А.В., Клементьев В.М., Кузнецов С.А., Пивцов В.С. Квантовая электроника, 34 (7), 623 (2004).
- Захарьяш В.Ф., Каширский А.В., Клементьев В.М., Кузнецов С.А., Пивцов В.С. Квантовая электроника, 35 (9), 821 (2005).
- 9. Елисеев П.Г. Квантовая электроника, **35** (9), 791 (2005).
- 10. Колачевский Н.Н. УФН, 174 (11), 1171 (2004).
- Коляда Н.А., Нюшков Б.Н., Иваненко А.В., Кобцев С.М., Харпер П., Турицын С.К., Денисов В.И., Пивцов В.С. Квантовая электроника, 43 (2), 95 (2013).