#### PACS 42.65.Dr; 42.55.Rz; 42.65.Re; 43.35.Sx

# Водородный комбинационный лазер с длительностью импульса генерации 40 фс

Н.В.Диденко, А.В.Конященко, П.В.Кострюков, Л.Л.Лосев, В.С.Пазюк, С.Ю.Теняков, В.Я.Молчанов, С.И.Чижиков, К.Б.Юшков

С использованием схемы накачки водородного BKP-преобразователя двумя последовательными чирпированными с линейными ортогональными поляризациями импульсами излучения лазера на сапфире с титаном и применением программируемой акустооптической дисперсионной линии задержки получены импульсы первой стоксовой компоненты с длиной волны 1.2 мкм и длительностью 40 фс. Эффективность преобразования по энергии составила 22%.

**Ключевые слова:** фемтосекундные лазерные системы, дисперсионная линия задержки, акустическая дифракция, вынужденное комбинационное рассеяние.

### 1. Введение

Нелинейное преобразование фемтосекундных лазерных импульсов с целью уменьшения частоты исходного лазерного излучения широко используется в последние годы при проведении исследований по получению генерации аттосекундных импульсов [1] и мощного терагерцевого излучения [2]. Эффективность этих процессов возрастает при увеличении длины волны лазерного излучения. В обоих случаях основная физическая причина повышения эффективности заключается в увеличении энергии электрона, осциллирующего в поле световой волны, при уменьшении частоты лазерного излучения.

Наиболее часто в качестве нелинейных преобразователей используются параметрические генераторы на кристаллах [3]. При этом кристалл должен обеспечить большое усиление в требуемом спектральном диапазоне и достаточно широкую полосу фазового синхронизма для импульсов фемтосекундной длительности.

Альтернативным методом является преобразование на основе процесса вынужденного комбинационного рассеяния (ВКР). В этом случае при использовании активных газовых сред полоса фазового синхронизма существенно шире полосы синхронизма параметрических преобразователей на кристаллах. Также комбинационные преобразователи могут быть применены для лазерных импульсов с большей энергией. Для исключения конкурирующих нелинейных эффектов, таких как фазовая самомодуляция и самофокусировка, подавляющих процесс ВКР, была предложена схема преобразования с использованием чирпированных лазерных импульсов с длительностью до

**Н.В.Диденко, А.В.Конященко, П.В.Кострюков, Л.Л.Лосев, В.С.Пазюк.** Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: lllosev@mail.ru

**С.Ю.Теняков.** ООО «Авеста-Проект», Россия, 142190 Москва, Троицк, ул. Физическая, 11; e-mail: tenyakov@avesta.ru

В.Я.Молчанов, С.И.Чижиков, К.Б.Юшков. Национальный исследовательский технологический университет «МИСиС», Россия, 119049 Москва, Ленинский просп., 4; e-mail: aocenter@mail.ru

Поступила в редакцию 21 июля 2015 г.

сотни пикосекунд [4]. Такие импульсы обычно выводят из фемтосекундной лазерной системы, построенной по принципу усиления чирпированных импульсов, сразу после усилителя, до входа в решеточный компрессор. После преобразования чирпированный стоксов импульс сжимается во времени с помощью решеточного либо призменного компрессора. В дальнейшем эта схема преобразования была нами модернизирована для устранения эффекта сужения спектра чирпированного стоксова импульса по сравнению со спектром импульса лазерного излучения [5]. По этой схеме было осуществлено комбинационное преобразование в сжатых газах [6] и кристаллах [7] и получены стоксовы импульсы с шириной спектра, близкой к ширине спектра исходного лазерного импульса.

Для достижения максимальной степени компрессии и получения минимальной длительности компрессированного стоксова импульса (близкого к спектрально-ограниченному) требуется обеспечить компенсацию дисперсии в решеточном компрессоре вплоть до дисперсии четвертого порядка. Поскольку в стретчере, установленном на входе в усилитель фемтосекундной лазерной системы, и в компрессоре на выходе комбинационного преобразователя световые импульсы существенно различаются по длине волны, то компенсировать дисперсии высших порядков простым подбором решеток компрессора достаточно сложно. В частности, это требует изготовления нестандартных решеток с заданным числом штрихов. Другим возможным путем решения данной задачи является использование акустооптической дисперсионной линии задержки (АОДЛЗ) для внесения дополнительной программируемой дисперсии на входе в лазерный усилитель. В принципе, это может позволить точно согласовать дисперсионные характеристики лазерного усилителя и комбинационного преобразователя с дисперсионной характеристикой решеточного компрессора, установленного на выходе системы.

Целью настоящей работы было исследование возможности получения максимально коротких стоксовых импульсов при комбинационном преобразовании излучения фемтосекундной лазерной системы на сапфире с титаном с использованием программируемой АОДЛЗ.

#### 2. Экспериментальная установка

#### 2.1. Лазерная система на сапфире с титаном

Оптическая схема экспериментальной установки показана на рис.1. Лазерная система включает в себя задающий генератор (TiF-15F, Авеста) и регенеративный усилитель (REUS-40F20, Авеста). Между ними установлены решеточный стретчер и программируемая АОДЛЗ. Импульсы задающего генератора длительностью 30 фс с энергией 4 нДж растягиваются во времени до 100 пс в решеточном стретчере, проходят АОДЛЗ и инжектируются в резонатор регенеративного усилителя.

Частота следования импульсов регенеративного усилителя была равна 20 Гц. Энергия одиночного чирпированного импульса с длительностью примерно 100 пс на выходе регенеративного усилителя достигала 2.5 мДж. Ширина спектра излучения с центральной длиной волны 810 нм составляла около 30 нм (рис.2), что соответствует спектрально-ограниченному импульсу длительностью 35 фс с такой же формой спектра. Световой пучок диаметром 3 мм имел близкое к гауссову распределение интенсивности по поперечному сечению. Параметр качества светового пучка  $M^2$  не превышал 1.1.



Рис.1. Оптическая схема экспериментальной установки: ПР – призма Рошона; ПП – пленочные поляризаторы; 3 – зеркала.



Рис.2. Спектры выходного излучения лазера на сапфире с титаном (a) и первой стоксовой компоненты  $(\delta)$ .

#### 2.2. Акустооптическая дисперсионная линия задержки

АОДЛЗ в оптическом тракте системы осуществляет формирование дополнительных дисперсий  $D_1, D_2, D_3$  и  $D_4$ необходимого порядка и знака. Для управления спектральной фазой используется квазиколлинеарная геометрия акустооптического взаимодействия в монокристалле парателлурита с углом наклона волнового вектора ультразвуковой волны 5° к оси [110] кристалла [8,9]. В установке применялась дисперсионная линия с рекордной величиной групповой задержки около 20 пс на длине волны 810 нм. Геометрия акустооптического взаимодействия была оптимизирована для минимизации спектральной плотности управляющего высокочастотного сигнала и увеличения эффективности дифракции ультракоротких лазерных импульсов в диапазоне длин волн 650-880 нм. Схема дисперсионной линии задержки показана на рис.3. Там же приведены направления поляризаций входного и дифрагировавшего излучений. Прибор сохраняет направление оптической оси системы для дифрагировавших спектральных компонент и осуществляет компенсацию угловой дисперсии брэгговского синхронизма.

Электронная система управления дисперсионной линии задержки состоит из цифрового генератора сигналов произвольной формы с частотой дискретизации 625 МГц и усилителя мощности. В области акустооптического взаимодействия возбуждаются ультразвуковые волновые пакеты, синхронизованные с системой инжекции лазерных импульсов в регенеративный усилитель. Эффективность дифракции на длине волны 810 нм в спектральном окне шириной 80 нм превышала 60% при пиковой управляющей мощности высокочастотного сигнала 4 Вт и оптической апертуре прибора 4×4 мм. Величины дисперсий, возникающих при квазиколлинеарной акустооптической дифракции фемтосекундного излучения на частотно-модулированном ультразвуке, определяются геометрией акустооптического взаимодействия и пропорциональны длине области взаимодействия. Данная АОДЛЗ имела экстремально протяженную (длиной 85 мм), по сравнению с ранее описанными приборами [9-13], область взаимодействия лазерного излучения с ультразвуком, что позволило значительно увеличить диапазоны вносимых линией задержки дисперсий третьего и четвертого порядков. При этом, однако, возрастает и абсолютная величина дисперсии второго порядка, создаваемой



Рис.3. Схема дисперсионной линии задержки:

I – монокристалл парателлурита; 2 – пьезопреобразователь; 3 – акустический поглотитель;  $k_i$  – волновой вектор пучка нулевого порядка дифракции;  $k_d$  – волновой вектор дифрагировавшей (задержанной/ускоренной) спектральной компоненты света; K – волновой вектор ультразвука; падающее и дифрагировавшее излучения линейно поляризованы, направления поляризаций указаны на рисунке.

АОДЛЗ. Величина вносимой АОДЛЗ дисперсии второго порядка  $D_2$ , определяемая шириной спектрального окна, длительностью ультразвуковых волновых пакетов и коэффициентом пересчета оптических частот [10] в акустические, составляла  $4 \times 10^4$  фс<sup>2</sup>.

Следует также отметить, что установка АОДЛЗ в лазерную систему перед регенеративным усилителем не приводила к уменьшению энергии выходного импульса, несмотря на потери, вносимые АОДЛЗ. Это связано с тем, что регенеративный усилитель работал в области насыщения усиления входного сигнала.

# 2.3. Преобразователь на основе ВКР и решеточный компрессор

В комбинационном преобразователе (рис.1) использовалась схема с двухимпульсным возбуждением активной среды [5]. С помощью оптической системы, состоящей из полуволновой фазовой пластины λ/2, двух пленочных поляризаторов ПП и двух зеркал 3, формировались два последовательных световых импульса с ортогональными линейными поляризациями. Временной интервал между чирпированными импульсами длительностью около 150 пс составлял 250 пс. Соотношение энергий импульсов варьировалось посредством вращения фазовой пластины. В результате ВКР первого импульса в активной среде возникала фононная волна, на которой с высокой эффективностью происходило ВКР задержанного импульса. Стоксово излучение задержанного импульса с центральной длиной волны 1230 нм выделялось с помощью призмы Рошона ПР.

В качестве активной среды использовался сжатый до 45 атм водород. Длина кюветы комбинационного преобразователя составляла 120 см. Лазерное излучение фокусировалось в кювету линзой с фокусным расстоянием 150 см.

Временной компрессор стоксова излучения был построен по двухрешеточной схеме. Применялись голографические решетки (800 штр./мм) с золотым покрытием. Измеренная энергетическая эффективность компрессора на длине волны 1220 нм была равна 71%.

## 3. Экспериментальные результаты и их обсуждение

Предварительно, перед проведением экспериментов по компрессии стоксова излучения, проводилась оптимизация работы комбинационного преобразователя для достижения максимальной эффективности преобразования при ширине спектра импульса стоксова излучения, близкой к ширине спектра излучения лазера на сапфире с титаном. Варьировались соотношение энергий лазерных импульсов с ортогональными поляризациями и давление водорода в кювете преобразователя. Было установлено, что максимальная эффективность преобразования, равная 22%, достигается при энергиях первого и задержанного импульсов 1.2 и 0.9 мДж соответственно. Эффективность преобразования задержанного импульса по энергии при этом составила 50%, что соответствует эффективности преобразования по фотонам 75%. Высокая эффективность преобразования задержанного чирпированного импульса способствовала тому, что ширина спектра стоксова излучения была всего на 10% меньше ширины спектра лазерного импульса (в шкале частот). В спектре стоксова сигнала (рис.2) в данном случае отсутствует обрезание низкочастотных спектральных компонент, приводящее к сужению спектра, что характерно для схем с моноимпульсной накачкой положительно чирпированными импульсами [5, 14]. Такой спектр соответствует спектрально-ограниченному импульсу длительностью 39 фс.

Перераспределение энергии между задержанными импульсами с увеличением энергии в первом импульсе приводило к незначительному уширению спектра задержанного импульса и заметному снижению энергетической эффективности преобразования. Уменьшение давления водорода также вызывало снижение эффективности. При увеличении давления наблюдалось ухудшение пространственных характеристик стоксова светового пучка, который в оптимальных условиях имел гауссово распределение интенсивности.

Проведенные расчеты показывают, что для согласования дисперсионных характеристик компрессора с дисперсией, вносимой стретчером и регенеративным усилителем, необходимо внести дополнительные дисперсии третьего и четвертого порядков, равные соответственно  $-25 \times 10^4$  фс<sup>3</sup> и  $45 \times 10^4$  фс<sup>4</sup>. Дисперсия второго порядка компенсировалась изменением расстояния между решетками компрессора, дисперсии третьего и четвертого порядков – с помощью АОДЛЗ.

При отсутствии в схеме акустооптической линии задержки стоксов импульс был компрессирован до длительности около 150 фс, что примерно в четыре раза больше длительности спектрально-ограниченного импульса с аналогичным спектром. В дальнейшем компрессия осуществлялась в схеме с АОДЛЗ.

Для достижения максимальной степени компрессии (получения наиболее короткого импульса стоксова излучения) проводилось варьирование с помощью АОДЛЗ величин дисперсий третьего и четвертого порядков. На рис.4 представлены зависимости длительности компрессированного стоксова импульса от величины дисперсии четвертого порядка  $D_4$  при фиксированной дисперсии третьего порядка  $D_3$ . (Измерение длительности импульса осуществлялось автокоррелятором (ASF-20, Авеста) в предположении, что форма импульса описывается функ-

τ (фс)



Рис.4. Зависимости длительности импульса *т* стоксова излучения с центральной длиной волны 1220 нм на выходе решеточного компрессора от величины дисперсии  $D_4$ , вносимой АОДЛЗ, при  $D_3 = -215 \times 10^3$  ( $\Box$ ),  $-220 \times 10^3$  ( $\circ$ ),  $-225 \times 10^3$  ( $\triangle$ ),  $-230 \times 10^3$  ( $\nabla$ ) и  $-235 \times 10^3 \, \varphi^2$  ( $\bullet$ ).



Рис.5. Автокорреляционные функции импульса излучения на выходе решеточного компрессора (сплошная кривая) и импульса длительностью 40 фс, форма которого описывается функцией sech<sup>2</sup>t (штриховая кривая).

цией sech<sup>2</sup>t.) Наиболее короткие импульсы первой стоксовой компоненты с длительностью около 38 фс получены при  $D_3 = -23 \times 10^4 \, \text{фc}^3$  и  $D_4 = 27.5 \times 10^4 \, \text{фc}^4$ . Автокорреляционная функция такого импульса показана на рис.5. Заметное отличие рассчитанной дисперсии четвертого порядка от оптимального значения, полученного экспериментально, мы связываем с недостаточной точностью расчета этой дисперсии, вносимой регенеративным усилителем, оптическими элементами комбинационного преобразователя и решеточным компрессором.

#### 4. Заключение

Таким образом, в результате использования разработанной нами схемы комбинационного преобразования фемтосекундных лазерных импульсов и введения программируемой АОДЛЗ в фемтосекундную лазерную систему на сапфире с титаном удалось получить импульсы первой стоксовой компоненты с длительностью 40 фс и энергией 300 мкДж при ВКР в водороде с эффективностью преобразования по энергии 22%. В настоящее время эти импульсы являются наиболее короткими одиночными импульсами, генерируемыми при ВКР.

Необходимо также отметить следующее:

1. Поскольку ВКР-преобразование в газе лазерных импульсов длительностью свыше 100 пс (в диапазоне интенсивностей, существенно меньших пороговых значений для самофокусировки и фазовой самомодуляции) происходит в режиме насыщения с эффективностью преобразования по фотонам около 75%, то стабильность работы комбинационного преобразователя по энергии и длительности импульса примерно равна стабильности работы лазерной системы.

 Не вызывает сомнения возможность увеличения энергии импульса накачки вплоть до 100 мДж, что подтверждается работами по ВКР-преобразованию в газах импульсов с такой энергией [15, 16]. Более того, повышение энергии лазерного импульса потребует снижения давления водорода для достижения оптимального режима преобразования (превышения энергии импульса накачки над пороговой энергией ВКР), что, в свою очередь, приведет к увеличению времени фазовой дефазировки, уменьшению волновой расстройки и, как следствие, к более эффективной работе ВКР-преобразователя, построенного по двухимпульсной схеме накачки.

3. Широкий спектральный диапазон прозрачности активных газовых сред комбинационного преобразователя открывает возможности для продвижения в область среднего ИК диапазона. Например, при использовании в качестве источника накачки фемтосекундного лазера на хром-форстерите с длиной волны излучения 1.25 мкм длина волны стоксова излучения составит 2.6 мкм.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки РФ по программе повышения конкурентоспособности НИТУ «МИСиС» среди ведущих мировых научно-образовательных центров на 2013–2020 гг. (№ К1-2014-008).

- Chen M.-C., Arpin P., Popmintchev T., Gerrity M., Zhang B., Seaberg M., Popmintchev D., Murnane M.M., Kapteyn H.C. *Phys. Rev. Lett.*, **105**, 173901 (2010).
- Clerici M., Peccianti M., Schmidt B.E., Caspani L., Shalaby M., Giguere M., Lotti A., Couairon A., Legare F., Ozaki T., Faccio D., Morandotti R. *Phys. Rev. Lett.*, **110**, 253901 (2013).
- Andriukaitis G., Balčiūnas T., Ališauskas S., Baltuška A., Popmintchev T., Chen M., Murnane M.M., Kapteyn H.C. *Opt. Lett.*, 36, 2755 (2011).
- Zhavoronkov N., Noack F., Petrov V., Kalosha V.P., Herrmann J. Opt. Lett., 26, 47 (2001).
- Konyashchenko A.V., Losev L.L., Tenyakov S.Yu. Opt. Express, 15, 11855 (2007).
- Konyashchenko A.V., Losev L.L., Pazyuk V.S., Tenyakov S.Yu. Appl. Phys. B, 93, 455 (2008).
- Конященко А.В., Лосев Л.Л., Теняков С.Ю. Квантовая электроника, 40, 700 (2010).
- Молчанов В.Я., Волошинов В.Б., Макаров О.Ю. Квантовая электроника, 39, 353 (2009).
- Molchanov V.Ya., Chizhikov S.I., Makarov O.Yu., Solodovnikov N.P., Ginzburg V.N., Katin E.V., Khazanov E.A., Lozhkarev V.V., Yakovlev I.V. *Appl. Opt.*, 48, C118 (2009).
- Молчанов В.Я., Чижиков С.И., Юшков К.Б. Квантовая электроника, 41, 675 (2011).
- Chizhikov S.I., Garanin S.G., Goryachev L.V., Molchanov V.Ya., Romanov V.V., Rukavishnikov N.N., Sokolovskii S.V., Voronich I.N., Yushkov K.B. *Laser. Phys. Lett.*, **10**, 015301 (2013).
- 12. Tournois P. Opt. Commun., 140, 245 (1997).
- Verluise F., Laude V., Cheng Z., Spielmann Ch., Tournois P. *Opt. Lett.*, 25, 575 (2000).
- Guo X., Lu J., Li W., Xu Y., Lu X., Leng Y., Li R. Opt. Laser Technol., 67, 8 (2015).
- Грасюк А.З., Лосев Л.Л., Никогосян Д.Н., Ораевский А.А. Квантовая электроника, 11, 1872 (1984).
- Андреев Р.Б., Горбунов В.А., Гулидов С.С., Паперный С.Б., Серебряков В.А. Квантовая электроника, 9, 56 (1982).