PACS 42.79.Sz; 42.81.Uv

Численное моделирование действующих экспериментальных DWDM-линий связи с канальной скоростью 100 Гбит/с^{*}

О.В.Юшко, О.Е.Наний, А.А.Редюк, В.Н.Трещиков, М.П.Федорук

Представлены результаты экспериментального и численного исследований максимальной длины многопролётных DP QPSK DWDM-линий связи (канальная скорость 100 Гбит/с) с однородными и комбинированными пролётами длиной 100 км. Использование комбинированных пролётов (50 км волокна SSMF и 50 км волокна NZDSF) позволило увеличить максимальную длину линии до 6700 км, что на 60% больше, чем при использовании однородных пролётов на основе волокон SSMF и NZDSF.

Ключевые слова: когерентные линии связи, мультиплексирование по поляризациям, математическое моделирование, нелинейное уравнение Шрёдингера.

1. Введение

В настоящее время при ежегодном росте трафика на 40% пропускная способность оптических систем связи увеличивается лишь на 20% в год. При таком развитии ситуации уже в ближайшие несколько лет объём трафика превысит возможности существующих линий [1]. В последние годы интенсивно исследуется и разрабатывается новое поколение волоконно-оптических систем связи с канальной скоростью 100 Гбит/с и более. Линии связи нового поколения базируются на таких технологиях, как когерентное детектирование, цифровая обработка оптического сигнала и спектрально-эффективные форматы модуляции сигнала. Симбиоз этих технологий может обеспечить дальнейшее развитие волоконных систем связи. С этих позиций наиболее успешными на сегодняшний день в плане коммерческого использования являются когерентные линии связи с электронной компенсацией дисперсии и четырёхуровневым фазовым форматом модуляции сигнала с мультиплексированием по поляризациям [2-6].

Максимальная дальность работы волоконно-оптических линий связи определяется несколькими факторами. Одним из таких факторов являются искажения сигна-

e-mail: olesya.yushko@gmail.com, alexey.redyuk@gmail.com, mifester@gmail.com

В.Н.Трещиков. Компания Т8, Россия, 107076 Москва, ул. Краснобогатырская, 44/1; e-mail: vt@t8/ru

Поступила в редакцию 16 июля 2014 г., после доработки – 9 сентября 2014 г.

ла, обусловленные накапливающимися шумами усилителей и нелинейными эффектами. В когерентных линиях связи с электронной компенсацией дисперсии не менее важным фактором является максимальная допустимая накопленная хроматическая дисперсия, ограниченная производительностью доступных процессоров цифровой обработки сигнала. В связи с этим дизайн волоконнооптических линий связи (оптимизация дисперсионных карт, схем усиления и др.) был и остаётся актуальным направлением исследований.

В настоящей работе выполнены экспериментальное и численное исследования передачи информации по линии связи со спектральным уплотнением каналов DWDM без оптической компенсации дисперсии. При использовании четырёхуровневого фазового формата модуляции с мультиплексированием по поляризациям DP QPSK символьная эффективность составляет 4 бит/символ. При символьной скорости 30 Гбод полная канальная скорость составляет 120 Гбит/с. Скорость передачи полезной информации по каналу равна 100 Гбит/с, ещё 5 Гбит/с используется для передачи служебной информации и 15 Гбит/с информации затрачиваются на обеспечение работы схемы коррекции ошибок. Длина пролётов составляла 100 км, и были рассмотрены три их различные конфигурации: однородные пролёты на основе волокна SSMF, однородные пролёты на основе волокна NZDSF и комбинированные пролёты. Было показано хорошее согласие результатов численного моделирования с данными лабораторных экспериментов. Использование комбинированных пролётов позволило увеличить на 60% максимальную дальность работы линии с приемлемым уровнем ошибок и превысить 6000 км.

2. Экспериментальная установка

Исследуемая линия, схематически показанная на рис.1, состоит из передатчика оптического сигнала Тх, мультиплексора MUX для объединения различных спектральных каналов, пролётов оптического волокна SSMF длиной 100 км (рис.1,*a*), эрбиевых оптических усилителей EDFA для компенсации оптических потерь сигнала в

^{*}Доложена на 6-м Российском семинаре по волоконным лазерам, Новосибирск, 2014 г.

О.В.Юшко, А.А.Редюк, М.П.Федорук. Новосибирский государственный университет, Россия, 630090 Новосибирск, ул. Пирогова, 2, Институт вычислительных технологий СО РАН, Россия, 630090 Новосибирск, просп. Акад. Лаврентьева, 6;

О.Е.Наний. Компания Т8, Россия, 107076 Москва, ул. Краснобогатырская, 44/1, Московский государственный университет им. М.В.Ломоносова, физический факультет, Россия, 119991 Москва, Воробъевы горы; e-mail: naniy@t8.ru

Рис.1. Конфигурации линий связи с однородными пролётами (волокно SSMF) (*a*) и с комбинированными пролётами (волокна SSMF и NZDSF) (*б*).

пролётах, демультиплексора DEMUX для разделения объединённого сигнала, приёмника оптического сигнала Rx, процессора цифровой компенсации дисперсии DSP, а также схемы для измерения оптического отношения сигнал/шум (OSNR). Производительность используемого в эксперименте процессора DSP обеспечивала электронную компенсацию накопленной дисперсии в диапазоне 0–70000 пс/нм.

В пролётах линии используются волокна SSMF и NZDSF, основные параметры которых приведены в табл.1. Ограничение возможности электронной компенсации накопленной дисперсии значением 70000 пс/нм приводит к ограничению максимальной длины линии связи. Исходя из параметров волокон, предельная дальность линии при использовании волокна SSMF $L_{DSP}^{SMF} = 4200$ км, тогда как для волокна NZDSF $L_{DSP}^{DSF} = 17500$ км.

Табл.1. Параметры используемых волокон.

Волокно	D (пс·нм ^{-1} ·км ^{-1})	γ (Вт ⁻¹ ·км ⁻¹)	S (пс·нм ⁻² ·км ⁻¹)	α (дБ·км ⁻¹)
SSMF	16.5	1.2	0.07	0.2
NZDSF	4	1.84	0.45	0.2

Для того чтобы, с одной стороны, увеличить дальность линии L_{DSP} по сравнению с $L_{\text{DSP}}^{\text{SMF}}$, а с другой – уменьшить влияние нелинейных эффектов, характерных для волокна NZDSF, была рассмотрена линия связи, схема которой приведена на рис.1, *б*. В данной линии используются комбинированные пролёты, состоящие из 50 км волокна SSMF и 50 км волокна NZDSF. Накопленная дисперсия одного такого пролёта составляет 1025 пс/нм, что позволяет увеличить дальность линии, ограниченную производительностью процессора DSP, до 6800 км.

3. Результаты лабораторных экспериментов и численных расчётов

Для трёх конфигураций линии (пролёты на основе волокон SSMF и NZDSF, а также комбинированные пролёты SSMF–NZDSF) протяжённостью 1200 км были проведены лабораторные эксперименты и измерена зависимость коэффициента ошибки BER от мощности *P*_{in} вводимого в волокно излучения одного спектрального канала. Результаты экспериментов показаны на рис.2. Видно, что кривая с наибольшими значениями параметра BER, а значит и с худшим качеством сигнала на приёмни-

Рис.2. Экспериментально измеренные зависимости BER от мощности вводимого в пролёт излучения для линии протяжённостью 1200 км, состоящей из пролётов на основе только волокна NZDSF или SSMF, а также из комбинированных пролётов.

ке, соответствует конфигурации с пролётами из волокна NZDSF, что обусловлено его высокой нелинейностью. Результаты с наименьшим значением параметра BER – лучшим качеством сигнала – соответствуют конфигурации с пролётами из волокна SSMF, а кривая, соответствующая линии связи с комбинированными пролётами, занимает промежуточное положение и находится между этими двумя кривыми.

Для численного моделирования распространения оптического сигнала по волоконному световоду с учётом двух поляризаций сигнала использовалась система связанных нелинейных уравнений Шрёдингера (НУШ)

$$\begin{split} \frac{\partial A_X}{\partial z} &= -i\frac{\beta_2}{2}\frac{\partial^2 A_X}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3 A_X}{\partial t^3} \\ &+ i\gamma \Big(|A_X|^2 + \frac{2}{3}|A_Y|^2 \Big) A_X - \frac{1}{2}\alpha A_X, \\ \frac{\partial A_Y}{\partial z} &= -i\frac{\beta_2}{2}\frac{\partial^2 A_Y}{\partial t^2} + \frac{\beta_3}{6}\frac{\partial^3 A_Y}{\partial t^3} \\ &+ i\gamma \Big(|A_Y|^2 + \frac{2}{3}|A_X|^2 \Big) A_Y - \frac{1}{2}\alpha A_Y, \end{split}$$

где A_X, A_Y - комплексные огибающие амплитуды электромагнитного поля; z – расстояние вдоль волокна; t – время; β_2 и β_3 – дисперсии второго и третьего порядков; γ – коэффициент нелинейности; а – коэффициент оптических потерь. Эрбиевые усилители моделировались как точечные устройства, а для описания шума усиленной спонтанной эмиссии (ASE) использовалась модель белого гауссова шума, спектральная плотность на поляризацию которого $N_{ASE}^{EDFA} = (e^{\alpha L} - 1)hvn_{sp}$, где n_{sp} – параметр спонтанной эмиссии; *h* – постоянная Планка; *v* – частота сигнала; L – длина пролёта. Начальный сигнал формировался на основе четырёхуровневого фазового формата модуляции без возвращения к нулю с мультиплексированием по поляризациям (NRZ DP QPSK). В расчётах использовались случайные битовые последовательности длиной 216 бит для каждой поляризации. Численное решение системы НУШ осуществлялось методом расщепления по физическим процессам [7].

На рис.3 сравниваются результаты численных расчётов и лабораторных экспериментов для линии протяжённостью 1200 км. Видно, что с помощью описанной мо-

Рис.3. Сравнение численных (сплошные линии) и лабораторных (штриховые линии) результатов исследования зависимости BER от мощности вводимого в пролёт излучения для линии протяжённостью 1200 км.

дели удалось получить хорошее качественное и количественное совпадение результатов.

Получив совпадающие результаты численных и лабораторных экспериментов для линии 1200 км и одного спектрального канала, мы выполнили численный расчёт максимальной дальности линий всех конфигураций для одиннадцати спектральных каналов с межканальным расстоянием 50 ГГц. Пороговое значение коэффициента ошибки BER_{FEC}, соответствующее работоспособности современных схем прямой коррекции ошибок FEC, составляет 2×10^{-2} (при этом коэффициент ошибок после работы схемы коррекции ошибки не превышает 10^{-9}). По данному значению коэффициента ошибки в численных расчётах определялась максимальная дальность линии L_{max} . На рис.4 представлены результаты численных расчётов зависимости максимальной дальности линии от мощности вводимого в пролёт излучения для центрального

Рис.4. Расчётные зависимости максимальной дальности линии от мощности вводимого в пролёт излучения при BER = 2×10^{-2} . Штриховыми прямыми указаны максимальные длины линий связи с пролётами на основе волокон SSMF, а также SSMF и NZDSF.

спектрального канала. Как видно из рисунка, для пролётов из волокна SSMF дальность линии ограничена производительностью процессора DSP и составляет 4200 км, хотя в предположении его бесконечной производительности она может достигать 7500 км при мощности сигнала –1 дБм. Для пролётов из волокна NZDSF длина линии ограничена нелинейными искажениями сигнала и не превышает 3800 км, тогда как мощность процессора DSP допускает дальность линии более 17000 км. Наконец, для комбинированных пролётов максимальная дальность составляет 6700 км, что на 60% превышает результаты для пролётов из волокон SSMF и NZDSF.

4. Заключение

Экспериментально и численно исследованы нелинейные и линейные искажения сигнала в многопролётной DWDМ-линии связи без оптической компенсации хроматической дисперсии при использовании когерентного четырёхуровневого фазового формата с поляризационным мультиплексированием (формат DP QPSK, длина пролётов 100 км). Продемонстрировано качественное и количественное совпадение результатов численных расчётов с данными лабораторных экспериментов для линий протяжённостью 1200 км. С помощью численного моделирования показано, что при использовании волокна с малой дисперсией (волокно NZDSF, D = 4 пс·нм⁻¹·км⁻¹) максимальная дальность передачи (около 3800 км) ограничена нелинейными искажениями сигнала и накоплением шума. В линиях на основе стандартного волокна (волокно SSMF, $D = 16.5 \text{ пс} \cdot \text{нм}^{-1} \cdot \text{км}^{-1}$) максимальная дальность передачи (примерно 4200 км) ограничена величиной максимальной допустимой накопленной дисперсии (70000 пс/нм), компенсируемой в режиме реального времени в цифровом процессоре. В численном эксперименте продемонстрировано, что использование комбинированных пролётов (50 км волокна SSMF и 50 км волокна NZDSF) обеспечивает увеличение максимальной длины DWDMлинии связи на 60% по сравнению с длинами линий, использующих волокно одного типа.

Работа выполнена при поддержке Министерства образования и науки РФ (грант № 14.578.21.0029).

- 1. Richardson D.J. Science, 330 (6002), 327 (2010).
- 2. Xia T. *National Fiber Optic Engineers Conf.* (Anaheim: OSA Techn. Digest, 2013, Paper NW4E.6).
- Yu J., Dong Z., Chien H., Jia Z., Gunkel M., Schippel A. National Fiber Optic Engineers Conf. (Los Angeles: OSA Techn. Digest, 2012, Paper PDP5D.3).
- Zhang G., Nelson L., Pan Y., Birk M., Skolnick C., Rasmussen C., Givehchi M., Mikkelsen B., Scherer T., Downs T., Keil W. *National Fiber Optic Engineers Conf.* (Los Angeles: OSA Techn. Digest, 2012, Paper PDP5D.4.
- Gainov V., Gurkin N.V., Lukinih S.N., Akopov S.G., Makovejs S., Ten S.Y., Nanii O.E., Treshchikov V.N. *Laser Phys. Lett.*, **10** (7), 075107 (2013).
- Гуркин Н.В., Капин Ю.А., Наний О.Е., Новиков А.Г., Павлов В.Н., Плаксин С.О., Плоцкий А.Ю., Трещиков В.Н. Квантовая электроника, 43 (6), 546 (2013).
- 7. Agrawal G.P. Nonlinear Fiber Optics (New York: Acad. Press, 2001).