PACS 42.55.Rz; 42.65.Ky; 42.25.Ja

Поляризационный анализ оптимальных условий стационарной генерации второй гармоники в твердотельном лазере

П.А.Хандохин, Ю.А.Мамаев

С помощью матричного метода Джонса рассмотрены оптимальные условия достижения стационарной генерации при внутрирезонаторном преобразовании частоты в твердотельном лазере в условиях фазового синхронизма второго типа на основе модели слабоанизотропной активной среды (амплитудная и фазовая анизотропия) и нелинейного элемента. Найдены оптимальные углы поворота нелинейного элемента.

Ключевые слова: твердотельный лазер с внутрирезонаторным удвоением частоты, фазовая анизотропия, амплитудная анизотропия, поляризационная мода, наведенная накачкой анизотропия усиления, резонатор Фабри–Перо, матричный метод Джонса.

С практической точки зрения представляется важной проблема стабильности выходного излучения многомодовых твердотельных лазеров с внутрирезонаторным удвоением частоты. В экспериментах с многомодовыми Nd: YAG-лазерами с нелинейным кристаллом КТР внутри резонатора было показано [1], что связь мод в процессе внутрирезонаторного удвоения частоты приводит к неустойчивости стационарной генерации (green problem). Анализ балансной модели такого лазера подтвердил существование динамической неустойчивости в некоторой области параметров [1–4]. Было показано, что эта неустойчивость обусловлена суммированием частот, которое обычно сопровождает процесс генерации второй гармоники в многомодовых лазерах с внутрирезонаторным удвоением частоты.

При внутрирезонаторном удвоении частоты возможны два типа фазового синхронизма световых волн в нелинейном кристалле: при первом типе синхронизма происходит суммирование частот лазерных мод одинаковой поляризации, а при синхронизме второго типа, рассматриваемом в настоящей работе, в процессе нелинейного преобразования частоты участвуют волны с ортогональными поляризациями. При совпадении поляризаций мод лазера с направлениями осей двулучепреломления нелинейного элемента (НЭ) реализуется случай суммирования частот ортогонально поляризованных мод, приводящий к нестационарной генерации при превышении эффективностью нелинейного преобразования некоторого критического значения [5]. Несовпадение собственных поляризаций лазера с направлениями осей НЭ приводит к возникновению процесса удвоения частот, способствующего повышению устойчивости режима стационарной генерации. Максимальная устойчивость получается при развороте осей на 45°, что обеспечивается введением в резона-

П.А.Хандохин, Ю.А.Мамаев. Институт прикладной физики РАН, Россия, 603950 Н.Новгород, ул. Ульянова, 46; e-mail: khando@appl.sci-nnov.ru, myua@appl.sci-nnov.ru

Поступила в редакцию 30 июня 2014 г., после доработки – 22 октября 2014 г.

тор дополнительной четвертьволновой фазовой пластинки [6].

Настоящая работа посвящена рассмотрению лазеров со слабоанизотропными активными средами типа алюмоиттриевого граната, активированного ионами неодима, и с нелинейным элементом для внутрирезонаторного удвоения частоты. Фазовая анизотропия может быть обусловлена малым остаточным двулучепреломлением в кристалле активного элемента, в то время как амплитудная анизотропия активной среды – анизотропией усиления, наведенной линейно поляризованным излучением накачки [7]. Показано, что изменением ориентации осей НЭ (поворотом в плоскости, перпендикулярной оси резонатора, на 45° относительно направлений поляризаций мод биполяризационного лазера) без дополнительных фазовых пластинок можно добиться оптимальных условий для устойчивой генерации.

Схематически твердотельный лазер со слабоанизотропным резонатором Фабри–Перо и с нелинейным элементом показан на рис.1. Активная среда представлена в виде частичного поляризатора П, который в общем случае может быть повернут на угол α в плоскости xy (относительно оси x), и фазоанизотропного элемента (фазовой пластинки) Ф1 с разностью фаз δ_a , ориентированного быстрой и медленной осями по x и y. Нелинейный элемент, обеспечивающий преобразование частоты в условиях фазового синхронизма второго типа, представлен также в виде фазоанизотропного элемента Ф2 с разностью фаз Δ_n = $2\pi m + \delta_n$, где m – целое число, а δ_n – дополнительная

Рис.1. Схема твердотельного лазера со слабоанизотропным резонатором Фабри-Перо и нелинейным элементом.

разность фаз, которую будем считать малой ($\delta_n \ll 1$; это условие удовлетворяется при соответствующем выборе длины нелинейного кристалла и его небольшим наклоном в плоскости *ху*).

Поляризации собственных волн анизотропного резонатора будем находить с помощью матричного метода Джонса. Его применение для расчета собственных состояний поляризации резонатора заключается в построении матрицы M при полном обходе контура резонатора [8] и в нахождении собственных векторов u и собственных значений λ данной матрицы из следующего уравнения:

$$M\boldsymbol{u} = \lambda \boldsymbol{u}.\tag{1}$$

Матрица *М* анизотропного резонатора в зоне A (на выходе лазера) может быть представлена в виде

$$M = R_1 R_2 S(\varphi) F_n^2 S(-\varphi) F_a S(\alpha) P^2 S(-\alpha) F_a, \qquad (2)$$

где

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 1 - b \end{pmatrix}$$

– матрица Джонса частичного поляризатора (величина b < 1 определяет амплитудную анизотропию);

$$S = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}$$

- матрица поворота на угол φ ;

$$F_{a} = \begin{pmatrix} \exp(i\delta_{a}/2) & 0\\ 0 & \exp(-i\delta_{a}/2) \end{pmatrix}, \quad F_{n} = \begin{pmatrix} \exp(i\delta_{n}/2) & 0\\ 0 & \exp(-i\delta_{n}/2) \end{pmatrix}$$

– матрицы Джонса фазовых пластинок $\Phi 1$ и $\Phi 2$, моделирующих активную среду и нелинейный элемент соответственно; $R_{1,2}$ – коэффициенты отражения зеркал 31 и 32.

Будем рассматривать собственный вектор в виде

$$\boldsymbol{u}=E_{\boldsymbol{x}}\binom{1}{\boldsymbol{\chi}}.$$

Здесь $\chi = E_y/E_x$ – комплексный поляризационный параметр, позволяющий определить эллиптичность ε (отношение малой оси эллипса поляризации к большой) и азимут β (угол наклона большой полуоси эллипса поляризации к оси x) в следующем виде:

$$\varepsilon = \tan\left[\frac{1}{2} \arcsin\left(\frac{2\operatorname{Im}\chi}{1+|\chi|^2}\right)\right],$$

$$\beta = \arctan\left(\frac{2\operatorname{Re}\chi}{1+|\chi|^2}\right) + \frac{n\pi}{2},$$
(3)

где n = 0 для одной поляризационной моды и 1 для другой.

Уравнение (1) имеет решение в виде двух собственных векторов $u_{1,2}$ и, следовательно, двух собственных значений $\lambda_{1,2}$. Элементы матрицы M_{ij} позволяют определить собственные значения

$$\lambda_{1,2} = \operatorname{Tr} M/2 \pm \sqrt{\operatorname{Tr}^2 M/4} - \det M \tag{4}$$

и комплексные поляризационные параметры

$$\chi_{1,2} = \frac{\lambda_{1,2} - M_{11}}{M_{12}} = \frac{M_{21}}{\lambda_{1,2} - M_{22}},\tag{5}$$

где $\operatorname{Tr} M = M_{11} + M_{22}$, a det $M = M_{11}M_{22} - M_{12}M_{21}$.

В работе [9] детально изучено взаимное влияние фазовой и амплитудной анизотропий активной среды на ориентацию поляризационных мод резонатора. Добавление фазовой анизотропии НЭ δ_n приводит к изменению ориентации поляризационных мод. Нами проводился численный расчет поляризационных состояний собственных волн в резонаторе в зоне А и рассматривалось влияние поворота НЭ в плоскости ху на ориентацию собственных поляризаций (точнее, главной оси эллипсов поляризации слабо эллиптических волн) относительно обыкновенной и необыкновенной осей НЭ, при этом изменение азимутов собственных поляризаций существенно зависит от соотношения между δ_n и величинами δ_a и b. Обозначим через $\psi = \varphi - \beta$ угол между обыкновенной осью нелинейного кристалла и азимутом β собственной поляризации одной из волн (азимут собственной поляризации другой поляризационной моды отличается практически на 90°).

На рис.2 приведены зависимости ψ от угла поворота φ НЭ для случая, когда фазовая анизотропия активной среды отсутствует ($\delta_a = 0$), а имеет место лишь амплитудная анизотропия с фиксированной ориентацией по оси x ($\alpha = 0$, см. рис.1), при этом фазовый сдвиг $\delta_n = 1^\circ$ (0.0175 рад). Видно, что при малой амплитудной анизотропии ($b < \delta_n$) величина ψ не достигает 45° ни при каких φ , поскольку азимуты собственных поляризаций резонатора отслеживают поворот НЭ. В то же время при сильной амплитудной анизотропии ($b > \delta_n$) имеем $\psi = 45^\circ$ при $\varphi_{opt} = 45^\circ$ и $\psi = -45^\circ$ при $\varphi_{opt} = 135^\circ$.

На рис.3 приведены результаты расчета для случая слабой (b = 0.015) амплитудной анизотропии (частичный поляризатор не повернут, $\alpha = 0$) и большой ($\delta_a = 5^{\circ}$ (0.0873 рад)) фазовой анизотропии активной среды при различных значениях δ_n . При достаточно малых δ_n ($\delta_n \ll \delta_a$) угол φ_{opt} , при котором $\psi_{opt} = \pm 45^{\circ}$, либо несколько больше 45°, либо несколько меньше 135°, но достаточно близок к этим значениях; с ростом же δ_n величина φ_{opt} приближается к 90° (когда фазовый сдвиг δ_n становится сравнимым с фазовой анизотропией δ_a). В области, где $\delta_n > \delta_a$, величина ψ не достигает оптимальных значений ($\pm 45^{\circ}$).

Рис.2. Зависимости угла $\psi = \varphi - \beta$ от угла поворота φ нелинейного элемента для случая амплитудной анизотропии ($\alpha = 0$) при $\delta_n = 1^\circ$ и различных значениях *b*.

Рис.3. Зависимости угла ψ от угла поворота φ нелинейного элемента для случая амплитудной ($\alpha = 0, b = 0.015$) и фазовой ($\delta_a = 5^\circ$) анизотропии при различных значениях δ_n .

ψ (град)

90

лазере, рассмотренные на основе поляризационного анализа, могут быть достигнуты соответствующим поворо-

том нелинейного элемента лишь в случае, если фазовый

Рис.4. Зависимости угла ψ от угла поворота φ нелинейного элемента для случая амплитудной (b = 0.08) и фазовой ($\delta_a = 5^\circ$) анизотропии при различных значениях δ_n для углов поворота частичного поляризатора $\alpha = 0$ (a) и 30° (δ).

Изменение ориентации частичного поляризатора (угла α) вызывает изменение оптимального угла поворота φ_{opt} НЭ. На рис.4 приведены результаты расчета для случая, когда амплитудная анизотропия становится сравнима с фазовой анизотропией: b = 0.08, $\delta_a = 5^{\circ}$ (0.0873 рад), при различных значениях δ_n и для углов поворота частичного поляризатора $\alpha = 0$ и 30°. Видно, что сохраняется принципиальная возможность найти такую ориентацию НЭ, которая позволяет оптимизировать процесс внутрирезонаторного нелинейного преобразования частоты при фазовом набеге в НЭ, меньшем некоторого критического значения, сравнимого со значениями фазовой и амплитудной анизотропий активной среды.

Таким образом, из проведенных расчетов можно сделать следующие выводы. Оптимальные условия стационарной генерации второй гармоники в твердотельном Работа поддержана грантом Президента РФ НШ № 2001.2014.2.

- 1. Baer T. J. Opt. Soc. Am. B, 3, 1175 (1986).
- 2. Wang J., Mandel P. Phys. Rev. A, 48, 671 (1993).
- 3. James G.E., Harrell II E.M., Roy R. Phys. Rev. A, 41, 2778 (1990).
- 4. Vladimirov A.G., Viktorov E.A., Mandel P. *Phys. Rev. E*, **60**, 1616 (1999).
- Czeranowsky C., Baev V.M., Huber G., Khandokhin P.A., Khanin Ya.I., Koryukin I.V., Shirokov E.Yu. *Изв. вузов. Сер. Радиофизика*, 47, 807 (2004).
- 6. Oka M., Kubota S. Opt. Lett., 13, 805 (1988).
- Bouwmans G., Segard B., Glorieux P., Milovsky N.D., Khandokhin P.A., Shirokov E.Yu. *Изв. вузов. Сер. Радиофизика*, 47, 813 (2004).
- Молчанов В.Я., Скроцкий Г.В. Квантовая электроника, № 4, 3 (1971).
- Хандохин П.А., Мамаев Ю.А. Квантовая электроника, 41 (6), 571 (2011).