PACS 78.66.-w; 78.67.-n

Определение толщины нанопленки с помощью резонансных частот

А.В.Латышев, А.А.Юшканов

Теоретически исследовано взаимодействие монохроматического лазерного излучения с тонкой металлической пленкой. Получены зависимости коэффициентов прохождения, отражения и поглощения электромагнитной волны от угла падения, толщины слоя и эффективной частоты столкновений электронов. В области резонансных частот проведен анализ этих коэффициентов. Полученные формулы для коэффициентов прохождения, отражения и поглощения справедливы для любых углов падения. Рассмотрен случай зеркальных граничных условий. Выведена формула для бесконтактного вычисления толщины пленки по наблюдаемым резонансным частотам.

Ключевые слова: нанопленки, резонансные частоты, коэффициенты прохождения, отражения и поглощения электромагнитной волны, толщина пленки.

1. Введение

Задача о взаимодействии электромагнитной волны с пространственно ограниченным веществом давно привлекает к себе внимание [1-9]. Это связано как с теоретическим интересом к этой проблеме, так и с многочисленными практическими приложениями (см. [8,9]).

В работах [10,11] была построена теория взаимодействия электромагнитного излучения со сферической частицей, а в [12,13] эта теория обобщена на случай несферических частиц. В [14] показано, что электромагнитные свойства мелких частиц могут существенно отличаться от свойств частиц большого размера.

В работах [15,16] рассмотрено взаимодействие Н- и Е-волн соответственно с тонкой металлической пленкой. Показано, что задача допускает аналитическое решение для пленок, толщина которых не превышает толщины скин-слоя. Проведен анализ коэффициентов прохождения, отражения и поглощения электромагнитной волны в зависимости от угла падения, толщины пленки, коэффициента зеркального отражения и частоты колебаний поля.

В работе [17] рассмотрены поверхностные плазмонные колебания в тонкой металлической пленке, в [18, 19] – взаимодействие электромагнитных H- и E-волн соответственно с металлической пленкой, находящейся между двумя диэлектрическими средами.

К настоящему времени имеется значительное число экспериментальных исследований различного рода вариантов электромагнитного излучения с веществом. Укажем на типичные работы [20,21]. В [20] предложены два различных экспериментальных метода определения толщины и диэлектрических констант тонких пленок на сте-

Поступила в редакцию 8 января 2014 г., после доработки – 10 ноября 2014 г.

клянной подложке. В работе [21] проведены эксперименты по определению оптических констант и оптической поглощательной способности для пленок различной толщины. Результаты этих экспериментов хорошо согласуются с теоретическим предсказанием.

Настоящая работа является продолжением нашей работы [15]. В ее развитие нами проведен анализ резонансов, которые наблюдаются у коэффициентов прохождения, отражения и поглощения при взаимодействии электромагнитного излучения с тонкой металлической пленкой. Эти резонансы чрезвычайно чувствительны к толщине пленки и достаточно узки. Для их экспериментального обнаружения необходимо использовать монохроматическое лазерное излучение УФ диапазона.

2. Постановка задачи

Рассмотрим тонкий слой проводящего материала, на который под углом θ падает электромагнитная волна. Будем полагать, что вектор магнитного поля электромагнитной волны параллелен поверхности слоя. Возьмем декартову систему координат с началом координат на одной из поверхностей слоя и с осью x, направленной в глубь слоя. Ось y направим параллельно вектору магнитного поля электромагнитной волны.

Векторы напряженностей электрического и магнитного полей имеют следующую структуру: $E = \{E_x, 0, E_z\}$ и $H = \{0, H_v, 0\}$. Компоненты этих векторов таковы:

$$E_x = E_x(x) \exp(-i\omega t + ik\sin\theta z),$$

$$E_z = E_z(x) \exp(-i\omega t + ik\sin\theta z),$$

$$H_y = H_y(x) \exp(-i\omega t + ik\sin\theta z).$$

Поведение электрического и магнитного полей волны внутри слоя описывается системой уравнений [3]

$$\frac{\mathrm{d}E_x}{\mathrm{d}x} - \mathrm{i}kE_x\sin\theta + \mathrm{i}kH_y = 0, \quad \mathrm{i}kE_x - \mathrm{i}kH_y\sin\theta = \frac{4\pi}{c}j_x,$$

А.В.Латышев, А.А.Юшканов. Московский государственный областной университет, Россия, 105005 Москва, ул. Радио, 10А; e-mail: avlatyshev@mail.ru

Определение толщины нанопленки с помощью резонансных частот

$$\frac{\mathrm{d}H_y}{\mathrm{d}x} + \mathrm{i}kE_z = \frac{4\pi}{c}j_z,$$

где *с* – скорость света; *j* – плотность тока; *k* – волновое число.

Коэффициенты прохождения, отражения и поглощения электромагнитной волны слоем описываются следующими выражениями [1,22]:

$$T = \frac{1}{4} |P_1 - P_2|^2, \quad R = \frac{1}{4} |P_1 + P_2|^2, \quad A = I - T - R$$

где

$$P_j = \frac{\cos\theta + Z_j}{\cos\theta - Z_j};$$

j = 1, 2.

Величина Z_1 соответствует импедансу на нижней поверхности слоя при симметричной по магнитному полю конфигурации внешнего поля. Это случай 1, для которого

$$H_y(0) = H_y(d), \quad E_x(0) = E_x(d), \quad E_z(0) = -E_z(d),$$

где d – толщина слоя. Величина Z_2 соответствует импедансу на нижней поверхности слоя при антисимметричной по магнитному полю конфигурации внешнего поля. Это случай 2, для которого

$$H_z(0) = -H_z(d), \quad E_x(0) = -E_x(d), \quad E_z(0) = E_z(d).$$

При этом импеданс

$$Z_j = \frac{E_z(-0)}{H_y(-0)}$$

Рассмотрим случай, когда толщина слоя *d* меньше глубины скин-слоя δ. Отметим, что глубина скин-слоя существенно зависит от частоты излучения, монотонно уменьшаясь по мере роста последней. Наименьшее значение δ принимает в так называемом инфракрасном случае [23], и это $\delta_0 = c/\omega_p$, где ω_p – плазменная частота. Для типичных металлов [23] $\delta_0 \sim 100$ нм. Таким образом, для пленок с $d < \delta_0$ наше предположение справедливо в случае любых частот. Снизу толщина скин-слоя ограничена атомными размерами, т.е. толщина пленки должна быть существенно больше толщины моноатомного слоя, а следовательно, пленка должна состоять из достаточного числа атомных слоев. Из эксперимента [24] следует, что при толщине пленки меньше нескольких нанометров характер кинетических процессов в ней существенно меняется, в частности может нарушаться ее сплошность. В этом случае наша теория становится неприменимой. Таким образом, рассматриваемые в работе пленки имеют толщину от нескольких нанометров до ~100 нм.

3. Коэффициенты прохождения, отражения и поглощения

Предположим, что длина волны падающего излучения существенно превышает толщину слоя. Приведем выражения для коэффициентов прохождения (T) и отражения (R) [16]:

$$T = \cos^2\theta \left| \frac{1 - ik(d/2)G\sin^2\theta(2\pi d\sigma_d/c)}{[\cos\theta + ik(d/2)G\sin^2\theta][1 + (2\pi d\sigma_d/c)\cos\theta]} \right|^2, (1)$$

$$R = \left| \frac{ik(d/2)G\sin^2\theta - (2\pi d\sigma_d/c)\cos^2\theta}{[\cos\theta + ik(d/2)G\sin^2\theta][1 + (2\pi d\sigma_d/c)\cos\theta]} \right|^2.$$
(2)

Для случая $kl \ll 1$ (l – длина свободного пробега электронов) величину *G* можно вычислить из задачи о поведении слоя плазмы в переменном электрическом поле, перпендикулярном поверхности слоя [25, 26]:

$$G = \frac{1}{2} \int_0^d e(x) \,\mathrm{d}x,$$

где e(x) – электрическое поле. При почти касательном падении, когда $\theta \to \pi/2$, получаем $T \to 0, R \to 1, A \to 0$.

Пусть выполняется соотношение $kl \ll 1$. Тогда для произвольных частот $l = v_F \tau / (1 - i\omega \tau)$, где τ – время свободного пробега электронов; v_F – скорость Ферми; $\sigma_d = \sigma_0 / (1 - i\omega \tau)$; $\sigma_0 = \omega_p^2 \tau / (4\pi)$ – статическая проводимость объемного образца. Плазменная частота ω_p калия, золота, алюминия и серебра составляет соответственно 6.5×10^{15} , 1.37×10^{16} , 3.82×10^{15} и 0.96×10^{15} с⁻¹.

4. Электрическое поле

При разложении решения исходной граничной задачи в [26] было построено безразмерное электрическое поле в слое металла:

$$e(x) = \frac{\lambda_1}{\lambda_{\infty}} + \frac{2\lambda_1\eta_0 \cosh[z_0(2x-d)/\eta_0]}{(ac-\eta_0^2)\lambda'(\eta_0)\cosh(z_0/\eta_0)} + \frac{\lambda_1}{2} \int_{-1}^{1} \frac{\eta^2 \cosh[z_0(2x-d)/\eta]}{\lambda^+(\eta)\lambda^-(\eta)\cosh(z_0/\eta)} \,\mathrm{d}\eta \,,$$
(3)

где

$$\lambda(z) = c^2 + \frac{z^2}{2} \int_{-1}^{1} \frac{\eta_1^2 - \tau^2}{\tau^2 - z^2} \,\mathrm{d}\tau$$

– дисперсионная функция; η_0 – ее нуль; $\eta_1^2 = ac$; $a = dv/(2v_F\kappa)$; $\kappa^2 = 9a_0^2/r_D^2$; $r_D^2 = 3v_F^2/\omega_p^2$; $c = z_0/\kappa$; $z_0 = d(v - i\omega)/2v_F$; r_D – радиус Дебая; $v = 1/\tau$ – частота столкновений электронов. Безразмерное электрическое поле e(x) связано с размерным полем E(x) соотношением $e(x) = E(x)/E_0$ (E_0 – величина поля на границе x = 0). Тогда величина *G* имеет следующий вид (см. также [26]):

$$G = \frac{\lambda_1}{\lambda_{\infty}} + \frac{2\lambda_1\eta_0^2 \tanh(z_0/\eta_0)}{z_0(ac - \eta_0^2)\lambda'(\eta_0)} + \frac{\lambda_1}{2z_0} \int_{-1}^1 \frac{\tanh(z_0/\eta)\eta^3}{\lambda^+(\eta)\lambda^-(\eta)} \,\mathrm{d}\eta.$$
(4)

Здесь $\lambda_1 = \lambda(\eta_1) = c^2 - ac; \lambda^{\pm}(\eta) = \lambda(\eta) \pm i(\pi/2)\eta(\eta_1^2 - \eta^2).$

Величина *G* хорошо аппроксимируется первыми двумя членами разложения (4):

$$G \approx G_2 = \frac{\lambda_1}{\lambda_{\infty}} + \frac{2\lambda_1 \eta_0^2 \tanh(z_0/\eta_0)}{z_0(ac - \eta_0^2)\lambda'(\eta_0)},$$
(5)

т.е. мы заменили электрическое поле двумя первыми слагаемыми Друде и Дебая, отвечающими дискретному спектру.

Для вычисления G_2 требуется явное выражение для нуля дисперсионной функции $\eta_0 = \eta_0(\Omega, \varepsilon)$, где $\Omega = \omega/\omega_p$. Приведем без доказательства формулу факторизации (см. [26]) дисперсионной функции

$$\lambda(z) = \lambda_{\infty}(\eta_0^2 - z^2)X(z)X(-z).$$
(6)

Здесь

$$\begin{split} \lambda_{\infty} &= \lambda(\infty) = \frac{1}{3} + ac - c^2 = \frac{1}{3} \left(1 - \Omega^2 - i\varepsilon \Omega \right); \\ X(z) &= \frac{1}{z} \exp V(z); \quad V(z) = \frac{1}{2\pi i} \int_0^1 \frac{\ln G(\tau) - 2\pi i}{\tau - z} \, \mathrm{d}\tau; \\ G(\tau) &= \frac{\lambda^+(\tau)}{\lambda^-(\tau)}; \quad \lambda^\pm(\tau) = c^2 - ac - (\tau^2 - ac)\lambda_0^\pm(\tau); \\ \lambda_0^\pm(\tau) &= \lambda_0(\tau) \pm \frac{\pi}{2}\tau i; \\ \lambda_0(\tau) &= 1 + \frac{\tau}{2} \int_0^1 \frac{\mathrm{d}\tau'}{\tau' - \tau} = 1 + \frac{\tau}{2} \ln \frac{1 - \tau}{1 + \tau}. \end{split}$$

Если вычислить значения левой и правой частей уравнения (6) в точке z = i, то для квадрата нуля дисперсионной функции после некоторых преобразований получим следующее выражение:

$$\eta_0^2 = -1 + \frac{\lambda(\mathbf{i})}{\lambda_\infty X(\mathbf{i}) X(-\mathbf{i})} = -1 + \frac{\lambda(\mathbf{i})}{\lambda_\infty} \exp[-V(\mathbf{i}) - V(-\mathbf{i})].$$

Учитывая, что $\lambda_0(i) = 1 - \pi/4$, имеем

$$\begin{split} \lambda(\mathbf{i}) &= c^2 - ac + \left(1 - \frac{\pi}{4}\right)(1 + ac) \\ &= -\frac{1}{3}(\Omega^2 + \mathbf{i}\varepsilon\Omega) + \left(1 - \frac{\pi}{4}\right) \left[1 + \frac{1}{3}(\varepsilon^2 - \mathbf{i}\varepsilon\Omega)\right] \end{split}$$

Функцию $X(z) = (1/z) \exp V(z)$ можно представить в виде

$$X(z) = \frac{1}{z-1} \exp V_0(z),$$

где

$$V_0(z) = \frac{1}{2\pi i} \int_0^1 \frac{\ln G(\tau)}{\tau - z} \,\mathrm{d}\tau$$

Найдем сумму

$$V_{0}(i) + V_{0}(-i) = \frac{1}{2\pi i} \int_{-1}^{1} \frac{\ln G(\tau) d\tau}{\tau - i} + \frac{1}{2\pi i} \int_{0}^{1} \frac{\ln G(\tau) d\tau}{\tau + i}$$
$$= \frac{1}{2\pi i} \int_{-1}^{1} \frac{\ln G(\tau) d\tau}{\tau - i} = \frac{1}{2\pi i} \int_{-1}^{1} \frac{\tau \ln G(\tau) d\tau}{\tau^{2} + 1}.$$

С учетом этих формул мы преобразуем формулу для квадрата нуля дисперсионной функции к виду

$$\eta_0^2 = -1 + \frac{2\lambda(i)}{\lambda_\infty} \exp\left[-\frac{1}{2\pi i} \int_{-1}^1 \frac{\tau \ln G_l(\tau) d\tau}{\tau^2 + 1}\right]$$

или

1

$$\gamma_0^2 = -1 + \frac{2\lambda(i)}{\lambda_\infty} \exp\left[\frac{i}{\pi} \int_{-1}^1 \frac{\tau \ln G_l(\tau) d\tau}{\tau^2 + 1}\right],$$

где

$$G_{l}(\tau) = \ln \frac{(3\tau^{2} - \varepsilon^{2} + i\varepsilon\Omega)(\lambda_{0}(\tau) + (\pi/2)\tau i) + \Omega^{2} + i\varepsilon\Omega}{(3\tau^{2} - \varepsilon^{2} + i\varepsilon\Omega)(\lambda_{0}(\tau) - (\pi/2)\tau i) + \Omega^{2} + i\varepsilon\Omega}.$$

Теперь относительная погрешность

$$O_2(\Omega, \varepsilon, d) = \left| \frac{G - G_2}{G} \right| \times 100\%$$

для пленок из калия толщиной 5 и 10 нм при $\omega = \omega_{\rm p}$ и $v = 10^{-3}\omega_{\rm p}$ соответственно равна 0.003 % и 0.0004 %.

Численные расчеты показывают, что в области $\omega > \omega_{\rm p}$ вклад в электрическое поле, отвечающий непрерывному спектру, незначителен, и им можно пренебречь. Таким образом, функция *G* аппроксимируется двумя слагаемыми Друде и Дебая, отвечающими согласно (5) дискретному спектру.

5. Поведение коэффициентов и обсуждение результатов

Используя (1) и (2) и выражение (5) для функции *G*, проведем графическое исследование коэффициентов прохождения, отражения и поглощения.

Рассмотрим случай тонкой пленки из калия. Построим зависимости коэффициента прохождения от величины $\Omega = \omega/\omega_{\rm p}$ при угле падения $\theta = 75^{\circ}$ (рис. 1). Именно это значение угла использовано в работах [1,2].

Отметим, что вблизи плазменного резонанса ($\omega \sim \omega_{\rm p}$) коэффициент прохождения имеет минимум, а коэффициенты отражения и поглощения – максимум. При толщине пленки 1.5 нм и $\nu = 0.05\omega_{\rm p}$ в области сверхрезонансных частот ($\omega > \omega_{\rm p}$) все коэффициенты имеют еще один максимум. С увеличением толщины пленки с 1.5 до 10 нм второй максимум пропадает.

Для пленки толщиной 5 нм и при $v = 0.02\omega_{\rm p}$ в области сверхрезонансных частот поведение всех коэффициентов носит так называемый гребенчатый характер («частокол»). При дальнейшем увеличении толщины пленки частота гребенки увеличивается, и мы можем видеть рост амплитуды ее зубьев. Если для пленки толщиной 5 нм величина $\varepsilon = v/\omega_{\rm p}$ уменьшается, то амплитуда зубьев гребенки резко растет.

При дальнейшем увеличении толщины пленки увеличивается частота зубьев гребенки (число звеньев часто-

Рис.1. Зависимости коэффициента прохождения *T* от Ω в случае d = 2 нм, $v = 0.05\omega_{\rm p}(1)$, d = 5 нм, $v = 0.03\omega_{\rm p}(2)$ и d = 10 нм, $v = 0.05\omega_{\rm p}(3)$ при $\theta = 75^{\circ}$.

Рис.2. Зависимости коэффициентов отражения R(a) и поглощения $A(\delta)$ от Ω при d = 10 нм, $v = 0.001 \omega_p$ и $\theta = 75^\circ$.

кола). На рис.2 показано поведение коэффициентов отражения и поглощения в зависимости от величины Ω в случае d = 10 нм, $v = 0.001\omega_{\rm p}$ и $\theta = 75^{\circ}$. Отметим, что рис.2, *a* фактически совпадает с рис.2 из [1], а рис.2, δ – с рис.3 из этой же работы.

На рис.3 приведены зависимости коэффициентов прохождения, отражения и поглощения от толщины пленки dпри $v = 0.001\omega_p$ и $\theta = 75^\circ$. В рассматриваемом диапазоне

Рис.3. Зависимости коэффициентов прохождения, отражения и поглощения от толщины пленки d при $\omega = \omega_{\rm p}$, $v = 0.001 \omega_{\rm p}$ и $\theta = 75^{\circ}$.

толщин коэффициент прохождения имеет один минимум, а коэффициент поглощения – один максимум.

Перейдем к выводу формулы для вычисления толщины пленки по тем точкам Ω_n , в которых коэффициенты прохождения, отражения и поглощения имеют экстремумы. Рассмотрим коэффициент отражения.

На рис.4 приведены зависимости коэффициента отражения от Ω для пленок из калия, золота и серебра толщиной 10 нм в случае $v = 0.001\omega_p$. При этом на рис.4,*a* рассмотрены первые звенья гребенки, изображенной ранее на рис.2,*a*.

На этих рисунках точечная кривая, отвечающая дискретному и непрерывному спектрам, совпадает со сплошной, отвечающей только дискретному спектру, что согласуется с приведенными выше оценками. При построении точечной кривой использована формула (4), а при построении сплошной кривой – формула (5).

Рис.4. Зависимости коэффициента отражения R от Ω для пленки из калия (a), золота (δ) и серебра (ϵ) при d = 10 нм, $v = 0.001\omega_{\rm p}$ и $\theta = 75^{\circ}$.

Анализ показывает, что коэффициенты прохождения, отражения и поглощения имеют экстремумы в одних и тех же точках Ω_n , независимо от величины угла падения электромагнитной волны. Эти соображения позволяют найти толщину пленки по тем точкам $\Omega_n = \omega_n / \omega_p$, в которых коэффициенты T, R и A имеют экстремум.

Во второе слагаемое (мода Дебая) формул (4) и (5) входит функция th $(z_0/\eta_0) = -i\sin(iz_0/\eta_0)/\cos i(z_0/\eta_0)$, ответственная за квазипериодический гребенчатый характер зависимостей. Точки Ω_n , в которых коэффициент отражения имеет минимум, в точности совпадают с точками, в которых функция $\cos \operatorname{Re}(iz_0/\eta_0)$ обращается в нуль. Из уравнения $\cos \operatorname{Re}(iz_0/\eta_0) = 0$ находим

$$\operatorname{Re}\left(\operatorname{i}\frac{z_0(\Omega_n,\varepsilon,d)}{\eta_0(\Omega_n,\varepsilon)}\right) + \frac{\pi}{2} + \pi n,$$

или, в явном виде,

$$\operatorname{Re}\left(\mathrm{i}\,\frac{\omega_{\mathrm{p}}10^{-7}(\varepsilon-\mathrm{i}\Omega_{n})}{2\upsilon_{\mathrm{F}}\eta_{0}(\Omega_{n},\varepsilon)}\,\mathrm{d}\right) = \frac{\pi}{2} + \pi n,\tag{7}$$

где *n* = 1, 2, 3,

В (7) величина *d* измеряется в нанометрах. Из этой формулы следует, что коэффициент отражения имеет локальные минимумы при

$$d_n = \frac{10^7 \pi v_{\rm F} (1+2n)}{\omega_{\rm p} \operatorname{Re}[(\Omega_n + i\varepsilon)/\eta_0(\Omega_n \varepsilon)]}.$$
(8)

В табл.1 приведены первые шесть резонансных частот, в которых коэффициент отражения имеет локальные минимумы. Взяты пленки из различных материалов

Табл.1. Результаты измерений толщины пленки.

Материал пленки	Номер экстремума	Частота (с ⁻¹)	Толщина пленки (нм)	Относительная погрешность (%)
Калий	1	1.0046	9.959	-0.4
	2	1.0127	9.997	-0.03
	3	1.0250	9.968	-0.3
	4	1.0406	10.046	0.04
	5	1.0608	10.017	0.17
	6	1.0847	10.008	0.08
Золото	1	1.0028	9.928	-0.7
	2	1.0077	10.009	-0.09
	3	1.0149	10.073	-0.73
	4	1.0249	10.012	0.12
	5	1.0370	10.003	0.03
	6	1.0518	10.006	0.06
Серебро	1	1.0056	9.975	-0.3
	2	1.0152	10.093	0.9
	3	1.0298	10.082	0.8
	4	1.0490	10.094	0.9
	5	1.0730	10.032	0.3
	6	1.1029	10.012	0.1

толщиной ~10 нм. Данные, приведенные в табл.1, позволяют заключить, что погрешность в определении толщины пленки по наблюдаемым частотам не превышает 1%.

6. Заключение

Таким образом, в настоящей работе рассмотрены пленки, толщины которых составляют единицы-десятки нанометров и не превышают толщины скин-слоя. Получены формулы для вычисления коэффициентов прохождения, отражения и поглощения таких пленок и проведен анализ этих коэффициентов. Отмечено существование резонансных частот, связанных с резонансами в продольных плазмонных колебаниях. Выявлена большая чувствительность этих частот к толщине пленки, что в принципе позволяет по значению этих частот определять ее толщину. Выведена формула для нахождения толщины пленки по положению резонансных частот.

- 1. Jones W.E., Kliewer K.L., Fuchs R. Phys. Rev., 178 (3), 1201 (1969).
- 2. Kliewer K.L., Fuchs R. Phys. Rev., 185 (3), 813 (1969).
- Кондратенко А.Н. Проникновение волн в плазму (М.: Атомиздат, 1979).
- Паредес-Хуарес А., Диас-Монхе С., Макаров М.Н., Перес-Родригес Ф. Письма в ЖЭТФ, 90 (9), 687 (2009).
- Кононенко В.В., Заведеев Е.В., Латушко М.И., Пашинин В.П., Конов В.И., Дианов Е.М. Квантовая электроника, 42 (10), 925 (2005).
- 6. Sondheimer E.H. Adv. Phys., 50 (6), 499 (2001).
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред (М.: Наука, 1992).
- Антонец И.В., Котов Л.Н., Некипелов С.В., Карпушов Е.Н. ЖТФ, 74 (11), 102 (2004).
- Antonets I.V., Kotov L.N., Shavrov V.G., Shcheglov V.I. J. Commun. Technol. Electron., 52 (12), 1394 (2006).
- Лесскис А.Г., Пастернак В.Е., Юшканов А.А. ЖЭТФ, 83, 310 (1982).
- Лесскис А.Г., Юшканов А.А., Яламов Ю.И. Поверхность, №11, 115 (1987).
- 12. Томчук П.М., Томчук Б.П. ЖЭТФ, 112 (2), 661 (1997).
- Завитаев Э.В., Юшканов А.А. Квантовая электроника, 35 (6), 547 (2005).
- 14. Петров Ю.И. Физика малых частиц (М.: Наука, 1984, гл. 7).
- Латышев А.В., Юшканов А.А. Микроэлектроника, 41 (1), 30 (2012).
- Латышев А.В., Юшканов А.А. Оптика и спектроскопия, 110 (5), 796 (2011).
- Латышев А.В., Юшканов А.А. Оптика и спектроскопия, 112 (1), 140 (2012).
- 18. Латышев А.В., Юшканов А.А. Оптический журн., **79** (6), 3 (2012).
- Латышев А.В., Юшканов А.А. Оптика и спектроскопия, 114 (2), 124 (2013).
- 20. Pokrowsky P. Appl. Opt., 30 (22), 3228 (1991).
- 21. Xu J., Tang J. Appl. Opt., 28 (14), 2925 (1989).
- 22. Fuchs R., Kliewer K.L., Pardee W.J. Phys. Rev., 150 (2), 589 (1966).
- Лифшиц Е.М., Питаевский Л.П. Физическая кинетика (М.: Физматлит, 2001).
- Brandt T., Hovel M., Gompf B., Dressel M. Phys. Rev. B, 78, 205409 (2008).
- Латышев А.В., Лесскис А.Г., Юшканов А.А. *ТМФ*, **92** (1), 127 (1992).
- 26. Латышев А.В., Юшканов А.А. ЖТФ, 78 (5), 29 (2008).