Закономерности диффузной миграции фотонов в сильно рассеивающих средах с оптическими свойствами биологических тканей

С.Г.Проскурин, А.Ю.Потлов, С.В.Фролов

Описаны закономерности движения нормированного максимума фотонной плотности (НМФП) импульсного излучения в сильно рассеивающих средах с оптическими свойствами биологических тканей. С помощью численного моделирования подтверждено, что в однородных цилиндрах НМФП всегда движется в геометрический центр объекта. При наличии в объекте цилиндрической поглощающей неоднородности НМФП движется в направлении точки, симметричной геометрическому центру этой неоднородности относительно центра цилиндрического объекта, при наличии одиночной рассеивающей неоднородности – в направлении геометрического центра последней.

Ключевые слова: сильно рассеивающие среды, диффузионная оптическая томография, биологическая ткань, поглощающая неоднородность, рассеивающая неоднородность.

1. Введение

Прошедшее через биологическую ткань оптическое излучение содержит информацию о форме, размерах, местоположении и оптических свойствах различных частей биомедицинского объекта [1,2]. Для того чтобы использовать эту информацию, необходимо исследовать распространение излучения в конкретном биомедицинском объекте.

Миграцию фотонов в сильно рассеивающих средах с оптическими свойствами биологических тканей можно моделировать при помощи метода Монте-Карло (метод статистических испытаний) [3], метода Кубелки–Мунка (многопотоковая модель) или путем решения уравнения переноса излучения в диффузионном приближении (УПИДП) [4]. Это уравнение достаточно хорошо описывает миграцию фотонов в больших (размером 5–15 см), оптически плотных (с редуцированным коэффициентом рассеяния $\mu'_{s} = 0.5-2.0 \text{ мm}^{-1}$) биомедицинских объектах, и его решение не требует большой вычислительной мощности компьютера [1, 4–7].

В рамках УПИДП возможны несколько различных подходов к моделированию. Фотонная плотность может быть представлена как функция от координаты и времени (диффузионная оптическая томография (ДОТ) с временным разрешением (ДОТВР) или как функция от координаты и частоты (частотно-модуляционная ДОТ (ЧМДОТ)).

В первом случае УПИДП имеет следующий вид:

$$\frac{1}{c} \frac{\partial \phi(x, y, z, t)}{\partial t} - D(x, y, z) \nabla^2 \phi(x, y, z, t) + \mu_a(x, y, z) \phi(x, y, z, t) = S(x, y, z, t), \ \forall (x, y, z) \in \Omega, (1)$$

Поступила в редакцию 29 августа 2014 г.

где $c = c_0/v_{object}$, c_0 – скорость света в среде и вакууме; v_{object} – относительный коэффициент преломления моделируемого объекта Ω и его границы $\partial \Omega$; x, y, z – координаты всех точек конечной моделируемой области, включающей в себя внутреннюю часть моделируемого объекта Ω , его границе; $D(x, y, z) = \{3[\mu_a(x, y, z) + (1 - g(x, y, z)) \times \mu_s(x, y, z)]\}$ – коэффициент диффузии в точках с координатами $x, y, z; \mu_a(x, y, z)$ и $\mu_s(x, y, z)$ – коэффициенты поглощения и рассеяния соответственно в точках с координатами x, y, z; g – параметр анизотропии (средний косинус угла рассеяния); $\phi(x, y, z, t)$ – фотонная плотность в точке r(x, y, z) – функция источника фотонов в точке q [5, 7].

В случае ЧМДОТ измеряются уменьшение интенсивности и сдвиг фазы зондирующего излучения, и УПИДП принимает следующий вид:

$$\frac{1}{c}i\omega\widehat{\phi}(x,y,z,\omega) - D(x,y,z)\nabla^{2}\widehat{\phi}(x,y,z,\omega) + \mu_{a}(x,y,z)$$
$$\times\widehat{\phi}(x,y,z,\omega) = \widehat{S}(x,y,z,\omega), \ \forall (x,y,z) \in \Omega,$$
(2)

где ω – частота амплитудной модуляции падающего на объект излучения; $\widehat{\phi}(x, y, z, \omega)$ и $\widehat{S}(x, y, z, \omega)$ – комплексные фотонная плотность и функция источников фотонов соответственно [4, 7].

Уравнения (1) и (2) связаны преобразованием Фурье, поэтому с теоретической точки зрения являются равнозначными по информативности. Таким образом, разрешенная по времени полезная информация, полученная для всех моментов времени, эквивалентна разрешенной по частоте полезной информации, полученной для всех частот [4, 5, 7]. Однако на практике времяразрешенная ДОТ дает больше информации, чем частотно-модуляционная. С появлением фемтосекундных лазеров производить измерения временной функции рассеяния точки (ВФРТ) в окне шириной 3–7 нс в кратные моменты времени удобнее, чем в ЧМДОТ с кратной частотой в полосе частот ~10¹³ Гц, соответствующей импульсу длитель-

С.Г. Проскурин, А.Ю. Потлов, С.В. Фролов. Тамбовский государственный технический университет, Россия, 392000 Тамбов, ул. Советская, 106; e-mail: sergey.proskurin@mail.ru, zerner@yandex.ru

ностью 100 фс. В экспериментальных установках ЧМДОТ используются несколько частот амплитудной модуляции непрерывного излучения, а не бесконечная их полоса [4,8]. Теоретически с увеличением частоты модуляции зондирующего излучения пространственное разрешение такой системы растет, а чувствительность падает. При частоте модуляции более 1 ГГц регистрировать разность фаз на входе и на выходе биообъекта практически невозможно; кроме того, глубина его зондирования в данном случае настолько мала, что уровни полезного сигнала и шума соизмеримы [5].

В связи с этим в настоящей работе используется уравнение (1). При этом вид функции источника S(x, y, z, t) требует отдельного рассмотрения.

В работах [1,4–7] используется решение уравнения (1) для объектов с простейшей геометрией: это бесконечная или полубесконечная однородная среда и бесконечный однородный прямоугольный параллелепипед (ПП). Для них источник излучения представляется как бесконечно короткий импульс, $S(x_0, y_0, z_0, t_0) = \delta(x_0, y_0, z_0, t_0)$, где δ – дельта-функция. Для однородных случаев с простейшей геометрией необходимость в численном решении уравнения (1) отпадает, $\phi(x, y, z, t)$ находится аналитически, для чего используется функция Грина [5]:

$$\phi(x, y, z, t) = \frac{1}{\left[4\pi c D(t - t_0)\right]^{3/2}}$$

$$\times \exp\left[-\frac{(x - x_0)^2 - (y - y_0)^2 - (z - z_0)^2}{4cD(t - t_0)} - \mu_a(x, y, z)c(t - t_0)\right].$$

1

В работах [8,9] для бесконечной однородной среды приводится другое аналитическое решение:

$$\phi(x, y, z, t) = \left(\frac{3}{4\pi t}\right)^{3/2} \exp\left[-\frac{r(x, y, z)}{4cDt} - \mu_{a}(x, y, z)ct\right].$$

Это решение основано на использовании источника, который экспоненциально затухает в направлении распространения пучка излучения (в случае гауссова импульса) [9,10]. Однако такой подход изначально сформулирован для затухающего в ткани непрерывного излучения и не может использоваться для ДОТВР.

Для моделирования миграции фотонов в бесконечном ПП используют коллимированный пучок, падающий на объект вдоль нормали к его поверхности. При этом на глубине $z_0 = 1/\mu'_s$ (средняя длина рассеяния) возникает точечный виртуальный изотропный источник

$$S(x, y, z, t) = \delta(x, y, z - x_0, y_0, z_0) \,\delta(t - t_0), \tag{3}$$

который в дальнейшем является единственным источником фотонов в объекте [1, 4, 6]. В этом случае аналитическое решение уравнения (1) принимает следующий вид:

$$\phi(x, y, z, t) = \frac{1}{[4\pi c D(t - t_0)]^{3/2}}$$

$$\times \exp\left[-\frac{p^2}{4cD(t - t_0)} - \mu_a(x, y, z)c(t - t_0)\right]$$

$$\times \left\{\exp\left[\frac{-(z - z_0)^2}{4cD(t - t_0)}\right] - \exp\left[\frac{-(z + z_0)^2}{4cD(t - t_0)}\right]\right\},$$
rge $p = \sqrt{(x - x_0)^2 - (y - y_0)^2}$.

При моделировании еще более сложных объектов (конечные цилиндры, сферы, конусы) и неоднородных объектов вместо аналитического решения целесообразно использовать численное решение УПИДП. При этом функцию источника фотонов в начальный момент времени t_0 предлагается использовать в виде (3) на границе объекта в точке q.

Целью настоящей работы является изучение закономерностей движения максимума фотонной плотности в однородном и неоднородных сильно рассеивающих цилиндрах. При численном моделировании для минимизации искажений, связанных с интерполяцией распределения фотонной плотности, использовался метод конечных разностей; расстояния между узлами сетки по трем координатным осям были одинаковыми.

2. Нормированный максимум фотонной плотности

Для моделирования плотности распределения мигрирующих фотонов в трехмерном конечном цилиндре, оптические свойства которого соответствуют свойствам биологических тканей, содержащих рассеивающие частицы, используется УПИДП, описывающее баланс энергии в среде и представляющее собой дифференциальное уравнение в частных производных (1). Для описания потока фотонов на границе моделируемого объекта используется граничное условие Робена [5, 7]:

$$\phi(x, y, z, t) + 2D(x, y, z)F \frac{\partial \phi(x, y, z, t)}{\partial n(x, y, z)} = 0,$$

$$\forall x, y, z \in \partial \Omega, \quad x, y, z \notin q,$$
(4)

где n(x, y, z) – направление внешней нормали к границе $\partial \Omega$ в точке с координатами x, y, z;

$$F = \frac{2/(1 - R_0) - 1 + |\cos Q_c|^3}{1 - |\cos Q_c|^2}$$

коэффициент френелевского отражения [9, 11];

$$R_0 = \frac{(v_{\text{object}}/v_{\text{medium}} - 1)^2}{(v_{\text{object}}/v_{\text{medium}} + 1)^2}, \quad Q = \arcsin\frac{v_{\text{medium}}}{v_{\text{object}}}$$

– коэффициенты; v_{medium} – относительный коэффициент преломления окружающей объект среды (в случае воздуха $v_{\text{medium}} = 1$).

Численное решение уравнения (1) с граничным условием (4) было выполнено по семиточечному шаблону. Начальное приближение функции $\phi(x, y, z, t)$ во всех узлах сетки генерируется с учетом позиции источника фотонов и числа фотонов в одном импульсе [10–12]. В качестве критерия окончания итерационного процесса использовано истечение заданного времени вычислений.

После завершения вычислений для отчетливой визуализации нормированного максимума фотонной плотности (НМФП) функция $\phi(x, y, z, t)$ нормируется относительно текущей максимальной точки плотности $\phi_{\max}(x, y, z, t)$, в заданные моменты времени:

$$\phi_{\text{norm}}(x, y, z, t) = \frac{\phi(x, y, z, t)}{\phi_{\max}(x, y, z, t)}.$$

Далее выполняется следующее преобразование:

$$\phi_{\text{norm}}(x, y, z, t) = \begin{vmatrix} 1, \phi_{\text{norm}}(x, y, z, t) \ge P, \\ \phi_{\text{norm}}(x, y, z, t), \text{ иначе,} \end{vmatrix}$$

где P – эмпирически выбираемый минимальный уровень фотонной плотности нормированного максимума, $0 < P \leq 1$.

3. Результаты и их обсуждение

Описанная модель была реализована в виде специализированного программного продукта [13] с помощью среды разработки и графического языка платформы выполнения программ LabVIEW.

По результатам численного моделирования однородных и неоднородных цилиндрических объектов был выбран необходимый уровень отсечения НМ $\Phi\Pi$ (P = 0.995). На рис.1 показано положение цилиндрической неоднородности в цилиндрическом объекте. Установлено, что в любом однородном случае, независимо от значений коэффициентов поглощения $\mu_a(x, y, z)$ и рассеяния $\mu_s(x, y, z)$, НМФП движется в геометрический центр этого объекта, что соответствует описанным ранее экспериментам [14, 15]. Плотности фотонов в срезе на полувысоте цилиндра (где располагаются световоды источника и детекторов излучения) однородного объекта в разные моменты времени представлены на рис.2. Коэффициенты $\mu_a(x, y, z)$ и $\mu'_{s}(x, y, z)$ для $\forall (x, y, z) \in \Omega$ составляют 0.004 и 0.5 мм⁻¹ соответственно. Диаметр и высота цилиндра d = 68 мм те же, что и в эксперименте [12, 14].

При наличии в объекте поглощающей неоднородности характер движения НМФП существенно меняется. На рис.3 показано распределение фотонов в том же срезе цилиндрического объекта с цилиндрической поглощающей неоднородностью ($\mu_a(x, y, z) = 0.1 \text{ мm}^{-1}$) в разные моменты времени. Неоднородность находится под углом 135° к оси падающего излучения на глубине, равной 0.25 радиуса объекта, и представляет собой цилиндр диаметром 0.4 радиуса объекта, R = d/2 (рис.1). В случае поглощающей неоднородности НМФП движется не в центр объекта, как считалось ранее [14], а в направлении точки, симметричной геометрическому центру неоднородности относительно оси цилиндрического объекта.

Рис.1. Сечение и оптические свойства исследуемого цилиндрического объекта со встроенной цилиндрической неоднородностью.

Наличие рассеивающей неоднородности существенно меняет характер движения НМФП. На рис.4 представлено распределение фотонов в срезе неоднородного цилиндрического объекта с цилиндрической рассеивающей неоднородностью, $\mu'_{s}(x, y, z) = 2 \text{ мм}^{-1}$. В этом случае НМФП движется в направлении геометрического центра неоднородности.

Обозначим расстояние, на которое НМФП удаляется от геометрического центра цилиндра, как L. Тогда в пределах погрешности, связанной с наложенной на объект сеткой, можно сказать, что $L \leq L_{crit}^{a}$, где L_{crit}^{a} – расстояние от центра моделируемого объекта до точки, симметричной центру поглощающей неоднородности относительно оси объекта. Установлено, что L зависит от оптических и геометрических свойств моделируемого объекта. Зависимость от оптических свойств объекта такова:

$$L = L_{\rm crit}^{\rm a} \left(1 - \frac{\mu_{\rm a}^{\rm hom}}{\mu_{\rm a}^{\rm inhom}} \right),\tag{5}$$

где μ_a^{hom} и μ_a^{inhom} – средние коэффициенты поглощения однородной части объекта и поглощающей неоднородности соответственно. Коэффициент рассеяния объекта с поглощающей неоднородностью оказывает незначительное влияние на *L*, но определяет скорость движения НМФП.

Зависимость L от геометрических свойств объекта несколько сложнее и может быть представлена в следующем виде:

$$L = L_{\rm crit}^{\rm a} \left[\frac{\ln(S_{\rm sum} S_{\rm inhom} / S_{\rm hom})}{\ln S_{\rm sum}} \right],\tag{6}$$

где S_{hom} – площадь однородной части объекта; S_{inhom} – площадь неоднородности; $S_{\text{sum}} = S_{\text{hom}} + S_{\text{inhom}}$ – общая площадь моделируемого объекта.

Сложив (5) и (6), получим результирующую зависимость для расчета L с одиночной поглощающей неоднородностью:

$$L = \frac{L_{\rm crit}^{\rm a}}{2} \left[1 - \frac{\mu_{\rm a}^{\rm hom}}{\mu_{\rm a}^{\rm inhom}} + \frac{\ln(S_{\rm sum}S_{\rm inhom}/S_{\rm hom})}{\ln S_{\rm sum}} \right].$$
(7)

При наличии в объекте одиночной рассеивающей неоднородности формула для *L* будет похожей. Различие заключается в том, что из оптических свойств моделируемого объекта на *L* будет влиять не отношение $\mu_a^{\text{hom}}/\mu_a^{\text{inhom}}$, а отношение $\mu_s^{\text{vhom}}/\mu_s^{\text{vinhom}} (\mu_s^{\text{vhom}} - \text{средний коэффициент}$ рассеяния однородной части объекта, μ_s^{vinhom} – средний редуцированный коэффициент рассеяния неоднородности). Коэффициент поглощения объекта с рассеивающей неоднородностью не влияет на скорость движения НМФП и поэтому в формуле отсутствует. Влияние геометрических свойств объекта на *L* сохранится в виде (6).

Таким образом, результирующая формула для случаев с одиночной рассеивающей неоднородностью будет выглядеть следующим образом:

$$L = \frac{L_{\text{crit}}^{\text{s}}}{2} \left[1 - \frac{\mu_{\text{s}}^{\text{'hom}}}{\mu_{\text{s}}^{\text{'inhom}}} + \frac{\ln(S_{\text{sum}}S_{\text{inhom}}/S_{\text{hom}})}{\ln S_{\text{sum}}} \right].$$

где L_{crit}^{s} – расстояние от центра моделируемого объекта до центра рассеивающей неоднородности. В описанных случаях (рис.2–4) из-за одинаковой геометрии распределения неоднородностей $L_{crit}^{s} = L_{crit}^{a}$.

Рис.2. Плотности распределений фотонов на полувысоте однородного цилиндрического объекта в моменты времени 0.7 (*a*), 1.4 (*b*), 2.1 (*b*), 2.8 (*c*), 3.5 (*d*), 4.2 (*e*) и 4.9 нс (*ж*). Пятно – движение НМФП на уровне отсечки 0.5%.

Рис.3. Плотности распределения фотонов на полувысоте неоднородного цилиндрического объекта (цилиндрическая поглощающая неоднородность) в моменты времени 0.7 (*a*), 1.4 (δ), 2.1 (*b*), 2.8 (*c*), 3.5 (∂), 4.2 (*b*) и 4.9 нс (\mathcal{M}). Пятно – расположение и форма НМФП на уровне отсечки 0.5%.

Рис.4. Плотности распределения фотонов на полувысоте неоднородного цилиндрического объекта (цилиндрическая рассеивающая неоднородность) в моменты времени 0.9 (*a*), 1.8 (δ), 2.7 (*b*), 3.6 (*c*), 4.5 (d), 5.4 (*e*) и 6.3 нс (\mathcal{H}). Пятно – расположение и форма НМФП на уровне отсечки 0.5%.

Табл.1. Средние (V_{avr}^a) и максимальные (V_{max}^a) скорости и минимальные радиусы кривизны R_{cur}^a траектории движения НМФП для различных коэффициентов поглощения μ_a поглощающей неоднородности; $\mu'_s = 0.5 \text{ мm}^{-1}$ во всем объекте.

<i>µ</i> _a (мм ⁻¹)	$V_{\rm avr}^{\rm a}$ (мм/нс)	$V_{\rm max}^{\rm a}$ (мм/нс)	$R_{\rm cur}^{\rm a}$ (мм)
0.005	6.4	31.5	2.5
0.01	6.3	31.5	3.1
0.02	6.3	30.1	3.7
0.04	6.1	30.6	4.4
0.08	5.9	30.1	4.9
0.16	5.9	29.4	5.3
0.32	5.6	29.0	5.9
0.64	5.4	28.6	6.3

Табл.2. Средние (V_{avr}^{s}) и максимальные (V_{max}^{s}) скорости и минимальные радиусы кривизны R_{cur}^{s} траектории движения НМФП для различных коэффициентов поглощения μ_{3s} поглощающей неоднородности; $\mu_{a} = 0.004$ мм⁻¹ во всем объекте.

μ' _s (mm ⁻¹)	V ^s _{avr} (мм/нс)	V ^s _{max} (мм/нс)	<i>R</i> ^s _{cur} (мм)
1	4.7	26.7	8.6
2	5.3	34.2	9.9
4	5.7	38.7	11.4
8	6.1	41.5	12.9
16	6.4	46.7	13.8
32	6.7	51.2	15.2
64	7.1	56.4	16.3

С ростом коэффициента поглощения неоднородности и ее размера средняя (V_{avr}^{a}) и максимальная (V_{max}^{a}) скорости движения НМФП снижаются. В табл.1 приведены скорости движения и минимальные радиусы кривизны R_{cur}^{a} траектории движения НМФП для различных коэффициентов μ_{a} поглощающей неоднородности; $\mu'_{s} = 0.5 \text{ мm}^{-1}$ во всем объекте. С ростом коэффициента рассеяния неоднородности и ее размера скорости движения НМФП возрастают. В табл.2 содержатся аналогичные параметры для различных коэффициентов рассеяния μ'_{s} рассеивающей неоднородности; $\mu_{a} = 0.004 \text{ мm}^{-1}$ во всем объекте.

4. Заключение

В однородном случае, независимо от значений коэффициентов поглощения и рассеяния, максимум фотонной плотности движется в геометрический центр объекта. При наличии поглощающей неоднородности НМФП движется в направлении точки, симметричной геометрическому центру этой неоднородности относительно центра цилиндрического объекта. В случае рассеивающей неоднородности НМФП движется в направлении центра последней. Расстояние, на которое НМФП удаляется от геометрической оси объекта, можно вычислить (формулы (7) и (8)).

Скорость уменьшения общего числа фотонов в случаях с поглощающими неоднородностями (см. рис.3) на 10%-40% выше, чем с рассеивающими неоднородностями (см. рис.4). Описанная модель показывает, что во всех случаях максимум фотонной плотности движется в точку внутри объекта и никогда не проходит сквозь него, как это считалось ранее [3]. Кроме того, модель позволяет оценивать влияние расположения и оптических свойств неоднородностей на ВФРТ, а также на регистрируемую утечку фотонов на границе объекта $\partial \Omega$.

Исследования финансировались Стипендией Президента РФ, 2013 г. (грант № СП-4213.2013.4) и Госзаданием в области медицинских технологий № 1.10.07.2014.

- 1. Patterson M., Chance B., Wilson B. Appl. Opt., 28, 2331 (1989).
- 2. Зимняков Д.А., Тучин В.В. Квантовая электроника, 32 (10), 849 (2002).
- 3. Wang L.V., Jacques S.L. Comp. Meth. Progr. Biomed., 61, 163 (2000).
- 4. Schmidt F.E. Ph. D. Thesis (Univ. College London, 1999).
- 5. Arridge S., Cope M., Delpy D. Phys. Med. Biol., 37, 1531 (1992).
- 6. Proskurin S.G., Yamada Y., Takahashi Y. Opt. Rev., 2 (4), 292 (1995).
- 7. Schweiger M., Arridge S. J. Biomed. Opt., 19 (4), 040801 (2014).
- 8. Chen J. Ph. D. Thesis (Univ. College London, 2012).
- 9. Durian D., Rudnick J.J. Opt. Soc. Am. A, 16, 4 (1999).
- 10. Durduran T., Choe R., et al. Rep. Progr. Phys., 73, 076701 (2010).
- Третьяков Е.В., Шувалов В.В., Шутов И.В. Квантовая электроника, **31** (11), 1095 (2001).
- 12. Proskurin S.G., Potlov A.Y. Photon. Las. Med., 2 (2), 139 (2013).
- Проскурин С.Г., Фролов С.В., Потлов А.Ю. Свид. о гос. регистрации программы для ЭВМ в ФИПС, № 2014613130 (2013).
- 14. Проскурин С.Г. Квантовая электроника, 41 (5), 402 (2011).
- Проскурин С.Г., Потлов А.Ю., Фролов С.В. Медицинская техника, 6 (276), 1 (2012).