Диодный лазер высокой мощности, излучающий на 1060 нм, с асимметричным гетероволноводом^{*}

Т.Ли, Э.Хао, Ю.Чжанг

Введение асимметричного гетероволновода в эпитаксиальную структуру диодного лазера позволило получить выходную мощность 6.21 Вт на длине волны 1060 нм. Другой вид p- и п-ограничения, основанный на оптимизации энергетических зон, использовался для уменьшения потерь напряжения и выполнения требований достижения высокой мощности и высокой эффективности от розетки. Изготовлен диодный лазер на 1060 нм с одиночной квантовой ямой и асимметричной волноводной гетероструктурой. Измерения показывают, что использование такой гетероструктуры является эффективным методом снижения потерь напряжения, улучшения ограничения инжектируемых носителей и повышения эффективности от розетки.

Ключевые слова: высокая мощность, диодный лазер, гетероволновод.

1. Введение

Лазеры высокой мощности, излучающие на 1060 нм, находят широкое применение в таких областях, как медицина, оборона и т.д. [1-3]. В настоящее время двумя основными факторами, ограничивающими мощность диодных лазеров, являются катастрофические оптические повреждения и низкая эффективность преобразования электрической энергии в оптическую (от розетки) [4,5]. Чтобы решить эти проблемы, прилагаются большие усилия. Использование асимметричного широкого волновода [6,7] из однородных материалов считается идеальным вариантом решения. Хотя этот тип эпитаксиальной структуры и обеспечивает необходимое оптическое ограничение [8-10], но в таком случае относительно фиксировано смещение зон проводимости и валентных зон, что ограничивает оптимизацию эпитаксиальных слоев. Для разрешения этого противоречия мы разработали и изготовили диодный лазер на 1060 нм с гетерогенным волноводом, который мог бы уменьшить потери напряжения, возникающие при переносе носителей.

2. Строение эпитаксиальной структуры

Схема эпитаксиальной структуры показана на рис.1. Материальная система InGaAsP используется в качестве волноводного и покрывных слоев на n-стороне, в то время как материальная система AlGaAs используется на p-стороне. Обе они формируют гетероволновод, который обеспечивает ограничение переноса электронов и дырок.

Рис.1. Схема эпитаксиальной структуры с гетероволноводной конфигурацией.

Вся эпитаксиальная структура выглядит следующим образом. Буферный слой n-GaAs толщиной 0.2 мкм выращивается на подложке n-GaAs (концентрация кремния 2×10^{18} см⁻³). Слой In_{0.32}Ga_{0.68}As_{0.4}P_{0.6} толщиной 1 мкм с концентрацией n-примеси 1×10^{18} см⁻³ используется в качестве нижнего покрывного слоя, а нелегированным нижним волноводным слоем является In_{0.03}Ga_{0.97}As_{0.95}P_{0.05} толщиной 0.7 мкм. В качестве активной области выбирается нелегированный одиночный квантовый слой In_{0.2}Ga_{0.8}As толщиной 9 нм. Верхний волноводный слой изготавливается из Al_{0.2}Ga_{0.8}As толщиной 0.48 мкм, верхний покрывной слой Al_{0.45}Ga_{0.55}As толщиной 0.8 мкм легирован цинком с концентрацией 2×10^{18} см⁻³, за этим слоем следует омический контактный слой из GaAs толщиной 0.25 мкм.

Согласно теоретическому анализу, одной из наиболее важных причин, которые приводят к потере электрической мощности лазерных диодов, является падение напряжения, включающее в себя падение напряжения во внешней цепи и избыточное падение напряжения, существующее в материале. Рис.2 показывает границы валентной зоны и зоны проводимости, рассчитанные численно

^{*}Перевод с англ. В.В.Шувалова.

T.Li, Y.Zhang. National Key Lab. on High Power Diode Laser, Changchun University of Science and Technology, Changchun, 130033, China; e-mail: ltcust@gmail.com, 15104469535@163.com

E.Hao. College of Physics, Jilin University, Changchun, 130021, China, Haoerjuan0415@126.com

Поступила в редакцию 24 сентября 2014 г., после доработки – 24 октября 2014 г.

Рис.2. Расчет энергетических зон эпитаксиальной структуры при рабочем напряжении 1.2 В; кружками выделены потери напряжения в зонах проводимости (1) и валентных зонах (2).

с помощью коммерческого программного обеспечения Lastip. Очевидно, что потери энергии электронов между покрывным п-слоем и волноводным слоем уменьшаются, так как система InGaAsP имеет относительно меньший сдвиг дна зоны проводимости по сравнению с AlGaAsсистемой. В то же время, оптимизированный скачок границы валентной зоны помогает сформировать барьер для дырок, что будет снижать потери инжектируемых дырок.

3. Изготовление эпитаксиальной структуры

Эпитаксиальная структура с описываемым здесь гетероволноводным слоем была выращена методом MOCVD. Источниками атомов III группы были (CH₃)₃In, (CH₃)₃Ga и (CH₃)₃Al, а источниками атомов V группы – арсин и фосфин. В качестве р- и п-примесей использовались диэтилцинк и моносилан. Температура ростовой камеры тщательно контролировалась, т. к. идеальные температуры роста для материальных систем InGaAsP и AlGaAs различны. Затем с помощью традиционных для полупроводников групп III-V процессов были изготовлены пластины для диодных лазеров большой апертуры с шириной полоски 97 мкм и с различными длинами резонатора. После нанесения покрытия на оба конца лазерных заготовок, заготовки были расколоты на чипы, которые были установлены на радиаторы из сплава вольфрама и меди р-стороной вниз.

4. Результаты и их обсуждение

Ватт- и вольт-амперные характеристики типичного устройства с длиной резонатора 2.5 мм, измеренные в непрерывном режиме при комнатной температуре, показаны на рис.3. Максимальная мощность 6.12 Вт достигается при токе инжекции 6 А. Дифференциальная эффективность весьма высока – 1.20 Вт/А. Пороговое напряжение составляет примерно 1.2 В, т.е. соответствует энергии, всего на 30 мэВ превышающей энергию разделения квазиуровней Ферми. Когда рабочий ток возрастает от 1 до 6 А, приращение напряжения составляет только 0.18 В. Таким образом, потери напряжения в этой эпитаксиальной структуре находились под надлежащим контролем. Максимальная эффективность лазера от розетки составляет 62.1% и уменьшается относительно плавно во всем токовом диапазоне из-за высокой эффективности инжекции электронов и дырок.

Рис.3. Зависимости от тока мощности (1), напряжения (2) и эффективности (3) типичного диодного лазера с гетероволноводной конфигурацией при длине резонатора 2.5 мм.

Для того чтобы оценить температурную эффективность, были измерены пороговые токи при различных рабочих температурах (рис.4). Очевидно, что пороговые токи растут почти линейно с ростом температуры. Подгонкой экспериментальных данных и расчетных результатов, основанных на эмпирическом уравнении, было найдено, что характеристическая температура составляет 138.7 К. Это говорит о том, что ограничение носителей в эпитаксиальной структуре достаточно для работы устройства при относительно высокой температуре.

Кроме того, мы исследовали срок службы устройства, для чего была заимствована модель ускоренного старения [11], согласующаяся с вариациями порогового тока. В этой модели изменение порогового тока является функцией времени работы:

$$(I_{\rm th} - I_{\rm th0})/I_{\rm th0} = At^n \exp(-E_a/kT),$$
 (1)

где I_{th0} – начальный пороговый ток; I_{th} – пороговый ток после испытаний на срок службы; A – константа; n – показатель степени времени; E_{a} – энергия активации (здесь $E_{\text{a}} = 0.43$ эВ) [12]; k – постоянная Больцмана; T – абсолютная температура.

Для упрощения уравнения (1), запишем

$$D = (I_{\rm th} - I_{\rm th0})/I_{\rm th0},$$
 (2)

$$D_0 = A \exp(-E_a/kT). \tag{3}$$

Рис.4. Зависимость порогового тока лазера от рабочей температуры.

Рис.5. Зависимость порогового тока от срока службы в двойном логарифмическом масштабе.

Затем, логарифмируя обе стороны уравнения (1), получим:

$$\lg D = \lg D_0 + n \lg t. \tag{4}$$

Для статистической оценки срока службы лазер работал при токе инжекции 1.5 А и температуре радиатора 40 °C. Затем измерялась зависимость изменения порогового тока от времени работы. На рис.5 в двойном логарифмическом масштабе показано соотношение между D и t. Сплошная линия отображает экспериментальные данные, а пунктирная линия является результатом линейной аппроксимации (см. уравнение на рис.5). Значения D_0 и n могут быть оценены из крутизны линейного участка аппроксимирующей линии. После этого, предполагая, что критерием разрушения лазера является увеличение в 2 раза порогового тока по сравнению с $I_{\rm th0}$, мы находим, что срок службы t составляет около 3000 часов.

5. Заключение

Для повышения эффективности и выходной мощности диодного лазера на длине волны 1060 нм мы разработали эпитаксиальную структуру с гетероволноводной конфигурацией, позволяющую уменьшить энергетические потери при переносе носителей. С целью выявления достоинств структур такого рода изготовлен ряд лазеров. Максимальная выходная мощность и дифференциальная эффективность составили 6.12 Вт и 1.2 Вт/А соответственно. Полученная характеристическая температура 138.7 К свидетельствует о хорошей локализации носителей в эпитаксиальной структуре. Электрические характеристики показывают, что потери напряжения были снижены по сравнению с таковыми в традиционном диодном лазере с волноводом из однородной материальной системы. Тест на ускоренное старение показал, что срок службы лазера составляет около 3000 часов.

Авторы благодарят Национальный фонд естественных наук Китая за финансовую поддержку (№ 61107054).

- 1. Adams A.R. IEEE J. Sel. Top. Quantum Electron., 17, 1364 (2011).
- Винокуров Д.А., Дерягин А.Г., Дюделев В.В., Кучинский В.И., Лютецкий А.В., Пихтин Н.А., Соколовский Г.С., Станкевич А.Л., Тарасов И.С. Письма в ЖТФ, 34 (5), 15 (2008).
- Jechow A., Menzel R., Paschke K., Erbert G. Laser Photonics Rev., 4, 633 (2010).
- Ушаков Д.В., Афоненко А.А., Алешкин В.Я. Квантовая электроника, 43 (11), 999 (2013).
- 5. Елисеев П.Г. Квантовая электроника, **32** (12), 1085 (2002).
- 6. Te Li, Erjuan Hao, Zaijin Li, Yong Wang, Peng Lu, Yi Qu. J. Infrared Millimeter Waves, **3**, 226 (2012).
- Fukunaga T., Wada M., Hayakawa T. Appl. Phys. Lett., 69, 248 (1996).
- 8. Ryvkin B.S., Avrutin E.A. *J. Appl. Phys.*, **10**, 023104 (2006).
- 9. Wade J.K., Mawst L.J., Botez D. Electron. Lett., 34, 1100 (1998).
- 10. Botez D. Appl. Phys. Lett., 21, 3102 (1999).
- 11. Fukuda M. *Reliability and Degradation of Semiconductor Lasers and LEDs* (Boston: Artech House, 1991, p. 328).
- Rossin V., Zucker E., Peters M., Everett M., Acklin B. Proc. SPIE Int. Soc. Opt. Eng., 5336, 196 (2004).