Спектральные зависимости примесного оптического поглощения в кристаллах силленитов

М.Г.Кистенева, Е.С.Худякова, С.М.Шандаров, А.С.Акрестина, В.Г.Дю, Ю.Ф.Каргин

Экспериментально исследованы спектральные зависимости оптического поглощения в нелегированных кристаллах силиката и германата висмута и в легированном алюминием кристалле титаната висмута, подвергнутых воздействию лазерного излучения с длинами волн 532 и 655 нм и (или) отжигу в воздушной атмосфере при температурах 200–370°С. В рамках теоретической модели примесного поглощения, учитывающей вклады в него как процессов фотовозбуждения электронов в зону проводимости с глубоких донорных центров с нормальным законом распределения их концентраций по энергии ионизации, так и внутрицентровых переходов, проведена аппроксимация наблюдаемых экспериментально спектральных зависимостей.

Клочевые слова: кристаллы силленитов, спектральная зависимость, оптическое поглощение, внутрицентровые переходы.

1. Введение

Интерес к кубическим кристаллам силленитов Bi₁₂SiO₂₀ (BSO), Bi₁₂GeO₂₀ (BGO) и Bi₁₂TiO₂₀ (BTO) связан с их высокой чувствительностью к оптическому излучению, проявляющейся в фотопроводимости, фоторефрактивном и фотохромном эффектах [1-7]. Благодаря удачному сочетанию величины и скорости фоторефрактивного отклика, а также возможности изготовления образцов различной ориентации с необходимыми размерами, эти кристаллы широко используются в исследованиях разнообразных эффектов динамической голографии и ее приложений [2, 5, 6, 8-10]. Кроме того, в кристаллах силленитов экспериментально наблюдалась оптическая генерация стационарных голографических токов [11], нестационарной фото-ЭДС [12], волн пространственного заряда [7,13,14], фоторефрактивных поверхностных волн [15]. Эти кристаллы использовались при изучении самовоздействия световых пучков, формирования и взаимодействия пространственных оптических солитонов [16-19], а также других эффектов фоторефрактивной нелинейной оптики. Существенное влияние на перечисленные явления и на характеристики устройств, реализуемых на их основе, оказывает оптическое поглощение и фотохромный эффект, заключающийся в фотоиндуцированном изменении спектра оптического поглощения [1,3,4].

Коротковолновые края полос фундаментального поглощения λ_f кристаллов BSO, BGO и BTO при температуре 300 К, определенные по ширинам запрещенной зоны, равным соответственно 3.22, 3.22 и 3.08 эВ [20], составляют 385, 385 и 403 нм. К этим краям прилегают интенсив-

Поступила в редакцию 7 апреля 2014 г., после доработки – 24 ноября 2014 г.

ные полосы поглощения, называемые в литературе «плечами», где показатель поглощения на длине волны λ = 420 нм равен примерно 20, 40 и 100 см⁻¹ для BSO, BGO и ВТО соответственно [1]. Диапазон длин волн лазерного излучения, которое чаще всего используется для исследования фоторефрактивных эффектов в силленитах и для различных приложений, простирается от 442 нм (см., напр., [21]) до 1064 нм [22] и может быть отнесен к области примесного поглощения. Однако считается установленным, что поглощение в силленитах в примесной области обусловлено, в первую очередь, собственными структурными дефектами [1, 3, 4]. Одним из механизмов оптического поглощения здесь считается фотовозбуждение электронов в зону проводимости с дефектов, являющихся глубокими донорными центрами. Последующая рекомбинация электронов на ловушки с бо́льшим сечением фотоионизации, чем у доноров, приводит к увеличению поглощения в некоторой спектральной области, т.е. к фотохромному эффекту [23, 24].

В работе [25] получено, что воздействие импульсного лазерного излучения с $\lambda = 532$ нм на кристалл титаната висмута увеличивает поглощение в спектральной области 492-840 нм, а время релаксации таких обратимых наведенных изменений составляет более 60 ч. Для теоретического описания наблюдаемых при этом спектральных зависимостей авторами [25] была предложена модель примесного поглощения, учитывающая вклад в него исключительно фотовозбуждения электронов с нескольких донорных центров, каждый из которых характеризуется своим нормальным законом распределения концентраций N_n по энергии ионизации E_i . Использование этой модели позволило интерпретировать полученные экспериментальные данные в предположении о захвате фотовозбужденных электронов ловушечными центрами двух типов со средними энергиями и
онизации $E_{\rm i1} \sim 1.6$ эВ и $E_{\rm i2} \sim$ 2.57 эВ. Отмечалось, что заселение электронами центра со средней энергие
й $E_{\rm i1} \sim 1.6$ эВ приводит к увеличению фоторефрактивной чувствительности облученного кристалла ВТО в ближнем ИК диапазоне, которое ранее было обнаружено и изучалось экспериментально в работах

М.Г.Кистенева, Е.С.Худякова, С.М.Шандаров, А.С.Акрестина, В.Г.Дю. Томский государственный университет систем управления и радиоэлектроники, Россия, 634050 Томск, просп. Ленина, 40; e-mail: shand@ed.tusur.ru

Ю.Ф.Каргин. Институт металлургии и материаловедения им. А.А.Байкова РАН, Россия, 119991 Москва, Ленинский просп., 49

[22, 26]. Анализ, проведенный авторами [25] на основе предложенной модели, показывает, что по величине наведенного поглощения можно оценить степень увеличения на рабочей длине волны как чувствительности, так и быстродействия фоторефрактивных элементов на кристалле BTO, подвергнутых воздействию зеленого излучения.

Второй механизм, дающий заметный вклад в примесное поглощение в кристаллах силленитов, но не учитываемый в предложенной в [25] модели, связан с внутрицентровыми переходами [27-31]. В работах [29-31] вклад внутрицентровых переходов в поглощение кристаллов BSO и BTO: Al был обнаружен при комнатных температурах по резонансному характеру спектральных зависимостей изменений оптического поглощения, наведенных отжигом кристаллов в воздушной атмосфере при температурах 230-375°C и засветкой лазерным излучением с различными длинами волн видимой и ближней ИК областей спектра. Для описания спектральной зависимости показателя поглощения в кристаллах BSO и BSO: Мо, в которых также наблюдался резонансный характер его фотоиндуцированных изменений, в работе [28] было использовано разложение этого показателя на индивидуальные компоненты гауссовой формы, применимость которого оправданна только для внутрицентровых переходов.

Изменение спектров оптического поглощения кристаллов класса силленитов, подвергнутых засветке лазерным излучением и термическому отжигу, связанное с перераспределением электронов по глубоким донорным центрам, должно модифицировать их фоторефрактивные параметры, существенные для изучения эффектов динамической голографии и фоторефрактивной нелинейной оптики, а также для их приложений. В то же время регистрация изменений в спектрах, обусловленных влиянием внешних воздействий на вклад внутрицентровых переходов, позволяет определить энергетические параметры соответствующих дефектов, являющихся структурными, и оценить потенциальные возможности использования их как центров люминесценции. Следует отметить, что структурные дефекты в кристаллах силленитов, как предполагается в [1, 3, 32], связаны с ионами висмута, а исследованию природы и параметров Ві-центров в стеклах и некоторых монокристаллах уделяется в настоящее время значительное внимание [33, 34].

В связи с этим представляют интерес данные о достигаемых в силленитах при различных воздействиях предельных значениях коэффициентов оптического поглощения в используемом для этих целей спектральном диапазоне. Для описания экспериментальных спектральных зависимостей коэффициентов оптического поглощения в силленитах в области примесного поглощения может быть использована модель, одновременно учитывающая вклады в него фотовозбуждения электронов в зону проводимости с глубоких донорных центров и внутрицентровых переходов. Интерпретация на основе этой модели наблюдаемых индуцированных изменений в спектрах поглощения может быть полезной для определения типа и параметров дефектных центров, одна часть которых участвует в процессах фотоиндуцированного перераспределения заряда и формирования фоторефрактивных голограмм (глубокие донорные центры), а другая обуславливает внутрицентровые переходы (возможные центры люминесценции).

В настоящей работе изложены результаты исследования спектральных зависимостей коэффициентов опти-

ческого поглощения в диапазоне λ = 486-1000 нм и их сравнительного анализа для нелегированных кристаллов BSO и BGO и для легированного алюминием кристалла BTO: Al, подвергнутых различным воздействиям (облучение лазерным излучением с $\lambda = 532$ и 655 нм, отжиг в воздушной атмосфере при температурах 200-370°С). Для исследованных образцов были зарегистрированы спектры с минимальными и максимальными значениями коэффициентов поглощения, которые аппроксимировались в рамках модели примесного поглощения, учитывающей вклады как процессов фотовозбуждения электронов в зону проводимости с глубоких донорных центров с нормальным законом распределения концентраций по энергии ионизации, так и внутрицентровых переходов с гауссовым видом частотных зависимостей показателя поглощения. Выполненное исследование позволило количественно сопоставить спектральные зависимости коэффициентов примесного поглощения в кристаллах BSO, BGO и BTO: Al и установить, что вклад внутрицентровых переходов для них может быть описан суперпозицией пяти кривых Гаусса с близкими значениями энергетических параметров.

2. Методика и результаты эксперимента

Для исследования спектральных зависимостей коэффициентов оптического поглощения и их индуцированных изменений в диапазоне λ = 486-1000 нм, где показатель поглощения может принимать значения от 0.04 до 10 см⁻¹, в экспериментах использовались образцы BSO, BGO и BTO: Al с достаточно большими толщинами d =8.0, 6.9 и 6.6 мм соответственно. Образцы имели оптически полированные грани с ориентацией (100) и поперечными размерами, позволяющими проводить измерения коэффициента оптического пропускания с помощью спектрофотометров СФ-56 и Genesys-2 без принятия дополнительных мер по ограничению апертуры используемых в них световых пучков. Расчеты спектральных зависимостей показателей поглощения проводились на основе данных по оптическому пропусканию с применением известной методики [35] и зависимостей показателя преломления от длины волны для кристаллов BSO и BGO, определяемых по формуле Селлмейера в двухосцилляторном приближении, с параметрами закона дисперсии, приведенными в работе [4]. Для кристалла BTO: Al в расчетах использовались экспериментальные данные по спектральной зависимости его коэффициента отражения при нормальном падении на входную грань.

Исследуемые образцы BSO, BGO и BTO: Al подвергались различным воздействиям, таким как засветка непрерывным лазерным излучением с $\lambda = 532$ и 655 нм и экспозициями, не превышающими 160 и 140 Дж/см² соответственно, а также отжиг в воздушной атмосфере при температурах 200-370°С продолжительностью 30-60 мин. Проведенные при этом измерения спектров оптического пропускания при температуре 300 К в диапазоне λ = 486 – 1000 нм показали, что в кристаллах BSO и BTO: Al температурный отжиг приводит к уменьшению поглощения, а засветка зеленым излучением - к его увеличению. Однако количественно величина индуцированных изменений не всегда воспроизводилась при повторных измерениях, что может быть связано со сложной структурой дефектных центров и их метастабильных состояний в этих кристаллах и влиянием предыстории на результат термо- или фотоиндуцированного воздействия. Засветка излучением с $\lambda = 655$ нм для кристалла BSO не приводила к заметным изменениям в спектре поглощения во всех случаях, тогда как образец BTO: Al, не подвергавшийся температурному отжигу, после нее просветлялся во всем исследованном диапазоне. Для кристалла BGO после всех описанных выше воздействий заметных изменений спектра оптического поглощения в диапазоне $\lambda = 486-1000$ нм не наблюдалось.

Проведенные экспериментальные исследования позволили зарегистрировать спектры с минимальными и максимальными показателями поглощения $k_{\min}(\lambda)$ и $k_{\max}(\lambda)$ в исследованных кристаллах (рис.1 и 2). Спектры кристалла BGO на рис.1 и 2 одинаковы, поскольку, как отмечалось выше, к использованным нами видам воздействий он не чувствителен. Полученные спектры для кристаллов BSO и BTO: Аl позволяют определить спектральные зависимости изменений показателей оптического поглощения $\Delta k(\lambda) = k_{\max}(\lambda) - k_{\min}(\lambda)$, приведенные на рис.3.

Немонотонный характер спектральных зависимостей для образцов BGO и BSO на рис.1 и 2 в области $\lambda = 640$ –

Рис.1. Спектры оптического поглощения в кристаллах BGO (1), BSO (2) и BTO:Al (3) в состояниях с минимальными значениями показателей поглощения. Точки – эксперимент, сплошные кривые – теория.

Рис.2. Спектры оптического поглощения в кристаллах BGO (1), BSO (2) и BTO: Al (3) в состояниях с максимальными значениями показателей поглощения. Точки – эксперимент, сплошные кривые – теория.

Рис.3. Экспериментальные спектральные зависимости изменений показателей оптического поглощения для кристаллов BTO: Al (1) и BSO (2).

900 нм (1.94-1.38 эВ) свидетельствует о наличии здесь некоторого вклада в оптическое поглощение, не связанного с процессом фотовозбуждения электронов в зону проводимости, который всегда инициирует эффект фотопроводимости. Действительно, экспериментальные спектральные зависимости фотопроводимости кристалла BSO в этой области при комнатной температуре, исследованные в работе [36], являются монотонными с характерными «ступеньками», позволившими выделить полосы примесной фоточувствительности и оценить энергию оптической активации переходов с локальных уровней донорного типа. Спектральная зависимость $\Delta k(\lambda)$ для кристалла BSO (рис.3), демонстрирующая резонансный характер, имеет четыре хорошо выделяющихся максимума и может быть интерпретирована как результат уменьшения вклада в изменение показателя поглощения для некоторых четырех внутрицентровых переходов при переводе образца в состояние с минимальным поглощением.

Хотя спектральные зависимости $k_{\min}(\lambda)$ и $k_{\max}(\lambda)$ для кристалла BTO: Al (кривые 3 на рис. 1 и 2) являются монотонными, в разностном спектре $\Delta k(\lambda)$ (кривая *I* на рис.3) проявляется резонансный характер поглощения, связанный с внутрицентровыми переходами, с максимумами, близкими по положению к наблюдаемым в образце BSO. Следует отметить, что рассматриваемая резонансная зависимость $\Delta k(\lambda)$ для индуцированных изменений показателей оптического поглощения кристалла BTO: Al подобна приведенным ранее для того же образца в работах [30,31]. Спектральные зависимости $k_{\min}(\lambda)$ и $k_{\max}(\lambda)$ на рис.1 и 2 и $\Delta k(\lambda)$ на рис.3 подобны полученным в работе [29] для образцов BSO толщиной 2.9 и 10.7 мм. Малая толщина первого из них позволила получить данные зависимости на $\lambda = 450-900$ нм; во втором образце они изучались в диапазоне $\lambda = 480 - 2500$ нм.

3. Аппроксимация спектральных зависимостей примесного поглощения

Для описания наблюдаемых экспериментально спектральных зависимостей показателя поглощения в примесной области $k(\omega)$ воспользуемся предположением об аддитивности вкладов в него процессов фотовозбуждения электронов в зону проводимости с глубоких донорных центров ($k_{dd}(\omega)$), внутрицентровых переходов ($k_{ic}(\omega)$), а также краевого поглощения, подчиняющегося правилу Урбаха [1]:

$$k(\omega) = k_{\rm dd}(\omega) + k_{\rm ic}(\omega) + k_0 \exp\left[-\frac{\sigma_0(\hbar\omega_0 - \hbar\omega)}{k_{\rm B}T}\right],\qquad(1)$$

где k_0 , σ_0 и $\hbar\omega_0$ – параметры, определяющие величину показателя краевого поглощения, крутизну и положение края; $k_{\rm B}$ – постоянная Больцмана; T – абсолютная температура.

Суммарный показатель поглощения $k_{dd}(\omega)$, обусловленный процессами фотовозбуждения электронов с глубоких донорных центров в зону проводимости, может быть получен в виде следующего интеграла [25]:

$$k_{\rm dd}(\omega) = \int_0^{\hbar\omega} B(E_{\rm i}) \frac{\sqrt{\hbar\omega/E_{\rm i}-1}}{\left(\hbar\omega/E_{\rm i}\right)^3} \left[1 + \exp\left(\frac{E_{\rm F}-E_{\rm i}}{k_{\rm B}T}\right)\right]^{-1} \mathrm{d}E_{\rm i}, \quad (2)$$

где $B(E_i) = \sum_n B_n(E_i)$; $B_n(E_i) = S_n N_n(E_i)$ определяет вклад в показатель поглощения центра *n*-типа, приходящийся на единичный энергетический интервал; S_n и $N_n(E_i)$ – сечение фотоионизации и распределение концентрации по энергии ионизации E_i для данного центра; E_F – энергетическое расстояние между уровнем Ферми и дном зоны проводимости.

Для учета в формуле (2) временной зависимости заполнения центра *n*-типа электронами $b_n(t)$, связанной с их перераспределением вследствие термо- и фотоиндуцированных эффектов и релаксации в метастабильные состояния, может быть использовано соотношение [25]

$$B(E_{\rm i},t) = \sum_{n} b_n(t) \exp\left[-\frac{(E_n - E_{\rm i})^2}{\Delta E_n^2}\right],\tag{3}$$

основанное на предположении о неизменности энергетических параметров нормального распределения для концентрации $N_n(E_i)$. Здесь E_n – энергия, соответствующая максимуму нормального распределения, а ΔE_n – его полуширина.

Для описания вклада внутрицентровых переходов в оптическое поглощение воспользуемся разложением $k_{ic}(\omega)$ на компоненты гауссовой формы (см., напр., [37]) также в предположении о неизменности их энергетических параметров:

$$k_{\rm ic}(\omega,t) = \sum_{m} k_m^{\rm ic}(t) \exp\left[-\frac{(E_m^{\rm ic} - \hbar\omega)^2}{(\Delta E_m^{\rm ic})^2}\right],\tag{4}$$

где $k_m^{\rm ic}(t)$ определяет вклад в поглощение *m*-й компоненты со спектральной полушириной $\Delta E_m^{\rm ic}$ в ее максимуме при энергии кванта, равной $E_m^{\rm ic}$.

Результаты аппроксимации экспериментальных спектральных зависимостей показателей поглощения $k(\lambda)$ в кристаллах BSO, BGO и BTO: Al, полученные на основе соотношений (1)-(4), показаны сплошными кривыми на рис.1 и 2. Найденные при подгонке методом наименьших квадратов значения параметров модели для внутрицентровых переходов и для фотовозбуждения электронов с глубоких донорных центров приведены в табл.1 и 2 соответственно. Проведенные оценки показали, что краевое поглощение, подчиняющееся правилу Урбаха, не дает заметного вклада в суммарный показатель поглощения в исследуемой спектральной области 486-1000 нм. В кристалле BGO расчеты позволяют выделить только четыре внутрицентровых перехода, в то время как благодаря значительным индуцированным изменениям оптического поглощения в BSO и BTO: Al хорошо идентифициру-

Табл.1. Параметры модели, описывающей вклад внутрицентровых переходов в примесное оптическое поглощение в кристаллах BGO,

Кристалл	$E_m^{\rm ic}(\Im \mathbf{B})$	$\Delta E_m^{\rm ic}(\mathbf{\mathfrak{B}})$	$k_m^{\rm ic}$ (cm ⁻¹)	
			минимальное поглощение	максимальное поглощение
BGO	1.510	0.082	0.031	0.031
	1.642	0.072	0.040	0.040
	1.770	0.100	0.042	0.042
	-	-	_	-
	2.415	0.171	0.078	0.078
BSO	1.510	0.082	0.039	0.082
	1.635	0.074	0.040	0.090
	1.765	0.101	0.041	0.107
	2.156	0.319	0	0.161
	2.414	0.155	0	0.062
BTO:Al	1.513	0.088	0	0.040
	1.632	0.070	0	0.039
	1.774	0.132	0.001	0.070
	2.170	0.314	0	0.185
	2.450	0.248	0.230	0.301

ются пять таких переходов (табл.1). Для описания вклада в поглощение процессов фотовозбуждения электронов с глубоких донорных центров в зону проводимости в кристалле BTO: Al оказался достаточным учет четырех центров такого типа; для BGO и BSO необходимо учитывать пять глубоких центров с энергиями ионизации от 1.07 до 2.74 эВ (табл.2).

Из рис.1 и 2 видно, что использованная выше модель примесного поглощения удовлетворительно описывает экспериментальные зависимости показателей поглощения $k(\lambda)$ в спектральной области 486–1000 нм для кристаллов класса силленитов BSO, BGO и BTO: Al. Она позволяет оценить параметры дефектных центров, которые определяют в кристаллах силленитов их фотопроводимость, а также фоторефрактивную чувствительность и быстродействие при записи динамических голограмм, для

Табл.2. Параметры модели, описывающей вклад переходов электронов в зону проводимости с глубоких донорных центров в примесное оптическое поглощение в кристаллах BGO, BSO и BTO: Al.

Кристалл	$E_n(\mathbf{\mathfrak{sB}})$	$\Delta E_n (\mathbf{\mathfrak{s}B})$	$b_n (\mathrm{c}\mathrm{M}^{-1} \cdot \mathrm{B}^{-1})$	
			минимальное поглощение	максимальное поглощение
BGO	1.070	0.200	1.149	1.150
	1.603	0.182	0.584	0.584
	1.908	0.206	1.424	1.424
	2.194	0.096	1.045	1.045
	2.740	0.287	171.5	171.5
BSO	1.170	0.202	0.664	0.730
	1.602	0.170	0.884	0.940
	1.946	0.142	0	0.135
	2.166	0.246	3.30	3.34
	2.700	0.280	368.0	367.0
BTO:Al	1.080	0.431	0.406	0.648
	1.600	0.332	0.103	0.416
	1.901	0.429	0.444	3.64
	-	-	-	-
	2.750	0.284	146.9	141.4

689

различных длин волн лазерного излучения. Кроме того, на основе данной модели для кристаллов, подвергнутых различным внешним воздействиям, могут быть определены изменения во времени заполнения донорных центров электронами и относительного количества дефектов (возможных центров люминесценции), для которых наблюдаются внутрицентровые переходы.

4. Обсуждение результатов

Проведенные эксперименты и их интерпретация в рамках рассматриваемой модели показывают, что в кристаллах силленитов вклад в оптическое поглощение в примесной области могут давать как процессы фотовозбуждения электронов в зону проводимости, так и внутрицентровые переходы. Термический отжиг кристаллов BSO и BTO: Al в воздушной атмосфере при температурах 200-370 °C приводит к их просветлению в исследованной спектральной области 486-1000 нм, прежде всего, за счет уменьшения заполнения электронами трех наиболее мелких донорных центров (табл.2). При этом в кристалле BSO после такого отжига центр с энергией ионизации $E_{i3} = 1.946$ эВ опустошается полностью, а для наиболее мелких центров ($E_{i1} = 1.17$ эВ и $E_{i2} = 1.602$ эВ) заполнение электронами уменьшается незначительно. В кристалле BTO: Al отжиг приводит к значительному опустошению донорных центров с промежуточным положением в запрещенной зоне, характеризующихся параметрами E_{i2} = 1.6 эВ и *E*_{i3} = 1.9 эВ.

Другую причину просветления кристаллов BSO и BTO: Al в результате отжига можно связать с уменьшением концентрации дефектных центров, для которых имеют место внутрицентровые переходы (табл.1). В кристалле BTO: Al после отжига наблюдается только переход, которому в рассматриваемой модели соответствует гауссова форма линии поглощения с максимумом при энергии кванта $E_5^{\rm ic} = 2.45$ эВ и полушириной $\Delta E_5^{\rm ic} = 0.248$ эВ. Для кристалла BSO отжиг приводит к исчезновению полос поглощения с параметрами $E_4^{\rm ic} = 2.156$ эВ, $\Delta E_4^{\rm ic} = 0.319$ эВ и $E_5^{\rm ic} = 2.414$ эВ, $\Delta E_5^{\rm ic} = 0.155$ зВ.

Как уже отмечалось выше, в спектре оптического поглощения кристалла BGO не было зафиксировано изменений при используемых нами воздействиях. Однако в рамках примененной модели в этом спектре (кривая *1* на рис.1 и 2) удалось разделить вклады, обусловленные четырьмя внутрицентровыми переходами (табл.1) и пятью глубокими донорными центрами (табл.2).

Анализ приведенных в табл.1 данных показывает, что дефектные центры имеют близкие значения характеризующих внутрицентровые переходы энергетических параметров E_{1-3}^{1c} и ΔE_{1-3}^{1c} для всех трех кристаллов, а соответствующие параметры $E_{4,5}^{\text{ic}}$ и ΔE_4^{ic} близки для BSO и BTO: Al. Для переходов электронов в зону проводимости с глубоких донорных центров также следует отметить наличие в некоторых случаях достаточно малых различий их энергетических характеристик E_n и ΔE_n (табл.2) для исследованных кристаллов класса силленитов. Наблюдаемая близость значений энергетических параметров дает основания полагать, что оба типа центров, один из которых обуславливает вклад в примесное поглощение процессов фотовозбуждения электронов в зону проводимости, а другой - внутрицентровых переходов, являются собственными структурными дефектами силленитов, связанными с ионами висмута. Такими дефектами в кристаллах Ві₁₂МО₂₀ (М = Ge, Si, Ti) могут быть, например, Ві_М – антиструктурные дефекты, представляющие собой ионы Ві³⁺ в тетраэдрической позиции М-катиона [3, 32], или комплексный ион висмута ВіО₇ [1, 3]. Однако существующие в настоящее время модели дефектных центров в силленитах не являются общепринятыми [3], и их природа требует дальнейшего изучения, в том числе и методами оптической спектроскопии.

5. Заключение

Таким образом, в настоящей работе экспериментально исследованы спектральные зависимости показателей оптического поглощения в диапазоне $\lambda = 486 - 1000$ нм для кристаллов класса силленитов BSO, BGO и BTO: Al, подвергнутых воздействию лазерного излучения с $\lambda = 532$ и 655 нм, а также отжигу в воздушной атмосфере при температурах 200-370°С. Установлено, что в кристалле BGO такие воздействия не приводят к изменениям в спектре оптического поглощения, а для кристаллов BSO и BTO: Al получены спектры с минимальными и максимальными показателями поглощения. Эти спектры, относящиеся к области примесного поглощения, аппроксимировались и количественно сопоставлялись в рамках модели, учитывающей вклады в него процессов фотовозбуждения электронов в зону проводимости с глубоких донорных центров и внутрицентровых переходов. Примененная модель аппроксимации и найденные параметры дефектных центров могут быть использованы для анализа фоторефрактивной чувствительности и быстродействия при записи динамических голограмм в кристаллах силленитов лазерным излучением видимого и ближнего ИК диапазонов, а также для выявления и определения параметров центров люминесценции.

Проведенный сравнительный анализ показал, что существующие в исследованных кристаллах дефектные центры двух типов, один из которых обуславливает вклад в примесное поглощение процессов фотовозбуждения электронов в зону проводимости (глубокие донорные центры), а другой – внутрицентровых переходов (возможные центры люминесценции), характеризуются энергетическими параметрами, значения которых близки для кристаллов BSO, BGO и BTO: Al. На основании этого можно предположить, что данные центры являются собственными структурными дефектами силленитов, связанными с ионами висмута.

Работа выполнена в рамках задания Минобрнауки РФ № 2014/225 (проект № 2491) при частичной финансовой поддержке РФФИ (грант № 12-02-90038-Бел_а).

- Малиновский В.К., Гудаев О.А., Гусев В.А., Деменко С.И. Фотоиндуцированные явления в силленитах (Новосибирск: Наука, 1990).
- 2. Петров М.П., Степанов С.И., Хоменко А.В. Фоторефрактивные кристаллы в когерентной оптике (СПб.: Наука, 1992).
- Каргин Ю.Ф., Бурков В.И., Марьин А.А., Егорышева А.В. Кристаллы Ві₁₂M_xO_{20-б} со структурой силленита. Синтез, строение, свойства (М.: Изд-во ИОНХ РАН, 2004).
- Бабонас Г. Оптические свойства силленитов. Электронная структура и оптические спектры полупроводников (Вильнюс: Мокслас, 1987, вып. 6, с. 41).
- 5. Stepanov S.I. Rep. Prog. Phys., 57, 39 (1994).
- Solymar L., Webb D.J., Grunnet-Jepsen A. *The Physics and Application of Photorefractive Materials* (Oxford: Clarendon Press, 1996).
- Petrov M.P., Bryksin V.V., in *Photorefractive Materials and Their* Applications 2 (Berlin: Springer-Verlag, 2007, pp 285–325).

- Шандаров С.М., Буримов Н.И., Кульчин Ю.Н., Ромашко Р.В., Толстик А.Л., Шепелевич В.В. Квантовая электроника, 38, 1059 (2008).
- Колегов А.А., Шандаров С.М., Симонова Г.В., Кабанова Л.А., Буримов Н.И., Шмаков С.С., Быков В.И., Каргин Ю.Ф. Квантовая электропика, 41, 847 (2011).
- Брюшинин М.А., Куликов В.В., Соколов И.А., Delaye P., Pauliat G. ФТТ, 56, 1158 (2014).
- 11. Трофимов Г.С., Степанов С.И. ФТТ, **30**, 919 (1988).
- 12. Брюшинин М.А., Соколов И.А. Письма в ЖТФ, 25 (9), 63 (1999).
- Петров М.П., Паугурт А.П., Брыксин В.В. Письма в ЖЭТФ, 70, 253 (1999).
- Petrov M., Bryksin V., Emgrunt A., Imlau M., Krätzig E. J. Opt. Soc. Am. B, 22, 1529 (2005).
- Kamshilin A.A., Raita E., Prokofiev V.V., Jaaskelainen T. Appl. Phys. Lett., 67, 3242 (1995).
- Iturube-Castillo M.D., Marquez-Aguilar P.A., Sanchez-Mondragon J.J., Stepanov S.I., Vysloukh V.A. Appl. Phys. Lett., 64, 408 (1994).
- Шепелевич В.В., Коваршик Р., Кислинг А., Матусевич В., Голуб А.А. Квантовая электроника, 33, 446 (2003).
- Fazio E., Ramadan W., Belardini A., Bosco A., Bertolotti M., Petris A., Vlad V. Phys. Rev. E, 67, 026611 (2003).
- Garcia-Quirino G.C., Iturube-Castillo M.D., Vysloukh V.A., Sanchez-Mondragon J.J., Stepanov S.I., Lugo-Martinez G., Torres-Cisneros G.E. Opt. Lett., 22, 154 (1997).
- 20. Егорышева А.В. Журн. неорганической химии, 50 (3), 1 (2005).
- 21. Attard A.E. J. Appl. Phys., 69, 44 (1991).
- Odoulov S.G., Shcherbin K.V., Shumeljuk A.N. J. Opt. Soc. Am. B, 11, 1780 (1994).

- 23. Brost G.A., Motes M.A., Rotge J.R. J. Opt. Soc. Am. B, 5, 1879 (1988).
- 24. Шандаров С.М., Шандаров В.М., Мандель А.Е., Буримов Н.И. Фоторефрактивные эффекты в электрооптических кристаллах (Томск: изд-е Томского гос. ун-та систем управления и радиоэлектроники, 2007).
- Толстик А.Л., Матусевич А.Ю., Кистенева М.Г., Шандаров С.М., Иткин С.И., Мандель А.Е., Каргин Ю.Ф., Кульчин Ю.Н., Ромашко Р.В. Квантовая электроника, 37, 1027 (2007).
- 26. Dos Santos P.V., Frejlich J., Carvalho J.F. Appl. Phys. B, 81, 651 (2005).
- 27. Панченко Т.В., Стрелец К.Ю. *ФТТ*, **50**, 1824 (2008).
- 28. Панченко Т.В., Стрелец К.Ю. ФТТ, 51, 277 (2009).
- Kisteneva M.G., Akrestina A.S., Shandarov S.M., Smirnov S.V., Bikeev O.N., Lovetskii K.P., Kargin Yu.F. J. Hologr. Speckle, 5, 280 (2009).
- Кистенева М.Г., Шандаров С.М., Акрестина А.С., Попугаева В.В., Смирнов С.В. Изв. вузов. Сер. Физика, 53 (9/3), 145 (2010).
- Акрестина А.С., Попугаева В.В., Дю В.Г., Русякина О.А., Кистенева М.Г., Шандаров С.М., Толстик А.Л. Изв. вузов. Сер. Физика, 55 (8/3), 76 (2012).
- 32. Oberschmid R. Phys. Status Solidi A, 89, 263 (1985).
- 33. Дианов Е.М. Квантовая электроника, 40, 283 (2010).
- Важенин В.А., Потапов А.Π., Асатрян Г.Р., Nikl M. ΦΤΤ, 55, 736 (2013).
- Уханов Ю.И. Оптические свойства полупроводников (М.: Наука, 1977).
- 36. Панченко Т.В. ФТТ, 42, 641 (2000).
- Glebovskii D.N., Krasheninnikov A.A., Bedrina M.E., Zelikman P.I. J. Appl. Spectrosc., 35, 1032 (1981).