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Abstract.  We have obtained and investigated analytical expres-
sions for the radiative spontaneous decay rate of a chiral (optically 
active) molecule located near a cluster of two identical chiral (bi-
isotropic) spherical particles. It is found that the composition of the 
particles, their location and size have a significant effect on the 
spontaneous emission of chiral molecules. In particular, it is shown 
that in the case of nanoparticles of chiral metamaterials, the radia-
tive spontaneous decay rate for the ‘right-’ and ‘left-handed’ enan-
tiomers of chiral molecules located in the gap of the cluster are 
significantly different. 

Keywords: spontaneous emission, chiral molecule, enantiomer, two-
particle cluster, metamaterial. 

Introduction 

Chirality is a geometric property of three-dimensional bodies 
to be asymmetric with their mirror image in the case of any 
translation and rotation. Human hands and springs are uni-
versally recognised examples of this property. Chirality plays 
an important role in biology and pharmaceutics, because 
many complex organic compounds (amino acids, proteins) 
have chiral properties. For this reason, the body can com-
pletely differently react to various isomers of the same sub-
stance. For example, the same drug, depending on which 
type of molecules it consists, can have different taste and 
smell or have different effects. In physics, of considerable 
interest are chiral media [1], in which one can observe a dif-
ference between the propagation of left- and right-hand cir-
cularly polarised electromagnetic waves, which leads to a 
number of interesting optical phenomena, such as the rota-
tion of the polarisation plane, circular dichroism and others. 
At present, the study of chiral properties is again in the spot-
light because of the ability to produce metamaterials based on 
chiral meta-atoms [2 – 5]. 

Spontaneous emission of atoms and molecules located 
near material bodies has been studied in many papers. The 
effect of dielectric microspheres on spontaneous emission of 
atoms was considered in [6 – 8]; spontaneous decay of an atom 

located near a microsphere of a negative-index metamaterial 
was investigated in [9]; spontaneous emission of atoms and 
molecules near a cluster of two spherical nanoparticles was 
studied in [10 – 12]. At the same time, only recently research-
ers turned theit attention to the effect of chiral particles on the 
emission of chiral molecules. In particular, we considered in 
[13 – 15] the influence of a spherical nanoparticle on the emis-
sion of a chiral molecule. At the same time, a cluster of two 
nanoparticles has more interesting properties. In fact, such a 
cluster is a chiral nanoantenna, which can be used to effec-
tively control both field emission and detection. 

To our knowledge, the emission of chiral molecules near a 
cluster of chiral spherical particles has not yet been consid-
ered in the literature, and so the purpose of this paper is a 
theoretical study of the effect of a cluster of two identical chi-
ral (bi-isotropic) spherical particles on the spontaneous emis-
sion of a chiral (optically active) molecule. All analytical 
results will be obtained for arbitrary sizes of particles and dis-
tances between them, an arbitrary composition of the particle 
substances and an arbitrary relation between the electric and 
magnetic dipole moments of the chiral molecule. 

The paper has the following structure. In Section 2 we 
consider the electromagnetic field in the presence of a cluster 
of two chiral spherical particles. At the same time, despite the 
fact that the chirality can be regarded as a manifestation of 
spatial dispersion, we use conventional (local) boundary con-
ditions at the interface between the two media. A more gen-
eral approach using nonlocal boundary conditions was devel-
oped in [16, 17]. In Section 3 we derive general expressions for 
the radiative spontaneous decay rate of a chiral molecule 
located near the cluster. In Section 4 we provide a graphic 
illustration of the results and their discussion, and in Section 5 
(Conclusions) the main results are presented. 

Electromagnetic field of a chiral molecule 
in the presence of a cluster of two chiral 
spherical particles 

In describing the electric and magnetic fields in a chiral envi-
ronment, we will use the Drude – Born – Fedorov constitutive 
equations [18 – 20]: 

( ), ( ),E rot rotD E B H He h m h= + = + 	 (1)

where D, E and B, H are the electric and magnetic field induc-
tion and strength, respectively; e and m are the permittivity 
and permeability of the chiral material; h is the dimensional 
parameter of chirality; and the time dependence of the fields 
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251Spontaneous emission of a chiral molecule near a cluster

is determined by the factor exp(–iwt), which is hereinafter 
omitted. 

Selection of constitutive equations in form (1) is some-
what arbitrary. Another possibility is to use, for example, 
constitutive equations in the Boys – Post representation: 

,i ic cD E B H B E1e k
m

k
= + = + ,	 (2)

where k is the chirality parameter and c is the speed of light. 
There are even some indications that the constitutive equa-
tions in form of (2) are more fundamental than in form (1) 
[21]. The debate about the choice of constitutive equations is 
presented, for example, in monograph [22]. The particular 
form of constitutive equations leads to some boundary condi-
tions, which, in the case of chiral media, do not fortunately 
prevent the solution of the problem by the method of separa-
tion of variables. Therefore, for definiteness, we consider rela-
tions (1) for which the boundary conditions are reduced to the 
continuity of the tangential components of the electric and 
magnetic fields. 

To solve the problem of the emission of a molecule near a 
cluster of two chiral spherical particles, we will use the stan-
dard T-matrix method. This method is often used to describe 
clusters of spherical particles. In principle, this method is 
accurate and based on Mie theory for each particle and the 
addition theorem for vector spherical harmonics [23 – 31]. 
Initially, the method was developed by Waterman [32] and 
further significantly improved in [33 – 37]. The procedure for 
the analytical calculation of the T-matrix for a cluster of 
spheres is thoroughly described in [28]. A detailed bibliogra-
phy on this method can be found in monograph [38].

In the case of a cluster of two chiral spherical particles, the 
T-matrix method makes use of two local coordinate systems 
associated with each cluster particle. For definiteness, we 
assume that the local Cartesian coordinate systems have par-
allel and equally directed axes and a common axis z, while 
their origins are located in the centres of spherical particles 
(Fig. 1). The coordinates and all other values related to the 
sth (s = 1, 2) particle will be denoted by an additional index 1 
or 2. Below, we will consider a cluster of two identical spheri-
cal particles with radii a, made of the chiral material with per-
mittivity e and permeability m, as well as the dimensionless 
chirality parameter c. Let the cluster be located in an environ-
ment with unit values of permittivity and permeability. The 
case of a cluster of two different chiral spherical particles can 
be considered similarly. 

As usual, to solve the problem of the emission of the mol-
ecule near a cluster we need to write out arbitrary expressions 
for the fields outside of particles with allowance for the emit-
ting molecule and arbitrary expressions for the fields inside 
the particles. Then, using the boundary conditions on the sur-
face of the particles we find the unknown coefficients of the 
expansion. 

We first write out the expression for the fields outside of 
particles. The electric and magnetic field strengths of the chi-
ral molecule with the electric and magnetic dipole moments d0 
and –im0, respectively, are defined in the free space by the elec-
tric and magnetic Hertz vectors, and in the local coordinate 
system associated with the centre of the sth particle, the 
expression for them have the form 
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where d  is the gradient operator; sr and sr0 are the radius vec-
tors of the observation points and chiral molecule locations, 
respectively; and k0 = w/c is the wavenumber in vacuum. The 
above-used phase relationship between the electric d0 and 
magnetic –im0 dipole moments is caused by the choice of the 
chiral molecules in the form of a spiral. Note that the Cartesian 
components of the vectors d0 and –im0, as well as the Cartesian 
components of the gradient operators and rotor will not 
change in passing from one local coordinate system to 
another, because the axes of the local systems are parallel and 
equally directed. 

Using the representation of the electric dipole field in 
spherical coordinates [39], for the electric field strength of the 
chiral molecule (3) in local spherical coordinates associated 
with the sth particle, we find the expressions: 
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where sNy(0)mn, 
sMy(0)mn, 

sNzmn and 
sMzmn are the vector spherical 

harmonics [14, 29], and the coefficients sA(0)
mn, 

sB(0)
mn, 

sC (0)
mn and 

sD(0)
mn are given in the Appendix. The magnetic field strength of 

the molecule can be found from expression (3). 
Scattered electric and magnetic fields induced outside of 

the clusters can be represented as the sum of the partial fields 
from each particle, expressed in local coordinates [29]: 
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(6)

and the coefficients sCmn and sDmn should be found by 
means of boundary conditions. The total field outside of 
the particles is thus determined by the sum of expressions 
(4) and (5). 

l

z1, z2

y2y1

x1
1r0 2r0

–im0d0

x2

a

e m

ca

e m

c

Figure 1.  Geometry of the problem of a chiral molecule located near a 
cluster of two chiral spherical particles. 
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To describe the electromagnetic fields inside each particle, 
after using the Bohren transform [40], solution to (1) can be 
written as 

,
/i

i
A A

Z
ZE

H
Q
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1
1

L

R
= =

-

-t te e eo o o,	 (7)

where Z = m/ em, and the components of the transformed 
field satisfy the equations [40] 

rotQL = +kLQL,   divQL = 0,

rotQR = –kRQR,   divQR = 0,	
(8)

where
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are the wavenumbers of waves with left- (L) and right-hand 
(R) circular polarisations; and c = k0h is the dimensionless 
chirality parameter, which is considered small: |c em | < 1. 
The opposite case, |c em | > 1, corresponds to a different 
physics and will be discussed in a separate publication. Note 
that in this paper we take em  = e m . Such a definition of 
square roots provides the correct refractive indices of materi-
als of various types, as well as the positive coefficients of 
extinction. 

The expressions for the electric and magnetic field 
strengths inside the sth chiral particle, according to (7), have 
the form 

sE in = sQL – iZsQR,    sH in = i
Z
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sNy(J )mn and 
sMy(J )mn (J = L, R) are the vector spherical harmon-

ics [14]; and expansion coefficients sAmn and sBmn can be found 
by means of boundary conditions. It follows from (11) that 
sQL and sQR are expressed in terms of a fixed combination of 
vector harmonics sNyLmn + 

sMyLmn and 
sNyRmn – 

sMyRmn , which 
always have a nonzero component along the radius and, 
therefore, cannot be reduced to the ordinary TM or TE 
fields. 

To find the unknown coefficients of expansions (11) and 
(6) we will use the boundary conditions of continuity of the 
tangential components of the electric and magnetic field 
strengths on the surface of spheres [41], as well as the theorem 
of addition of vector spherical harmonics [29 – 31]. This theo-
rem allows the vector harmonic describing the fields outside 
of the cluster in some local coordinates (for example, for s = 2) 
to be represented in the form of expansions in harmonics 
written in other local coordinates (s = 1), as is pointed out in 
the Appendix. Substituting these expansions into (6), we 
obtain expressions for the strengths 2Eout and 2Hout (s = 2) in 

the form of series over the vector spherical harmonics in the 
coordinates of the first sphere (s = 1). The thus-found expres-
sion are added to the expressions for 1Eout and 1Hout (s = 1) 
[see Eqn (5)] and can already be used to sew the fields on the 
surface of the first particle. Analogous steps are carried out 
by using the boundary conditions on the surface of the second 
particle. 

Because the molecule in question is located outside of the 
spherical particles, then to find the spontaneous decay rate, 
which is expressed in terms of the energy flux at infinity, we 
will not need the relations for the coefficients 1Аmn, 1Bmn, 2Аmn 
and 2Bmn included in the formula for the fields inside the 
spheres. For the coefficients 1Сmn, 1Dmn, 2Cmn and 2Dmn, which 
describe the scattered field, we can obtain the systems of 
equations: 
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where the lower limit of the summation over q should be 
assumed equal to 1 for m = 0 and equal to |m| for m ¹ 0; and 
the functions Vmnq and Wmnq are given in the Appendix. The 
expressions for the scattering coefficients an, bn and dn have 
the form 
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where we have introduced the notation (J = L, R) 

An
(J ) = yn(kJa)y'n(k0a) – Zy'n(kJa)yn(k0a);

Bn
(J ) = Zyn(kJa)y'n(k0a) – y'n(kJa)yn(k0a);

Vn
(J ) = yn(kJa)z'n(k0a) – Zy'n(kJa)zn(k0a);	

(15)

Wn
(J ) = Zyn(kJa)z'n(k0a) – y'n(kJa)zn(k0a);
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the Riccati – Bessel functions yn(kJa) and zn(k0a) are defined 
in the Appendix; and the prime at the function denotes the 
derivative with respect to its argument. 

As seen from (12) and (13), the structure of the equations 
obtained is that the subscript n changes in them, while the 
subscript m can be fixed. In the numerical solution of (12) and 
(13) use is made of  the truncated equations with n G Nmax. In 
this case, the greater the Nmax, the more accurate the results 
for the coefficients sCmn and sDmn, which is due to their ten-
dency to zero at n ® ¥ [42]. The relative positioning of the 
spherical particles should also be taken into account: the 
closer they are to each other, the greater Nmax one must use to 
achieve a predetermined accuracy [42]. 

Radiative spontaneous decay rate of a chiral 
molecule near a cluster of two chiral spherical 
particles 

The relative radiative spontaneous decay rate of a chiral mol-
ecule near a cluster of two chiral spherical particles can be 
calculated as the ratio of the total emission power Prad of a 
molecule + cluster system to the emission power Prad0 of the 
molecules in the absence of a cluster [43]. The power Prad is 
calculated by the formula [41] 

([( ), ( )] )RedP c S E E H H n
8
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rad

out out

S
0 0p= + +

s sy ,	 (16) 

where integration is performed over a closed surface S, cover-
ing the molecule and particles; n is the the outward normal to 
this surface. The power Prad0 can easily be found from (16) if 
we put the scattered field equal to zero: 
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= + .	 (17)

Of course, this expression coincides with the total radiation 
power of the electric and magnetic dipoles, because they 
exhibit no interference with each other. 

As the surface S, over which the integration in (16) is per-
formed, it is convenient to take a sphere of infinite radius with 
its centre coinciding with the centre of any of the local coordi-
nate systems. For example, by performing calculations in the 
local coordinates associated with the first particle (s = 1), and 
normalising to the radiation power in free space, we find for 
the radiative rate grad the expression 
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where g0 = Prad 0/(ћw) is the spontaneous decay rate of a chiral 
molecule in free space; and 
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In expressions (19), the lower limit of summation over q 
should be assumed equal to 1 for m = 0 and equal to |m| for 

m ¹ 0; the functions Vmnqu  and Wmnqu  are given in the Appendix. 
It should be noted that relation (18) corresponds to the transi-
tion of a molecule from some excited state to the ground state, 
i.e., to the case of a two-level molecule. In this case, d0 and 
–im0 should be regarded as the electric and magnetic dipole 
moments of the transition. To account for the possibility of 
transition to some states it is only necessary to sum the cor-
responding partial widths of the lines (18). 

Analysis of the results and graphic 
illustrations 

The process of spontaneous emission of a chiral molecule 
located near a cluster of two chiral spherical particles is very 
complex, and below for clarity we will present graphic illus-
trations of some possible regimes of interaction of a chiral 
molecule with clusters of various compositions. Here we 
restrict our consideration to the most interesting case, when 
the chiral molecule is in the gap between chiral particles on 
the common axis z, passing through the centres of the parti-
cles (Fig. 1), because in this case, the local fields are maximal. 
In this geometry, the position of the molecule is described by 
the angles 1q0 = 0 and 2 q0 = p, and the expressions for the 
coefficients sA(0)

mn, 
sB(0)

mn, 
sC (0)

mn and 
sD(0)

mn are greatly simplified 
(see the Appendix); therefore, nonzero are only the coeffi-
cients sCmn and sDmn with m = 0, ±1. 

Below, we consider a chiral molecule with equal Cartesian 
projections of the electric (d0x = d0y = d0z) and magnetic (m0x 
= m0y = m0z) dipole moments. This choice of the molecule 
allows one to study all the features of spontaneous emission 
at the same time, because modes of all types are excited in the 
spheres. In this case, we call the molecule with parallel m0 and 
d0 the right-handed molecules, and molecules with antiparal-
lel m0 and d0 – the left-handed molecules.

Figure 2 shows the dependences of the radiative spontane-
ous decay rate of a chiral molecule located in the gap of a 
cluster of two dielectric particles near the surface of the first 
particle on the particle size k0a, for the case of particles with 
no chiral properties (Fig. 2a) and a small chirality (Fig. 2b) at 
different relative distances l/(2a) between the particles. One 
can clearly see that at large distances between the particles, 
the spontaneous decay rate tends to the decay rate for a single 
particle. This is not done in the case of close proximity of the 
particles. Very important here is that the maximum radiative 
spontaneous decay rate occurs for the spheres of small size (or 
longer wavelengths). 

Chirality of spherical particles leads to a redistribution of 
the positions of the maximum radiative spontaneous decay 
rate and to the emergence of high-Q, as compared with the 
case of a cluster of non-chiral particle, resonances (cf. Figs 2a 
and b). In general, the presence of chirality increases the spon-
taneous decay rate. It is very important is that, compared 
with non-chiral spheres, there is a noticeable difference 
between the radiative spontaneous decay rates for the right- 
and left-handed molecules (Fig. 2b). 

Figure 3 shows the spontaneous decay rate of a chiral mol-
ecule located near a chiral spherical particle (Fig. 3a) and in the 
gap between two chiral particles near the surface of the first of 
them (Fig. 3b) as a function of the chirality parameter c. One 
can clearly see that the dependence of the radiative spontane-
ous decay rate of a molecule in the gap of a cluster on the chi-
rality parameter changes significantly as compared with the 
case of a molecule near a single sphere. The most significant 
differences arise for chiral particles made of a negative-index 
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metamaterial (e = – 4, m = –1.1). One can also see that at a close 
proximity of such particles [l/(2a) = 1.1] there appears a large 
number of high-Q maxima in the dependence of the radiative 
rate on c, and the dependence itself becomes much more com-
plicated than for a single particle. Apparently, this is due to the 
fact that in a cluster of two chiral spherical negative-index par-
ticles, modes highly localised in the gap, which are absent in the 
case of a single particle, are excited. These modes occur in the 
case of a cluster of two metal nanoparticles [11]. 

The case of a cluster of two chiral spherical particles with 
the properties of a dielectric (e = 4, m = 1) also differs from 
that of a single chiral dielectric sphere. In particular, it is 
clearly seen that the number of radiative spontaneous decay 
rate maxima increases, but not as much as for the particles of 
the metamaterial. 

For chiral particles having metal properties (e =  – 4, m = 1), 
the dependence of the radiative spontaneous decay rate on c 
is weakly expressed, which is due to an imaginary refractive 
index em , i.e., the absence of the waves propagating in the 
spheres. Noticeable only is an increase in the radiative spon-

taneous decay rate for a molecule in the cluster gap as com-
pared with a molecule near a single particle (cf. Figs 3a and b). 

Note here that for a significant difference between the 
spontaneous decay rates to be observed for the right- and left-
handed molecules, a sufficiently large value of chirality is 
needed. Currently, for chiral metamaterials it is possible in 
the radio range [44, 45]. Nevertheless, reducing the size of chi-
ral meta-atoms [46] allows us to hope to obtain similar results 
in the microwave and optical ranges. 

Figure 4 shows the radiative spontaneous decay rate of a 
chiral molecule located near a single chiral spherical nanopar-
ticle (Fig. 4a) and in the gap between the cluster nanoparticles 
near the surface of the first nanosphere (Fig. 4b) as a function 
of permittivity for a given permeability (m = –1.6). One can 
see that for the right- and left-handed enantiomers of the mol-
ecules the radiative spontaneous decay rate takes significantly 
different values and, therefore, may effectively control their 
properties [13]. In the case of a cluster of nanoparticles, one 
can observe an increase, compared with the case of a single 
nanoparticle, in the number of radiative spontaneous decay 
rate maxima, which is due to a large number of excited sur-
face (chiral plasmon) modes in the cluster. An increase in the 
number of excited modes allows one to control the spontane-
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Figure 2.  Radiative spontaneous decay rate of a chiral molecule located 
near the surface of the first spherical cluster particle (1r0 ® a, 2r0 = l – a) 
as a function of the particle size k0a at different relative distances be-
tween the particles l/(2a). Permittivity and permeability of the particles 
are e = 6 and m = 1, the chirality parameter is c = (a) 0 and (b) 0.1. The 
case of a single particle [l/(2a) = ¥] corresponds to the position of the 
molecule near the surface of the particles on the positive part of the z 
axis. Solid curves correspond to the right-handed molecule (m0 = 
+ 0.1d0), and dashed curves  –  to the left-handed molecule (m0 = – 0.1d0). 
In the case of non-chiral particles the dependences for the right- and 
left-handed molecules coincide. 
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Figure 3.  Dependences of the radiative spontaneous decay rate of a chi-
ral molecule on the chirality parameter c. The molecule is located (a) 
near the surface of a single spherical particle on the positive part of the 
z axis (1r ® a, 2r ® ¥) and (b) near the surface of the first spherical 
cluster particle (1r0 ® a, 2r0 = l – a). Solid curves correspond to the right-
handed molecule (m0 = + 0.1d0), and dashed curves  –  to the left-handed 
molecule (m0 = – 0.1d0). The relative distance between the cluster parti-
cles is l/(2a) = 1.1, and the particle size is k0a = 1. 
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ous emission of a chiral molecule located in the gap of the 
cluster by changing the distance between nanoparticles. 
Furthermore, a comparison of Figs 4a and b shows that the 
radiative spontaneous decay rate for a chiral molecule in the 
gap between nanospheres takes significantly larger values 
than for the molecules near a single nanoparticle. 

Chiral molecules play a particularly important role in 
biology and pharmacy. It is therefore extremely important to 
be able to carry out the selection of the right- and left-handed 
enantiomers of chiral molecules in racemic mixtures. Figure 5 
shows the ratio of the spontaneous emission rate for the left-
handed molecule to the decay rate for the right-handed mol-
ecule (gLrad/g

R
rad) and an inverse ratio (g

R
rad/g

L
rad) as a function of 

the permittivity and permeability of the cluster of two chiral 
spherical nanoparticles. The molecule is located in the gap 
between nanoparticles near the surface of the first nano-
sphere. One can see that at certain values of e and m there is a 
significant difference in the radiative spontaneous decay rates 
for the right- and left-handed enantiomers of molecules: by 
about 40 or even about 300 (or more) times, depending on the 
molecule chirality which should be regarded as a reference 
one. In the case of similar single chiral nanospheres the differ-
ence in radiative spontaneous decay rates of enantiomers is 
also very significant: by about 15 and 60 times [13]. 

A significant difference between the emission rates of right- 
and left-handed molecules located in the gap of the cluster of 

two chiral metamaterial nanoparticles can form the basis for 
designing devices that allow for the detection and selection of 
enantiomers of chiral molecules in racemic mixtures in a similar 
way as it can be done in the case of single nanoparticles [13]. 
One can see from Fig. 5 that a cluster of nanoparticles with 
simultaneously negative e and m will accelerate the decay of the 
left-handed molecules and slow it down for the right-handed 
molecules, and a cluster of nanoparticles with e > 0 and m < 0 
will, on the contrary, accelerate the decay for the right-handed 
molecules and slow it down for the left-handed molecules. At 
the same time, from a practical point of view, the most suitable 
are chiral metamaterial particles with e > 0 and m < 0, because 
the technology of their production (technology of split ring 
resonators) is currently well developed [47, 48]. 

Conclusions 

Thus, we have derived analytical expressions for the radiative 
spontaneous decay rate of a chiral (optically active) molecule 
located near a cluster of two identical chiral (bi-isotropic) spher-
ical particles with an arbitrary material composition, size and 
mutual arrangement. We have studied the features of the spon-
taneous emission of the right- and left-handed enantiomers of 
chiral molecules for chiral clusters of different materials. 

It is shown that for chiral molecules in the gap between 
chiral metamaterial cluster nanoparticles with simultaneously 
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Figure 4.  Dependences of the radiative spontaneous decay rate of the 
right- (m0 = + 0.1d0) and left-handed (m0 = – 0.1d0) chiral molecules on 
the real part of permittivity e = e' + i0.1 at m = –1.6, k0a = 0.1 и c = 0.2. 
The molecule is located (a) near the surface of a single spherical particle 
on the positive part of the z axis (1r ® a, 2r ® ¥) and (b) near the surface 
of the first spherical cluster particle (1r0 ® a, 2r0 = l – a). The relative 
distance between the particles is l/(2a) = 1.1. 
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Figure 5.  (a) Ratio of the radiative spontaneous decay rate of the left-
handed (m0 = – 0.1d0) chiral molecule to the radiative spontaneous de-
cay rate of the right-handed (m0 = + 0.1d0) chiral molecule and (b) in-
verse ratio as functions of the real parts of permittivity (e = e' + i0.1) and 
permeability (m = m' + i0.1) of the material of which is made a cluster of 
two spherical chiral particles with k0a = 0.1 and c = 0.2. The molecule is 
located near the surface of the first spherical cluster particle (1r0 ® a, 2r0 
= l – a). The relative distance between the particles is l/(2a) = 1.1.
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negative permittivity and permeability, as well as chiral mate-
rial nanoparticles with negative magnetic permeability and 
positive permittivity, the right- and left-handed enantiomers 
of molecules exhibit a significant difference between the radi-
ative spontaneous decay rates which may be markedly larger 
than in the case of single chiral nanoparticles. 

The results obtained can be used to calculate the radiative 
spontaneous decay rate for chiral molecules located near a 
cluster of two chiral spherical particles, for the interpretation 
of experimental data on the interaction of chiral molecules 
and chiral particles and for the design of nanobiosensors. 

In this paper, we have considered only the radiative spon-
taneous decay rate (the rate of spontaneous emission), 
because this quantity is measured by a detector. A nonradia-
tive channel of spontaneous decay, i.e., the channel associated 
with the Joule losses in the sphere material, will be discussed 
in a separate publication. 

Acknowledgements.  The authors express their gratitude to the 
Belarusian Republican Foundation for Fundamental Research 
(Grant No. F12R-006), Russian Foundation for Basic 
Research (Grant Nos 14-02-00290 and 15-52-52006) and 
Skolkovo Foundation for the financial support of this work.

Appendix. Coefficients of expansion  
of electromagnetic fields in vector spherical 

harmonics 

The coefficients sA(0)
mn, 

sB(0)
mn, 

sC (0)
mn and 

sD(0)
mn appearing in (4) 

may be represented in the form: 

( )
( )

( )
( )

i i
i
i

A
B

k
F
G

G
F

d
d

m
m

( )

( )
mn

mn

mn

mn

mn

mn

0

0 0
3 0

0

0

0
= +

-

-

s

s

s

s

s

se o) ) )3 3 3 ,

( )

( )

( )

( )
i i

i

i

C
D

k
F

G

G

F

d

d

m

m
mn

mn

mn

mn

mn

mn

0

0 0
3 0

0

0

0

= +
-

-

s

s s

s

s

su
u

u
uf

^

^ p
h

h) * *3 4 4 ,	

(A.1)

where

( )c

( )
( )i

F

F
c c

c
2
1mn

x y
0

0
0 0=- -

mn

s

su) 3

	 ×  in
b

b n
b

b
c c1

1
1

2
1,

,

,

,

m n

m n

m n

m n
x y

1 1

1 1

1 1

1 1
0 0-

+
+ +

- -

- -

- +

- +
s s

s s

u u ^ h= G) )3 3

	 × 
( ) ( )

n
n m n m b

b

1 ,

,

s
m n

m n

1 1

1 1

- - - + -

+ -
su= ) 3

	 – 
( ) ( )

n
n m n m b

b1
1 2 ,

,

s
m n

m n

1 1

1 1+

+ + + + + +

+ +
su G) 3

	 + c n
n m b

b n
n m b

b1
1,

,

,

,
z

s
m n

m n

s
m n

m n
0

1

1

1

1

- +
+

+ +-

-

+

+
s su u= G) )3 3 ;	 (A.2)

( )

( )
( )

( 1)
(2 1)

i
G

G
c c

n n
n b

b

c

c 2
1 ,

,

mn

mn
y x

s
m n

m n

0

0
0 0

1

1
= +

+

+ -

-
s

s

su u) )3 3

–  ( )
( 1)

( ) ( 1)(2 1)
ic c

n n
n m n m n b

b2
1 ,

,
y x

s
m n

m n
0 0

1

1
-

+

- + + + +

+
su) 3

+ 
( )
( )

ic
n n
m n b

b1
2 1

z

s
mn

mn
0

+

+
su) 3;	 (A.3)

( ) !
( ) ! ( )

( )
b

b n m
n m

k r
k r
k r

1
s
mn

mn

n

n0 0

0 0

0 0

z
y

=
+

-
s s

s

su) )3 3

	 ´  ( ) ( )cos exp imq j-Pn
m s

0 0
s ;	 (A.4)

sr0, sq0 and sj0 are the spherical coordinates of the position of 
a chiral molecule in the sth local coordinate system; zn(k0sr0) = 
(pk0sr0/2)1/2H

(1)
n + 1/2(k0

sr0) and yn(k0sr0) = (pk0sr0/2)1/2Jn + 1/2(k0
sr0) 

are the Riccati – Bessel functions; H (1)
n + 1/2(k0

sr) and Jn + 1/2(k0
sr) 

are the Hankel function of the first kind and the Bessel func-
tion, respectively [49]; and Pm

n (cos sq0) is the associated 
Legendre function [49]. 

In the special case of a chiral molecule located on the com-
mon Cartesian axis z (i.e., for sq0 = 0 или sq0 = p), one can 
obtain simple expressions:
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where the prime at the function denotes the derivative with 
respect to its argument; and dmp is the Kronecker delta equal 
to unity at m = p and to zero in other cases. 

To use the boundary conditions in the problem of a clus-
ter of two spherical particles, one should apply the theorem of 
addition of vector spherical harmonics [29 – 31, 42], with 
which in this case can be, for example, written the expression 
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where the lower limit of summation must be assumed equal to 
1 for m = 0 and to |m| for m ¹ 0; and l is the distance between 
the origins of the local coordinate systems (Fig. 1). The func-
tions appearing in (A.7) are defined as follows: 
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where Ccg
aabb are the Clebsch – Gordan coefficients [50]. 
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