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Abstract.  We report a detailed numerical simulation of the reflec-
tion of visible light from a sub-wavelength grating with a rectangu-
lar profile on the silicon surface. Simulation is carried out by the 
effective refractive index method and rigorous coupled-wave analy-
sis. The dependences of the reflectance on the grating depth, fill 
factor and angle of incidence for TE and TM polarisations are 
obtained and analysed. Good agreement between the results 
obtained by the two methods for grating periods of ~100 nm is 
found. The possibility of reducing the polarised light reflectance to 
about 1 % by adjusting the depth and the grating fill factor is dem-
onstrated. The characteristics of the Brewster effect manifestation 
(pseudo-Brewster angle) in the system under study are considered. 
The possibility of the pseudo-Brewster angle existence and its 
absence for both polarisations of the incident light is shown as a 
function of the parameters of a rectangular nanostructure on the 
surface. 

Keywords: black silicon, sub-wavelength grating, reflectance, 
pseudo-Brewster angle. 

1. Introduction

Black silicon is a promising material for modern optoelec-
tronics. The study of numerous publications on black silicon 
has revealed the absence of a single definition of the concept, 
which is not surprising given the relative newness of the term 
that was first introduced in 1995 [1]. In this paper, we use a 
generalised definition [2], which, in our opinion, most fully 
complies with modern trends and interests of researchers in 
this field: black silicon is a nanostructured silicon surface that 
can reduce the reflectance in the optical range. 

Interest in this material, which has a small, up to 1 %, 
reflectance in the visible range, is associated with the develop-
ment of a new family of efficient photovoltaic power sources 
[3]. Of great interest is its ability to generate terahertz radia-
tion [4]. In our opinion, black silicon is also a very promising 
material for the rapidly developing field of research related 
to the creation of perfect absorbers of optical radiation [5]. 
One can but mention in this connection a recent high-profile 

paper [6], whose authors found bactericidal properties of this 
material. 

The high absorption coefficient of black silicon is due to 
its surface relief, which represents a spatial nanograting with 
a characteristic period, significantly smaller than the wave-
length of absorbed optical radiation. In practice, the specific 
parameters of the relief are determined by the technological 
possibilities and applied purposes. To date, most of the pub-
lished studies on the optical properties of black silicon refer to 
the case of a chaotic needle structure in which a single element 
of the nanostructure is a vertically oriented nanorod. These 
structures are primarily interesting for applications in photo-
voltaic [3].

Recent years have been characterised by a rapid develop-
ment of technologies, which make it possible to produce grat-
ings with a controlled profile and a period of 50 – 100 nm, 
including comb-shaped structures, on the silicon surface. 
Such structures may, in our opinion, be of interest from the 
point of view of the further development of optoelectronic 
element base, i.e., the fabrication of polarisation-sensitive 
optical radiation absorbers. 

In connection with the experiments on the interaction of 
optical radiation with such nanostructures, there is a need in 
the evaluation of their optical properties and, consequently, 
in the construction of appropriate calculation methods. Note 
that if the study of the interaction of broadband optical radia-
tion with black silicon is important for applications in the 
field of photovoltaic, it is no less important and promising in 
the investigation of the interaction at a fixed wavelength, pri-
marily for the development and improvement of modern 
micro- and nano-optoelectronic devices as well as non-
destructive methods of technological control and characteri-
sation of nanomaterials. In this regard, very useful are the 
effects related to the behaviour of the pseudo-Brewster angle 
as a function of the nanostructure parameters [7]. However, 
when it comes to black silicon, this effect is not sufficiently 
studied. 

Generally, it should be noted that interest in black silicon 
has been initially associated with the ability to precisely con-
trol the etching of silicon in real time [1]. However, to date, 
the reflection properties of black silicon based on comb nano-
structures with a rectangular profile as functions of the geo-
metric parameters of the structure, depth, fill factors and 
polarisation in the range of characteristic periods of 
50 – 100 nm, to our knowledge, has not been studied in detail. 

The above circumstance determines the main objective of 
this paper. Thus, if the geometry of the periodic structure is 
known, its reflective properties can be accurately calculated 
using the rigorous coupled-wave analysis (RCWA) method. 
This method gives the exact solution of the problem of scat-
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tering by a periodic structure of arbitrary profile. However, 
its use in a particular spectral range requires careful analysis 
of the convergence of the solutions, especially for the TM 
polarisation of light. At the same time, important (particu-
larly for optimisation problems) is the development of 
approximate methods of calculation of the optical properties 
of black silicon and metamaterials. 

Using the method of effective refractive index (ERI), one 
can obtain analytical expressions that allow the properties of 
the experimental nanometamaterials to be predicted and opti-
mised. The use of the ERI method is possible when the small-
ness of the relief period, as compared with the wavelength of 
the optical radiation, allows the averaging of the permittivity 
in the structure under consideration. The exact RCWA 
method and the approximate ERI method can be comple-
mentary; however, it is first needed to compare and analyse 
the results of the calculation by both methods in the range of 
interest (periods of 50 – 100 nm) for different depths and fill 
factors of the structures. We also consider this problem in this 
paper, because, as far as we know, the results of such studies 
in the range of nanostructure parameters in question on sili-
con surfaces have not been published, despite the great inter-
est in the subject matter as a whole [8, 9]. We have chosen a 
structure on a silicon surface with a rectangular profile and a 
period of 70 nm, to which the basic dependences presented in 
the Figures of this paper correspond, although in our study 
we have also analysed the dependences for the periods of 
50 – 150 nm. 

2. Calculation by the effective refractive index 
method 

As already noted, this method is not accurate, because it 
is based on averaging the refractive index in the grating 
region. Depending on the particular problem, different 
approaches to the calculation of the average refractive index 
are possible [10]. 

Consider the geometry of our problem in the right-handed 
coordinate system xyz. The surface of the silicon substrate lies 
in the xy plane. A grating with a rectangular profile, which 
occupies the region 0 < z < d over the depth, is formed on the 
substrate surface. The grating vector is directed along the x 
axis, and the grating profile does not depend on the coordi-
nate y. It is assumed that a plane polarised optical wave is 
incident on the grating surface. The plane of incidence coin-
cides with the xz plane, and the angle of incidence is equal to 
q. In this geometry, this wave can be represented as a superpo-
sition of two TE- and TM-polarised waves [11], which are 
then treated independently. In this case, a classical definition 
is used for such polarisations [12]: for a transverse electric 
wave (TE polarisation), the electric vector is perpendicular to 
the plane of incidence, while for a transverse magnetic wave 
(TM polarisation), the electric vector is parallel to the plane 
of incidence. 

The silicon substrate has a refractive index ns, and the 
medium bordering the substrate has a refractive index n0, 
which hereafter will be equal to unity. The fill factor f is 
defined as the ratio of the width of the grating line to its 
period T. If one can average the refractive index in the region 
of the grating, then this region of the grating can be replaced 
by a thin film with a corresponding effective refractive index. 
In this case, the problem of finding the reflectance of incident 
optical radiation having a wavelength l0 is reduced to the 
well-known problem of reflection from a layered medium 

[12]. The correctness of averaging is supported by the small-
ness of the spatial scale on which the refractive index ~Т/2 ~ 
30 nm changes, as compared with the wavelength of optical 
radiation in the visible range (about 500 nm). However, this is 
not sufficient to replace the grating by a medium with some 
ERI; therefore, below the thus obtained results will be com-
pared with the results of rigorous calculations. 

To calculate ERI, we will replace for simplicity the rectan-
gular grating by a set of plates, infinitely extended in the z and 
y directions. This allows one to use the arguments [12] and 
easily obtain a solution for ERI in such a system in two cases: 

1. The electric field strength vector of the optical wave lies 
in the plane yz, i.e., in the plane of the plates. 

We believe that the electric field inside each plate and in 
the gap between the plates can characterise electric field 
strengths E1 and E2, respectively. We also assume that the 
field strengths are related with electric induction through the 
conventional expressions D2 = e2E2 and D1 = e1E1, where e2 
and e1 are the permittivities associated with refractive indices: 
e2 = n

2
2, e1 = n

2
1. Proceeding from the obvious boundary condi-

tion E1 = E2, we have 
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Next, determining the average permittivity as
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where Du  = D1(1 – f ) + D2 f and Eu  = E1(1 – f ) + E2 f, we obtain 
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which in view of (1) gives the expression for the average per-
mittivity in the case of TE polarisation 

(1 )f f1 2e e e= - +u .	 (4)

In view of the previously introduced notations, we obtain for 
ERI at this polarisation 
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2. The electric field strength vector of the incident wave is 
directed along the x axis, i.e., perpendicular to the plane of 
the plates. 

This case is similar to the previous one with the boundary 
condition D1 = D2. Then, we have 
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Now we can replace the grating of depth d by a film of the 
same thickness, but with an effective refractive index nu . As a 
result, we obtain a system, which represents a thin film with a  
known refractive index   nu  (medium 2), bordering medium 1 
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and bulk silicon (medium 3) on one side and on the other side, 
respectively. It is obvious that for a normally incident 
TE-polarised wave we have nu  = n| |u , and for a TM-polarised 
wave we have nu  = n=u . The reflectance R with respect to inten-
sity is given by the expression [12] 

| |
( )
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R r

r r
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2

b

b
= =

+

+
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where r12 and r23 are the Fresnel reflectances at the interface 
between the media 2 /cosnd 0pb j l= u ; and j is the angle of 
refraction in the film (medium 2). In the calculations we 
assume that n0 = 1, ns = 3.844 – 0.015j and l0 = 650 nm. 

Figure 1 shows the thus obtained dependence of the reflec-
tance R on the grating depth d at a fixed value of the fill factor 
f = 0.5 and q = j = 0. As can be seen from these dependences, 
the reflectance for the TE and TM waves varies sinusoidally 
from 0.35, which corresponds to the unperturbed silicon sur-
face, to 0.12. In this case, the period of the reflectance varia-
tion for TE and TM polarisations is ~100 and ~200 nm, 
respectively. 

This change in the reflectance is quite significant, but it is 
known from the literature [13] that the reflectance of black 

silicon can be reduced to a few percent. Perhaps, this can be 
achieved by optimising the parameter f. We tested this 
hypothesis by changing the parameter f at a fixed value of the 
grating depth d = 100 nm. The corresponding dependences of 
the reflectance for the two polarisations are presented in 
Fig. 2 and confirm our assumption. 

One can see that for TE polarisation the reflectance 
reaches a minimum ~0.02 at f ~ 0.17, and for TM polarisa-
tion the same minimum is achieved at f ~ 0.72. The most 
interesting feature of these curves is that they are clearly 
asymmetric, depending on f. At the same time, in first approx-
imation the dependences for TE and TM polarisations can be 
considered mutually mirror-symmetric. 

3. Calculation by the RCWA method 

A detailed description of the RCWA method can be found in 
the original paper [11] and in paper [14] devoted to its applica-
tion. Therefore, here we confine ourselves to a brief descrip-
tion of the general principles of the method by the example of 
TE polarisation. The geometry of the problem is described in 
the previous section. Solutions in media 1 and 3 with allow-
ance for the Floquet theorem are sought for in the form of 
propagating plane and evanescent waves: 

( , ) [ ( )]exp sin cosjE x z E k n x z( )
y
1

0 0 1 q q= - +

	 + [ ( )]exp jP k x k z( )
i xi zi

i

1
- -

3

3

=-

/ ,	 (10)

( , ) { [ ( )]}exp jE x z T k x k z d( ) ( )
y i xi zi

i

3 3
= - + -

3

3

=-

/ ,	 (11)

where Pi and Ti are the electric field amplitudes correspond-
ing to the ith wave in media 1 and 3; kxi = k0(n1sinq – il0/L); 
k(1)zi = (n1

2k0
2 – kxi

2 )1/2; and k(3)zi = (n3
2k0

2 – kxi
2 )1/2.

In the region of the grating (medium 2) the electric and 
magnetic field strengths are written as an expansion in Fourier 
harmonics with the amplitudes that depend on the coordinate z: 
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From these expressions we can obtain a system of 
matrix differential equations, which is solved by finding 
the eigenvectors and eigenvalues. Finally, the desired 
amplitude Pi and Ti of the fields and the associated reflec-
tances are found by matching the fields on the boundaries 
of regions and solving the corresponding system of ordi-
nary algebraic equations. In this case, the key parameter 
on which the accuracy and calculation time depend is the 
number of harmonics used in the expansion of the fields 
over the Fourier harmonics. Usually, in the case of metallic 
gratings with periods of ~1 mm at a wavelength of ~1 mm, 
the convergence for TE polarisation is achieved at ~10 har-
monics. For TM polarisation the situation is much more 
complicated, and even at more than 100 harmonics the 
convergence is not guaranteed and each case requires a 
separate verification [15]. 

In our case, the convergence with an error of less than 
0.5 % is achieved when the total number of harmonics is N > 10 
and N > 140 for TE and TM polarisations, respectively. The 
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Figure 1.  Dependences of the reflectance R on the grating depth d for 
TE and TM polarisations and unpolarised light Up at f = 0.5 and q = 0. 
Calculation by the ERI method.
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Figure 2.  Dependences of the reflectance R on the fill factor f for TE and 
TM polarisations and unpolarised light Up at d = 100  nm and q = 0. 
Calculation by the ERI method. 
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dependences of the reflectance on the grating depth and the 
fill factor are presented in Figs 3 and 4. Similarly to the previ-
ous case, the dependence on d can be characterised as sinusoi-
dal, for TE polarisation the period being twice less than for 
TM polarisation. As for the dependence on the parameter f, it 
also retains the main characteristics obtained by the approxi-
mate method and mentioned above. 

4. Comparison and discussion of the results 

Comparison of the curves in Figs 1, 2 and Figs 3, 4 makes it 
possible to draw a conclusion about the justification of appli-
cation of an approximate model for calculating the reflec-
tance for both polarisations in the investigated range of varia-
tion of the grating parameters on the silicon surface. In the 
dependence of the reflectance on the grating depth, the peri-
ods and positions of the extrema coincide with an accuracy of 
~1 %. The values of the minima (~0.12) are different, but this 
difference in the absolute value is about 0.02 for the minima 
in TE polarisation and about 0.01 for the minima in TM 
polarisation, which corresponds to the relative accuracy of 
coincidence of several tens of percent. The reflectance max-
ima (~0.35), equal to the reflectance for a smooth silicon sur-
face, coincide with an accuracy of about 1 % for the two meth-
ods of calculation. 

In the dependences of the reflectance on the fill factor 
R(  f ), the values of the minima and their positions also coin-
cide with a relative accuracy of a few tens of percent and a few 
percent, respectively. In this case, for TE polarisation R ~ 
0.02 and f ~ 0.17, and for TM polarisation R ~ 0.03 and f ~ 
0.72. 

The results obtained are, in our opinion, very interesting 
given the fact that one of the models (ERI) is based on the 
interference in a uniform thin film, and the other (RCWA) – 
on the scattering by a rough surface. It should be noted that 
the ERI model allows one to clearly interpret a significant 
reduction in the silicon reflectance at certain grating para
meters: the region with a subwavelength grating on the sur-
face acts as a thin quarter-wave antireflection film. Note also 
that the minimum calculated values of the reflectance, R ~ 
0.02 – 0.03, are not limiting and can be reduced by further 
optimisation of the grating depth and fill factor.

The presented dependences correspond to the case of nor-
mal incidence of optical radiation on the surface. However, 
possible extrapolation of these results to the case of nonzero 
angles of incidence is not obvious. Thus, we have performed 
similar calculations of the reflectance from the surface of 
black silicon at an angle of incidence of optical radiation from 
0 to 90°. The obtained result permits the conclusion that the 
ERI model is also applicable and exhibits the same accuracy 
as in the case of normal incidence. 

Figures 5 and 6 show the angular dependences of the 
reflectance for TE and TM polarisations at different grating 
parameters calculated by the RCWA method. The ERI 
method gives similar results (Figs 7 and 8). An interesting fea-
ture here is the nonmonotonic dependence of the reflectance 
on the angle of incidence for certain values of the grating 
parameters [curves ( 3 ) in Figs 5, 7 and curves ( 1 ) in Figs 6, 8]. 
The angle, at which the minimum reflectance is achieved, is 
known in literature as the ‘pseudo-Brewster angle’ [7]. In the 
system in question, this effect is an analogue of the Brewster 
angle effect, but it manifests itself for both TM and TE polar-
isations and, in contrast to the conventional Brewster angle 
effect, does not reach zero at the minimum [curve ( 4 ) in 
Figs 6, 8]. In this case, this minimum is achieved at angles of 
incidence from 50° to 60°, i.e., it is displaced to smaller, with 
respect to the true Brewster angle (75°), values. This is in good 
agreement with the results of papers [16, 17], in which this 
effect was first discovered and interpreted for a randomly 
rough dielectric surface, but only for TM polarisation. As can 
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Figure 3.  Dependences of the reflectance R on the grating depth d for 
TE and TM polarisations and unpolarised light Up at f = 0.5, q = 0 and 
T = 70 nm. Calculation by the RCWA method. 
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Figure 4.  Dependences of the reflectance R on the fill factor f for TE 
and TM polarisations and unpolarised light Up at d = 100 nm, q = 0 and 
T = 70 nm. Calculation by the RCWA method. 
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Figure 5.  Dependences of the reflectance R for TE polarisation on the 
angle of incidence q at f = 0.15, T = 70 nm and d = ( 1 ) 50 nm, ( 2 ) 75 nm 
and ( 3 ) 100 nm; curve ( 4 ) shows the results at d = 0. Calculation by the 
RCWA method.
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be seen from the presented dependences, unlike conventional 
Brewster angle, the pseudo-Brewster angle under certain grat-
ing parameters may be absent for both polarisations. On the 
whole, all this indicates the prospects of using the angular 
dependences of the reflectance to characterise sub-wavelength 
nanostructures of these type, including technological diag-
nostics in real time. 

Of course, good agreement between the calculation results 
by both methods will inevitably be violated if the grating 
period is increased. At its certain values the changes in the 
field of an optical wave at distances of the order of the period 
can no longer be regarded small, which makes the averaging 
procedure incorrect. The most common quantitative criterion 
is given in [18]: 

2 | | /nT 0p lu  << 1.	 (14)

This gives Т << 50 nm and, at first glance, contradicts our 
results which show that the ERI method gives good accuracy 
already starting with T ~ 100 nm. However, as pointed out by 
Rytov [18], this criterion is not a necessary condition and in 
some instances may be replaced by a less rigorous one. It can 
be assumed that this takes place in our case.

In order to assess the limiting values of the grating period, 
for which it is still possible to use the ERI method, we have 
investigated the dependence of the reflectance on the grating 
period by the RCWA method. The obtained results suggest 
the possibility of applying the ERI method to calculate the 
system in question at Т K 100 nm. 

As an illustration, Fig. 9 shows the dependence of the 
reflectance on the grating period for TE polarisation at f = 0.5 
and d = 55 nm. It is easy to see that when the period is changed 
from 0 to 150 nm, the calculated reflectance increases by 50 %, 
from 0.12 to 0.18, and when the period is changed from 0 to 
200 nm, the reflectance increases by more than 100%, from 
0.12 to 0.26. 

The foregoing suggests that the reflective properties of 
black silicon are mainly determined by the depth of the relief 
and the fill factor. The shape of the relief also exerts an influ-
ence, but indirectly, through the gradual change in the fill fac-
tor over the depth. Nevertheless, we do not rule out the fact 
that the shape of the relief, such as pointed grating lines, can 
also play an independent role. This requires a separate study, 
which we plan to implement in the future, along with the 
experimental verification of the presented results. 

In general, the results and the analysis show that in the 
range of changes in the grating period from 50 to 100 nm, the 
calculation of the reflectance of optical radiation from the 
black silicon surface by both methods yields to similar results. 
Consequently, the ERI method in conjunction with the 
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Figure 6.  Dependences of the reflectance R for TM polarisation on the 
angle of incidence q at f = 0.70, T = 70 nm and d = ( 1 ) 50 nm, ( 2 ) 75 nm 
and ( 3 ) 100 nm; curve ( 4 ) shows the results at d = 0. Calculation by the 
RCWA method. 
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Figure 7.  Dependences of the reflectance R for TE polarisation on the 
angle of incidence q at f = 0.15, T = 70 nm and d = ( 1 ) 50 nm, ( 2 ) 75 nm 
and ( 3 ) 100 nm; curve ( 4 ) shows the results at d = 0. Calculation by the 
ERI method. 
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Figure 8.  Dependences of the reflectance R for TM polarisation on the 
angle of incidence q at f = 0.70, T = 70 nm and d = ( 1 ) 50 nm, ( 2 ) 75 nm 
and ( 3 ) 100 nm; curve ( 4 ) shows the results at d = 0. Calculation by the 
ERI method. 
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Figure 9.  Dependence of the reflectance R for TE polarisation on the 
grating period T at d = 55 nm and f = 0.5. Calculation by the RCWA 
method. 
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RCWA method may be recommended to calculate and opti-
mise the properties of this material. 

5. Conclusions 

The results of the simulation of the reflectance of visible light 
from a sub-wavelength grating with a rectangular profile on 
the surface of the silicon lead to the following conclusions. 

1. Calculation by the ERI and RCWA methods give simi-
lar results at grating periods less than 100 nm. 

2. A grating with a rectangular profile reduces the reflec-
tance of the polarised light down to ~ 1% at an appropriate 
choice of the parameters. 

3. At a fixed grating period the reflectance is a periodic 
function of the grating depth, whose period significantly 
depends on the polarisation of incident light. At the maxi-
mum the reflectance is equal to the reflection coefficient for a 
smooth silicon surface. 

4. At a fixed depth of the grating the reflectance is a func-
tion of the fill factor (duty cycle). In the first approximation, 
the corresponding curves for TE and TM polarisations are 
mirror-symmetric. 

5. A grating on a silicon surface leads to a decrease in the 
pseudo-Brewster angle and the contrast. At certain grating 
parameters, this effect for both polarisations disappears. At 
the same time, in contrast to the conventional Brewster effect, 
the effect of the pseudo-Brewster angle can manifest itself for 
both polarisations. 
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