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Abstract.   Collinear parametric scattering of light under type-II 
phase matching is considered in a periodic sequence of nonlinear 
cells made of BBO crystals. The possibilities of reducing the dura-
tion of the wave packets of biphotons and increasing their intensity 
under monochromatic pumping are studied. The analysis is based 
on the account of dispersion of the refractive indices using Sellmeier 
equations. The obtained results allow one to conclude that at an 
appropriate choice of the crystal thicknesses and the number of 
cells, it is possible to significantly increase the flux of broadband 
biphotons and obtain extremely short quantum packets. It is shown 
that for sufficiently small thicknesses of individual crystals (lay-
ers), this system exhibits a fine structure in the spectrum of bipho-
tons: with an increase in the number of cells (layers) the broadband 
spectrum is divided into a number of narrow bands and the number 
of these bands increases. When use is made of a nonlinear BBO 
crystal, this method allows one to obtain ultrashort packets of 
biphotons with duration t0 » 2 fs. Compared with a different 
method of generation of broadband biphotons, which is based on the 
use of quasi-phase-matched periodically poled crystals, the method 
studied in this paper does not necessitate the need for the phase 
modulation of a biphoton to be converted into the amplitude modu-
lation. 

Keywords: parametric scattering, broadband biphoton, interference 
of biphotons, wave packet, fine structure of the spectrum. 

1. Introduction 

In quantum optics and quantum information, one needs to 
control the temporal structure of biphoton wave packets. In 
some applications it is necessary to broaden the spectrum and 
to reduce the packet duration. This applies, for example, to 
use of biphotons for measuring group delays [1], for precision 
clock synchronisation [2] and for enhancing the maximum 
resolution in quantum-optical coherence tomography [3, 4] 
and nonlinear microscopy [5]. Katamadze and Kulik [6] have 
listed and briefly described the presently proposed and stud-
ied methods for controlling quantum states of biphotons in 
spontaneous parametric down-conversion (SPDC) in nonlin-
ear crystals. In this regard, we mention here only three meth-
ods which are directly related to the study conducted below. 
The first method is based on using a thin crystal [7, 8]. Dauler 

et al. [7] and Katamadze et al. [8] showed that in the case of a 
BBO crystal, a biphoton packet can be compressed by reduc-
ing the crystal thickness up to 0.1 mm (at smaller thicknesses 
the intensity of scattered radiation is small and biphotons 
cannot be detected). The second method of generation of 
broadband biphotons [9 – 14] is based on the use of quasi-
phase-matched periodically poled crystals. A periodic nonlin-
ear-polarised superlattice allows the quasi-phase-matching 
condition to be satisfied. A change in the superlattice period 
at the crystal length leads to a broadening of the spectrum of 
biphotons (chirp). 

The third way to reduce the duration of biphoton packets 
was proposed by Klyshko [15]. The intensity of radiation 
(flux of biphotons) decreases with decreasing crystal thick-
ness. One can, as first pointed out by Klyshko, use sequen-
tially placed thin crystals (or layers within a single crystal), in 
which, due to the interference between biphotons generated in 
some crystals, the intensity of scattered radiation increases, 
whereas the duration of biphoton packets does not increase 
and is equal to the duration of a packet generated in a single 
crystal. This method opens, in principle, ample opportunities 
for increasing the intensity of broadband biphotons. 

Klyshko [15] and Belinsky and Klyshko [16] theoretically 
studied SPDC in sequentially placed nonlinear crystals and 
derived general formulas that allow one to study the proper-
ties of biphotons packets with arbitrary dispersion of the 
refractive index of the medium. However, a specific analysis 
was performed only for wave packets with a sufficiently long 
duration t0 when we can confine ourselves to terms of a first-
order Taylor series expansion of the dispersion relations for 
the refractive indices of the spectral SPDC components. 

The aim of this paper is to study the ultimate possibilities 
of reducing the duration of wave packets of biphotons and 
increasing their intensity, which open up when use is made of 
the method of generation of broadband biphotons, proposed 
by Klyshko. This problem cannot be solved by using the first 
order dispersion only and requires the use of exact dispersion 
relations. The analysis performed in this paper is based on the 
account of dispersion of the refractive indices using Sellmeier 
equations. We consider a specific structure on the basis of 
BBO crystals with type-II phase matching. 

2. SPDC in a periodic set of crystals (qualitative 
examination) 

Characteristic features of SPDC in the system in question 
have been studied in Refs [15, 16]. This section provides a 
qualitative description of generation of biphotons in a set of 
crystals, which allows the reader to understand the basic 
results relating to the case of biphotons packets of sufficiently 
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long duration. Collinear scattering under type-II phase 
matching is analysed. We consider a special periodic structure 
of a nonlinear medium consisting of an arbitrary number of 
identical cells. Each cell contains two crystals. For simplicity, 
we assume that all the crystals in the set are uniaxial. 

The pump field is considered classical and the change of 
its amplitude in SPDC is neglected. Inside the crystal the 
pump field can be represented as a plane monochromatic wave 

Ep(z, t) = E0exp[i(kpz – wpt)].	 (1)

The z axis is parallel to the wave vector of the pump and per-
pendicular to the boundaries of the crystals in the cell. The 
boundaries of the first crystal have coordinates z = 0 and z = 
lc, where lc is the crystal thickness. The nonlinear medium is 
assumed infinite in the transverse direction. The pump wave 
is linearly polarised, the polarisation vector being directed 
along the x axis. 

Figure 1 shows the structure of a single cell. Both crystals 
in the cell have the same thickness lc. The optical axis of the 
first crystal lies in the yz plane, and of the second – in the xz 
plane (the orientation of the second crystal axis is rotated 
through 90° around the z axis). The angles between the opti-
cal axes and the z axis are the same in all the crystals. This 
configuration of the cell was proposed in [15]. 

In the case of type-II phase matching, biphoton packets 
are registered using the scheme shown in Fig. 2. At the exit 
from the crystal, the signal and idler waves have orthogonal 
polarisations. After passing through a half-wave plate, these 
polarisations are rotated through an angle of ±45° relative to 
the axis of the polarising beam splitter PBS. The combination 
of these two elements is equivalent to the beam splitter trans-
mittance T = 50 % for each photon, and so the operators 
E1
+(t) and E2

+(t) of the fields incident on the detectors D1 and 
D2 are related to the field operators of the ordinary and 

extraordinary waves, Eo
+(t) and Ee

+(t), at the output end of the 
crystal by the expressions: 

	 ( ) [ ( ) ( )]E t E t E t
2
1

, , , ,o e1 2 1 2 1 2 1 2! t= ++ + + ,	 (2) 

where t1 and t2 are the time moments of registration of the 
fields by detectors D1 and D2, respectively; and t is the delay 
between the ordinary and extraordinary waves, which in the 
experiment is typically controlled by varying the number of 
quartz plates QP on the path of light beams. 

The average rate of coincidences of photocounts áRcñ on 
detectors D1 and D2 is expressed by the second-order correla-
tion function for the intensities I1(t1) = E1

–(t1) E1
+(t1) and 

I2(t2) = E2
–(t2)E2

+(t2) measured by detectors D1 and D2: 
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The temporal structure of biphoton packets can be deter-
mined experimentally in the form of a so-called anti-correla-
tion dip (a V-shaped dip in the dependence of the rate of coin-
cidences of photocounts on the delay time t, arising due to 
correlation of orthogonally polarised photons) [17, 18]. 

2.1. A single crystal 

Consider first spontaneous parametric scattering in a single 
crystal with a quadratic nonlinearity. The correlation func-
tion  F (t1, t2) = ( ) ( )E t E t1 1 2 2 H+ +G , which is called the amplitude of 
a biphoton state (biphoton amplitude) defines the correlation 
of the fields registered at time t1 and t2. In the first order of 
perturbations with respect to the value of the parametric 
amplification coefficient the biphoton amplitude has the form 
of a rectangular wave packet and is given by the formula 

( , ) ( ) [ ( ) /2]exp iF t t WE l t t t tc p1 2 0 1 2 1 2wP= - - - ,	 (4) 

where W is a constant, which includes all the coefficients and 
slowly varying functions depending on the pump frequency 
wp; and P (x) is a rectangular function defined as follows: 

( )
/  ,
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x
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in
) 	 (5) 

The packet duration is 

t0 = Alc,	 (6) 

where A = 1/uo – 1/ue; and uo and ue are the group velocities of 
ordinary and extraordinary waves in a crystal at a frequency 
wp /2; in formula (4) it is assumed for simplicity that collinear 
phase matching at frequency wp is degenerate. 

For a rectangular biphoton wave packet, taking into 
account relations (1) for the fields on detectors D1 and D2, we 
obtain the formula for the normalised coincidence rate Rc = 
áRcñ/Rmax [Rmax is the maximum value of áRcñ]: 

( )
2| |/ | | /2,
1 | | /2.

for
for

Rc
0 0

0
t

t t t t
t t

=
1

2
) 	 (7)

The dependence of the coincidence rate on the delay time t 
has a triangular dip. At the centre of the dip (at t = 0), the rate 
Rc vanishes in the case of degenerate phase matching. 
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x

Figure 1.  Cell structure. Arrows show the optical axes of the crystal. 
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Figure 2.  Schematic of registration of SPDC with type-II phase match-
ing: (PPC) periodically placed nonlinear crystals; (QP) quartz plate; 
( l/2) half-wave plate; (PBS) polarising beam splitter; (D1, D2) photode-
tectors; (CC) coincidence circuit. 
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2.2. A sequence of identical cells 

If instead of a single crystal use is made of a single cell shown 
in Fig. 1, the biphoton amplitude transforms as follows: 

( , ) ( ) [ ( ) /2]exp iF t t WE l t t t tc p1 2 0 1 2 0 1 2t wP= - + - + .	 (8) 

As can be seen from (8), one cell does not change the duration 
and shape of the biphoton packet, P (x). The second crystal 
in the cell shifts the centre of the biphoton packet (and a tri-
angular dip) from position t1 = 0 to a new position t2 = – t0. 
The biphoton is generated in the first crystal of the cell, where 
type-II phase-matching condition is fulfilled. In the second 
crystal, the pump wave is an ordinary wave, and the phase-
matching condition is not met. The second crystal induces 
only an additional biphoton delay, which is opposite in sign 
to the delay in the first crystal. Changing the sign is due to the 
fact that an ordinary wave from the first crystal becomes 
extraordinary in the second one. 

We now take three crystals. In this case, biphotons are 
generated in two crystals (first and third) and a biphoton 
packet can be given in the form: 

( , ) ( ) [ ( ) /2]exp iF t t WE l t t t t2 c p1 2 0 1 2 1 2wP= - - - .	 (9) 

In accordance with (9) the packet preserves its rectangular 
shape P (x), and its duration is still equal to t0, as in the case 
of a single crystal. The biphoton amplitude is doubled. The 
centre of the biphoton packet (and a triangular dip) in this 
case is at the same position t1 = t0 /2, as in the case of a single 
crystal. 

In the general case, with N identical cells, the duration of 
the rectangular biphoton packet remains constant, and the 
biphoton amplitude increases by N times. When using N iden-
tical crystals (or a single crystal of thickness Nlc), the bipho-
ton amplitude also increases by N times. However, the dura-
tion of a biphoton packet increases by N times (the spectrum 
width is reduced by N times). 

3. Allowance for exact dispersion relations  
in the crystals of the cell 

As noted above, the general formulas taking into account the 
refractive index dispersion of a medium were derived in [15]. 
In this study it was assumed that the second crystal in the cell 
plays only a passive role, compensating for dispersion in the 
first crystal. This assumption becomes invalid for very thin 
crystals (lc » 1 mm). In this case, it is necessary to take into 
account an additional contribution, which arises due to SPDC 
occurring in the second crystal of the cell. Therefore, the for-
mulas below are derived with allowance for SPDC in the sec-
ond crystal of the cell. 

In the spectral representation the annihilation operators 
as(z, t) for the signal wave and ai(z, t) for the idler wave inside 
the crystal can be represented as 

j j( , ) ( , ) [ ( ) ]expd i ia z t a z t k zj j j j jw w= -w wy ,	 (10) 

where kj (wj) = wj nj (wj)/c are the wave vectors of the signal 
( j = s) and idler ( j = i) waves; and nj (wj) are the refractive indi-
ces taking into account the dispersion in the crystal. 

In the Heisenberg representation the equations for the 
operators aj (z, wj) have the form [19] 

¶
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z
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WE a z zs s
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w

w D=
@ ,	 (11a)

¶
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a z
WE a z z*i i

s s0
w

w D= -
@

,	 (11b)

where the function D is introduced, which depends on the 
detuning of the wave vectors of the interacting waves: 

D = ks(ws) + ki(wi) – kp.	 (12) 

With allowance for the phase-matching condition wp = ws 
+ wi, we will represent the frequency of the signal and idler 
waves in the form ws = w0 + W and wi = w0 – W, where w0 = 
wp /2. Solving equation (11) in the first order of perturbation 
with respect to the parametric-gain coefficient g = WE0lc, we 
find the biphoton amplitude produced by the first cell: 

( ) ( )exp i dI tW W W-( , ) [ ( )] ,exp iF t t WE l t k lc p p c1 2 0 1w= - -y  (13) 
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t = (t1 + t2)/2; t_ = t1 – t2.	

(14)

Unlike (12), the function D1 is defined as follows: 

D1 = ks(wi) + ki (ws) – kp.	 (15) 

This difference occurs due to the fact that the axis of the sec-
ond crystal in the cell is rotated through 90°. 

In the general case, when a biphotons packet is generated 
by a set of N cells, we obtain the formula for the biphoton 
amplitude FN (t1, t2): 

( , ) [ ( )]exp iF t t WE l t k lp p cN c1 2 0 w= -

	 ( ) ( ) ( )exp i dI F tN1# W W W W- -y ,	 (16)

where 

( ) ; { [ ( ) ( )] };exp iF
q
q

q l
1
1

cN

N

1W D W D W=
-
-

= + 	 (17)

and I1(W) is defined in (14). 
Equations (14) – (17) for FN (t1, t2) differ, apart from the 

notations, from those derived in [15] by expression (14) for 
the shape of the spectrum I1(W) in the first cell. The difference 
is due to the fact that Klyshko [15] made an assumption that 
the second crystal plays a passive role in the cell. This assump-
tion becomes invalid for very thin crystals (lc » 1 mm). In this 
case, the SPDC intensity in the second crystal cell is compa-
rable with the SPDC intensity in the first crystal. As in [15], in 
deriving formulas (14) – (17) we neglect the reflection of the 
waves from the ends of the crystals. In all the cases considered 
below, SPDC in the second crystal of the cell has little effect 
on the spectrum of biphotons; therefore, we present below the 
results obtained for I1(W) when instead of (14), use is made of 
a simpler formula 
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To calculate the coincidence rate áRc(t)ñ we must take into 
account transformation (2) of the fields of the signal and idler 
waves on the beam splitter. As in [19], the dependence áRc(t)ñ 
can be represented as the sum of two components: 

áRc(t)ñ = 2R0 – r(2t),	 (19) 

where 

2 ( ) ( )dR WE l Gc N0 0
2 W W= y ;	 (20)

(2 ) ( ) ( ) ( 2 )exp i dWE l Gc N0
2r t tW W W= -y .	 (21)

The spectrum of the biphoton field intensity GN (W) is 
given by 

( ) (1 / ) | ( )| | ( )|G F IN N
2

0
2 2

1
2wW W W W= - .	 (22) 

Note that the factor 1 /2 0
2wW-  in (22) arises from the fact that 

the spectral density includes the product of photon energies  
(1 / )s i

2 2
0
2 2

0
2' 'w w w wW= - . Given (17), the spectrum GN (W) 

can be written in the form 
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where 

( ) ( ) ( );1D W D W D W= +S

( ) (1 / ) | ( )|G I1
2

0
2

1
2wW W W= - .	

(24) 

In accordance with formulas (2), (3), (19) – (21), the coin-
cidence rate áRc(t)ñ is determined by the second-order time-
correlation function [for intensities I1(t1) and I2(t2) registered 
by detectors D1 and D2] and is expressed in terms of the 
square of the modulus of the biphoton amplitude |F (t1, t2)|2. It 
is this correlation function that sets the temporal profile and 
duration of a biphoton packet. According to (19) – (21), the 
coincidence rate áRc(t)ñ in the centre of the dip (at t = 0) is 
reduced to zero. This takes place in the case of degenerate 
phase matching, which is considered in this paper. Under 
nondegenerate phase matching, the depth of the anticorrela-
tion dip decreases. 

The formulas obtained will be used for the analysis of 
SPDC in a periodic sequence of thin crystals, by taking into 
account the exact dispersion relations for nj(wj) based on the 
Sellmeier equations. 

4. Approximation of exact dispersion relations 

As will be seen below, approximation of exact dispersion 
relations with allowance for the second-order terms (µW 2) 
gives results which are in good agreement with those of exact 
dispersion relations almost in the entire region of the spec-
trum. Using this approximation, we give the following 
approximate formulas based on the Taylor series expansion 
with allowance for terms up to the second order in W: 

Da(W ) = AW + BW 2,	 (25a)

Da1(W ) = kp1 – kp – AW + BW 2,	 (25b)

DaS(W ) = Da(W ) +Da1(W ) = kp1 – kp + 2BW 2.	 (25c) 

Here, the superscript ‘a’ means that for the function Dj (W )  
use is made of the quadratic approximation in W; and kp is the 
wave vector of the pump field in the first crystal of the cell, 
and kp1 – in the second. The difference between kp and kp1 
arises from the fact that in the first crystal the pump wave is 
extraordinary, and in the second – ordinary. 

Taking into account (23) and (25) we obtain a spectrum in 
the form 

( ) ( )
( )
[( ) ]

sin
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G G
B l
B l N

c

c
N 1 2 2

2 2

w
j

j
W

W
W

=
+

+ ,	 (26) 

where j = (kp1 – kp)lc. Analysis of formula (26) shows that the 
second cofactor plays a role of a frequency filter with a bandwidth 

2 /( )Blcpd = .	 (27) 

At a sufficiently large number of cells, 

N > t02 /(2pBlc),	 (28) 

the filter bandwidth is divided into a number of narrow bands 
with a width 

/( )Bl N2 cN pd = .	 (29) 

5. Results of numerical studies 

Dispersion of the refractive indices will be taken into account 
in accordance with the Sellmeier equations. As a nonlinear 
crystal, use is made of a BBO crystal with type-II phase-
matching (e – oe). The numerical results presented below are 
obtained for crystals cut so that the wave vector of the pump 
(z axis) is directed at an angle q0 = 49° to the crystallographic 
axis; the pump wavelength (in vacuum) lp is assumed equal to 
351 nm. This case under study corresponds to the conditions 
of the experiments from [7]. Detailed theoretical analysis for a 
single crystal was carried out in [20]. 

In the first crystal of the cell, the signal wave is ordinary 
and its refractive index is ns(ws) = no(ls). For the idler wave, 
ni(wi) = ne(li) and 

( )
1 ( )

( )
cos

n
n

i i
i

e i2
2
0

2

w
g l q

l
=

-
,	 (30) 

where g( l) º 1 – ne2(l)/no2(l). The values of the refractive indi-
ces for the ordinary and extraordinary waves, no( l) and ne( l), 
are calculated using Sellmeier equations for the BBO crystal. 

Let us first compare dispersion dependences calculated by 
using the Sellmeier equations and their approximation with 
allowance for the second-order terms (BW  2). Figure 3 shows 
the exact dependence D(w) and its approximation Da(w) = 
Aw + Bw2. One can see that the exact dependence and its 
approximation calculated using approximate formulas (25) 
are in good agreement with each other in almost the entire 
range of changes in w (except narrow gaps near the boundar-
ies of the transparency region). 

In approximating exact dispersion relations, we used the 
following parameters: A = 2.5 ´ 10–10 s m–1 and B = 0.82 ´ 
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10–25 s m–2. Parameter kp1 – kp, included in formula (25) for 
D1(W ) and DS(W ), is equal to 1.3840 ´ 106 m–1. 

5.1. Possibility of increasing the flux of biphotons 

Let us analyse the possibilities of the thus generated broad-
band biphotons in several BBO crystals with lc = 0.1 mm. We 
present the results of calculations. Below, instead of the con-
ventional coincidence rate áRcñ we will use the relative rate 
áRc(t)ñ/Rref, where Rref is the maximum rate of coincidences, 
observed in the case of a single crystal of thickness 0.1 mm. 
Figure 4 shows the relative rates of coincidences for a single 
crystal and a stack of 20 cells. The packet duration is t0 = 
25 fs, which agrees well with the experimental data [7]. For 20 
cells the coincidence rate increases by 250 times, whereas the 
packet duration remains the same. 

From our results it follows that for 0.1-mm-thick crystals 
it is possible to increase the flux of biphotons with increasing 
number N of cells in the system. In this case, the spectral 
width and the duration of a wave packet are the same as in the 
case of a single crystal.

5.2. Possibility of broadening the spectrum of biphotons 

Let us analyse the possibilities of broadening the spectrum of 
biphotons generated in a periodic sequence containing N 
cells. Figure 5 shows the spectrum G1(w) in the case of a single 
cell with lc = 9.08 mm, calculated by formulas (18) and (24) 
(dashed curve) and with allowance for SPDC in the second 
crystal of the cell (solid curve). The crystal thickness lc = 
9.08 mm is selected to satisfy the condition j = (kp – kp1)lc = 
4p. One can see that taking into account SPCD in the second 
crystal of the cell has little effect on the spectrum of a gener-
ated biphoton. This also applies to other spectra discussed 
below; therefore, below we present the results obtained by 
using formulas (18) and (24). 

In accordance with the results of experimental studies car-
ried out in [7], a biphoton packet can be registered at a coinci-
dence rate for which áRc(0)ñ/Rref ³ 1. Such rates of coinci-
dences at crystal thicknesses lc £ 10 mm are obtained when the 
number of cells is N ³ 5. 

In the case of five cells with crystals having thickness lc = 
9.08 mm, the spectrum GN (w) is shown in Fig. 6a. For com-
parison, Fig. 6c shows the spectrum obtained for a single 
0.1-mm-thick crystal. It is seen that the use of five cells formed 
from 9.08-mm-thick crystals allows a four-fold broadening of 
the maximum width of the spectrum observed in [7] for a sin-
gle 0.1-mm-thick crystal. The flux of biphotons is the same in 
both cases. 

In using 100 cells formed from 4.505-mm-thick crystals, 
the biphoton spectrum GN (w) is shown in Fig. 6b. In this case, 
the flux of biphotons increases by about five times (in com-
parison with the flux in the case of a single crystal with lc = 0.1 
mm). One can see that when there are many cells, the bipho-
ton spectrum has a fine structure and exhibits a set of narrow 
bands throughout its entire width; the number of bands, into 
which the spectrum of a broadband biphoton is divided, 
increases with increasing number of cells. 

6. Discussion of the results 

As we have already mentioned in Introduction, one of the 
ways to generate broadband biphotons is based on the use of 
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Figure 3.  Dispersion dependence D(w) calculated in accordance with 
Sellmeier equations and its approximation Da(w) = Aw + Bw2. 
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of an anticorrelation dip) at N = 20 (solid line) and 1 (dashed curve); 
lc = 0.1 mm. 
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Figure 5.  Spectrum of a biphoton packet G1(w) = |I1(w)|2 in the case of 
a single cell at l c = 9.08 mm. The dashed curve shows the G1(w) spectrum 
by neglecting SPDC in the second crystal cell. 
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thin crystals. Previous experimental studies [7, 8] showed that 
for BBO crystals there exists a maximum thickness lc = 0.1 mm, 
caused by a decrease in the flux of generated biphotons. Our 
studies have shown that when the BBO crystal thickness is no 
less than 0.05 mm, the method of generation of broadband 
biphotons, proposed by Klyshko, should work well. At thick-
nesses lc ³ 0.05 mm, the flux of generated biphotons can by 
markedly increased by using a sufficiently large number N of 
cells. In this case, the width of the wave spectrum and dura-
tion of the packet remain the same as in the case of a single 
crystal (t0 » 10 fs). 	

For smaller crystal thicknesses (lc £ 0.05 mm), application 
of the method proposed by Klyshko allows the spectrum of 

biphotons to be further broadened and their duration to be 
reduced. As shown by the above calculations, one can gener-
ate packets 2 fs in duration. For sufficiently small thicknesses 
of individual crystals (layers) in the system under study there 
appears a fine structure in the spectrum of biphotons: the 
broadband spectrum is divided into a number of narrow 
bands with increasing number of cells (layers) and the 
number of these bands increases. Of interest are the experi-
mental studies of this structure in the spectrum of broad-
band biphotons. 

Currently, as noted above, the spectrum broadening and 
the biphoton packet compression can be achieved by using 
quasi-phase-matched periodically poled nonlinear crystals 
in which the optical axes of adjacent layers are antiparallel 
and coplanar [9 – 14]. This method is similar to that pro-
posed by Klyshko. Nevertheless, these methods essentially 
differ. In the case of layers with antiparallel axes in the cell, 
the spectrum of a biphoton packet is broadened in the pres-
ence of a chirp (with changing the modulation period of the 
nonlinear polarisation in the crystal thickness). Therefore, 
there appears only a phase modulation of a biphoton packet, 
while its duration remains the same (the packet duration is 
determined by the crystal thickness). The packet duration 
can be reduced in two stages: at the first stage a biphoton is 
generated in a quasi-phase-matched periodically poled non-
linear crystal, and at the second – the packet is compressed 
as a result of conversion of phase modulation into ampli-
tude modulation during the passage of one of biphoton 
components (for example, the signal wave) through an addi-
tional medium with group velocity dispersion. This two-
stage conversion of biphotons has been implemented only in 
[14], where the authors compressed a biphoton packet down 
to 100 fs. The method proposed by Klyshko has in this 
respect a significant advantage: an ultrashort biphoton wave 
packet is generated in SPDC in a stack of nonlinear crystals, 
and the second stage is not necessary. The studies carried 
out in this paper show that this method allows one to gener-
ate packets with a duration t0 » 2 fs, i.e., two orders of mag-
nitude smaller than in [14]. 

Note that our analysis applies to the case of monochro-
matic pumping when biphotons effectively interact with the 
pump field throughout the crystal. In another limiting case, 
when pumping is performed by an ultrashort pulse and the 
length of its coherence is less than the crystal thickness lc, 
the flux of emitted biphotons is generated only by a part of 
the crystal. For this case our analysis proves incorrect and 
the problem of the duration reduction and the increase in 
the flux of biphotons may have specific characteristics. 
These characteristics are expected to be considered in a 
separate publication. 

7. Conclusions 

Almost 20 years ago, Klyshko [15] proposed to compensate 
for a decrease in the biphoton flux with decreasing nonlinear 
crystal thickness by a special periodic multilayer structure. In 
this paper, we have calculated the spectra of broadband 
biphotons with allowance for exact dispersion in a BBO crys-
tal. Our results have shown that the implementation of the 
method proposed by Klyshko will make a significant progress 
in solving problems that require an increase in the intensity of 
ultrashort biphotons and in research aimed at the biphoton 
spectrum broadening and at generating extremely short quan-
tum packets. 
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Figure 6.  Spectra of a biphoton packet GN (w) in the case of (a) five and 
(b) 100 cells and in the case of (c) a single crystal for different values of lc. 
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