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Abstract.  We study theoretically how the dependences of transport 
collision frequencies ni, collision broadening g and collision shift D 
of the levels on the velocity u of resonant particles influence light-
induced diffusive pulling (pushing) (LDP) effects in the framework 
of a generalised model of strong collisions in the case of velocity-
dependent collision rates (so-called kangaroo model). It is found 
that allowance for the dependences ni(u), g(u) and D(u) does not 
change the spectral shape of an LDP signal. In particular, in the 
case of low-intensity radiation, the spectral dependence of the LDP 
signal coincides with the absorption line shape. It is shown that the 
magnitude of the LDP effect is proportional to the difference 
between the diffusion coefficients of particles in the excited and 
ground states. It is found that the spectral anomalies previously 
predicted in the LDP effect [Gel’mukhanov F.Kh. JETP Lett., 55, 
214 (1992)] for an idealised model of the Lorentz gas (the limiting 
case of heavy buffer particles), which arise due to the dependences 
ni(u), g(u) and D(u), are typical only for this gas. At a realistic ratio 
of the masses of absorbing and buffer particles, spectral anomalies 
do not occur in the LDP effect. 

Keywords: kinetic equations, collisions, transport rate, impact 
width, collision drift. 

1. Introduction 

The effect of light-induced diffusive pulling (pushing) (LDP) 
[1, 2] refers to the strongest gas-kinetic effects in a laser field 
and to date is well studied both theoretically and experimen-
tally [2 – 10]. The essence of the effect is that particles, absorb-
ing resonantly radiation and being in a mixture with a buffer 
gas, can be pulled into or pushed out of a light beam. The 
LDP effect is caused by the spatial inhomogeneity of concen-
trations (due to the spatial inhomogeneity of the radiation 
intensity in the direction transverse to the direction of the 
light beam) and the difference in the diffusion coefficients of 
excited and unexcited particles of an absorbing gas. With this 
effect, the diffusion coefficients of Li, Na, K and Rb atoms (in 
the ground and excited states) were measured in various buf-
fer gases [5, 6, 8 – 10]. 

In the case of the LDP effect, the spatial distribution of a 
light-induced nonequilibrium increment DN to the concentra-
tion of absorbing particles in the light beam ‘keeps track of’ 
the local radiation intensity. In LDP theory, it is usually 
assumed that the collision broadening g(u) and collision shift 
D(u) of the levels do not depend on the velocity u of the reso-
nant particles: 

( ) , ( )const const0 0g u g uD D= = = = .	 (1)

In this case, the spectral dependence of the LDP signal (DN) 
at a low radiation intensity coincides with the absorption line 
shape [2 – 5, 7]. 

Theoretical studies [11, 12] for the Lorentz gas (the limit-
ing case of heavy buffer particles: М << Mb, where М and Mb 
are the masses of resonant and buffer particles) have shown 
that taking into account the dependences g(u) and D(u) can 
significantly alter the spectral profile of the LDP signal right 
up to the appearance of a deep dip near the centre of the 
absorption line or even a sign-alternating dependence on the 
frequency detuning W of radiation. The strong influence of 
dependences g(u) and D(u) on the shape of the LDP signal 
may occur when the difference between the transport collision 
frequencies of the resonant particles in the ground and excited 
states with buffer particles, Dn(u), changes its sign as a func-
tion of u [11, 12]. 

The sign-alternating dependence Dn(u) is not at all uncom-
mon and can be observed for a variety of atoms and mole-
cules. It is well known that this dependence results in the 
appearance of so-called anomalous light-induced drift (LID), 
experimentally measured for atoms [13] and molecules 
[14 – 21]. Therefore, the spectral anomalies in the LDP effect 
predicted in papers [11, 12] can actually arise under the same 
conditions in which anomalous LID is observed. 

Apart from papers [11, 12], no other studies of the influ-
ence of dependences g(u), D(u) and Dn(u) on the spectral shape 
of the LDP signal have been carried out yet. A natural ques-
tion arises about whether spectral anomalies in the LDP effect 
are possible for the general case of an arbitrary ratio of masses 
of buffer and absorbing particles or they are specific to the 
Lorentz gas. In this regard, it is interesting to consider the 
LDP effect in the framework of a universal collisional model 
that would describe the possible impact of the velocity depen-
dence of the collision rates on the LDP effect for any interac-
tion potential of the colliding particles and any ratio of their 
masses. We believe that as such, use can be made of the so-
called kangaroo model [22 – 24], which is a generalisation of 
the model of strong collisions to the case of velocity-depen-
dent collision rates. 
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The aim of this work is to study, within the framework of 
the kangaroo model, the influence of the velocity dependence 
of the collision rate on the LDP effect. 

2. General relations 

Consider the interaction of a travelling monochromatic elec-
tromagnetic wave 

[ ( )exp i i tE krE w= -  + c. c.]/2

with two-level absorbing particles in a mixture with buffer 
particles. We neglect collisions between absorbing particles, 
assuming the concentration Nb of the buffer gas to be much 
higher than that of the absorbing gas, N. Interaction of par-
ticles with radiation in stationary and spatially inhomoge-
neous conditions is described by the equations for the density 
matrix [7, 25]: 

( ) ( ) ( ) ( )S NPm m md ru u u uG+ = + ,

( ) ( ) ( ) ( )S NPn n m mdr ru u u u uG= + - ,	 (2)

{ ( ) [ ( ) ]} ( ) [ ( ) ( )]i iGk mn n md u u r r ru u u u uG W+ - - = - ,

where 

( ) 2 [ ( )];Re iNP G G Ed
2mn
mn

'
ru u=- =

) ;

( ) ( ); ( ) ( );
2
m

mnu g u u w w uG
G

W D= + = - - 	
(3)

rn(u) and rm(u) are the particle velocity distributions in the 
ground (n) and excited (m) states; N = Nm + Nn is the concen-
tration of absorbing particles (Ni = ( )dir u uy , i = m, n); Sm(u) 
and Sn(u) are the collision integrals; dmn is the matrix element 
of the dipole moment of the transition m – n; w and k are the 
frequency and the wave vector of radiation; wmn is the fre-
quency of the transition m – n; Gm is the rate of spontaneous 
relaxation of the excited state m; and P(u) is the probability of 
radiation absorption by a particle with a specified velocity u 
per unit time. 

We take into account the fact that in the LDP experiments 
[5, 6, 8 – 10], the characteristic size of the spatial inhomogene-
ity (light beam radius a) is significantly greater than the mean 
free path of particles, l: 

a >> l.	 (4)

When condition (4) is met, in the last equation in (2) one can 
neglect the term with the spatial derivative. To this end, for 
the absorption probability P(u) (3) we find from the last equa-
tion in (2) 

( ) 2 | | ( ) [ ( ) ( )]NP G Y n m
2 r ru u u u= - ,

( )
( ) [ ( ) ]

( )
Y

k2 2u u
u

u
uG W

G
=

+ -
 .	 (5)

Note also that in the LDP experiments, the homogeneous 
half-width of the absorption line G (u) is large compared with 
the Doppler broadening kuT, which allows us to make use of 
the homogeneous broadening approximation: 

G (u) >> kuT,	 (6)

where uT = (2kBT/M)1/2 is the most probable velocity of 
absorbing particles; T is the temperature; and kB is the 
Boltzmann constant. 

When condition (6) is met, the velocity distribution of the 
absorbing particle in each state differs little from the 
Maxwellian distribution. This allows one to obtain from 
kinetic equations (2) closed equations of hydrodynamics. In 
the case of elastic collisions, for diagonal collision integrals 
equation (2) contains the relations (i = m, n) [7, 26]: 

( ) 0dSi u u =y ,

( ) , ( )d dS j jtr
i i i i in ru u u u u u=- =y y .	

(7)

Here, ji is the particle flux density in the state i; 
tr
in  is the mean 

transport collision rate of absorbing particles with buffer 
ones. Collision rates tr

in  can be considered independent of the 
coordinates, since the concentration of the absorbing gas, N, 
is assumed to be significantly lower than the concentration of 
the buffer gas, Nb. 

In the general case, each of the flows ji has two compo-
nents: a transverse component with respect to the wave vector 
k associated with the concentration gradient, and a longitudi-
nal component arising due to the velocity-selective excitation. 
The presence of the longitudinal components of the flow leads 
to the LDP effect [7, 26]. Not to introduce new notations, by 
flows ji are meant the transverse components and we consider 
the problem in the plane orthogonal to the vector k. 

Integrating the first equation in (2) in velocity, with allow-
ance for (7) we obtain 

divN NPjm m mG + = ,	 (8)

where ( )dP P u u= y  is the velocity integrated probability of 
radiation absorption, which determines the absorption line 
contour. Multiplying equation (2) by u and integrating in 
velocity, we obtain the equations for the flows: 

( ) 0Nj
2

tr
m m m

T
m

2

dn uG+ + = ,

Nj j
2

tr
n n

T
n m m

2

dn u G+ = .	

(9)

When conditions 

,tr tr
m nn n  >> Gm	 (10)

are satisfied, we find from (9) the relation between a partial 
flow and a gradient of the corresponding population, similar 
to the ordinary relationship in the theory of diffusion: 

N D Nj
2 tri
i

T
i i i

2

d d
n
u

=- =- ,	 (11)

where Di = /( )2 tr
T i
2u n  is the diffusion coefficient of the absorb-

ing particles in the state i. Under steady-state conditions, the 
total diffusion flux of particles across the light beam is equal 
to zero: 

jm + jn = 0.	 (12)
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After substituting (11) into (12), we obtain the equation 
that establishes a relationship between the concentration of 
particles in the ground and excited states: 

0N N
tr tr
m

m

n

nd d

n n
+ = .	 (13)

This relation is of differential nature where spatial inhomoge-
neity manifests itself. 

A necessary additional relation between the concentra-
tions Nm, Nn and the integral absorption probability P is 
found using equation (8). Let the condition 

Gm >> Dm /a2	 (14)

be met. Inequality (14) means that the distance, over which an 
atom diffuses into the excited state 1/Gm during the lifetime, is 
significantly less than the light beam radius a. In condition 
(14) the second term of equation (8) can be neglected; as a 
result, taking into account the normalisation condition (N = 
Nm + Nn) we have from (8) 

; 1N NP N N N N P
m

m
n m

mG G
= = - = -c m  .	 (15)

After substituting (15) into (13), we obtain a differential equa-
tion for the concentration of absorbing particles, N: 

N
N P P1 tr

tr tr

tr

tr tr

m

n m

m m

m n

m

d d
n

n n
n

n n
G G+

-
=

-c m  .	 (16)

Equation (16) has the solution: 

N
N N P P1tr

tr tr

tr

tr tr

m

m n

m m

n m

m0

0
1

n
n n

n
n n

G G
-

=
-

+
-

-

c m ,	 (17)

where N0 is the concentration of absorbing particles outside 
the light beam. The concentration is spatially inhomogeneous 
due to the spatial inhomogeneity of absorption probability of 
radiation (radiation intensity) in the transverse direction of 
the light beam. Due to condition (14) the concentration of 
absorbing particles is determined by the local value of the 
radiation intensity at a given point of the light beam. 

As can be seen from formula (17), if tr
mn  ¹ tr

nn  and P ¹ 0, 
then the change in the concentration DN = N – N0 is nonzero. 
When tr

mn  > tr
nn , absorbing particles are pulled into the light 

beam (N > N0), but when 
tr
mn  < tr

nn , they are pushed out of it 
(N < N0). With increasing radiation intensity (with increasing 
P) the concentration gradient increases. At a high intensity 
the absorption probability P tends to Gm/2 (see, e.g., [7]), and 
in this case, the LDP effect is maximal: (N – N0)/N0 = (

tr
mn  – trnn )/

( tr
mn  + tr

nn ). ). Here, if tr
mn  >> tr

nn , the concentration in the beam 
is doubled. In the opposite limiting case ( tr

mn  << tr
nn ), absorb-

ing particles are almost completely pushed out of the beam: 
N/N0 = 2

tr
mn / tr

nn . 
In the case of low intensity, such that 

P/Gm << 1,	 (18)

formula (17) takes the simple form: 

N
N N P

tr

tr tr

m

m n

m0

0

n
n n

G
-

=
-  .	 (19)

If the mean transport collision rates tr
in  of absorbing par-

ticles with buffer particles do not depend on the frequency 
detuning W of radiation, the spectral dependence of the LDP 
signal DN º N – N0 coincides with the shape of the absorption 
line, determined by the radiation absorption probability P. If 
the rates tr

in  depend on the detuning W, then spectral anoma-
lies are possible in the LDP effect. 

3. Collision kangaroo model 

Let us find the mean transport collision rate tr
in  of absorbing 

particles with buffer ones, defined by (7). For the collision 
integrals Si (u) we will use the collision kangaroo model 
[22 – 24]: 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )S
W

Wi i i
i

i i
iG H

G H
n u r

n u
n u r

n uu u
u
u

u=- + ,	 (20)

where ni (u) is the transport collision rate; W(u) is the Maxwell 
distribution; and the angle brackets denote velocity integra-
tion. The kangaroo model (20) is a generalisation of the model 
of strong collisions to the case of velocity-dependent collision 
rates. 

For mean transport collision rates tr
in , from (7) with 

allowance for (20) we obtain the expression: 

( ) ( )
( ) ( ) ( )

j
jtr

i
i i

i i i

G H
G H

n
r

n u r
u u

u u
=  .	 (21)

Here, ri(u) is velocity distribution of particles in the state i in 
terms of spatial inhomogeneity that is characteristic of the 
LDP effect. It is quite simple to find an expression for ri(u). 
Let ri

0(u) be the solution to the kinetic equation (2) under spa-
tially homogeneous conditions. Because of the presence of the 
diffusion flux of particles ji across the light beam, the distribu-
tion ri(u) will almost not differ from the distribution ri

0(u). 
This difference is most easily taken into account by the 
approximate Grad method, widely used for the solution of 
the kinetic equations [27, 28]. According to this method, the 
dependence ri(u) is given by the sum of the distribution ri

0(u) 
and antisymmetric increment: 

( ) ( ) N
j

1 2
i i

T i

i0
2r r

u
u u

u
= +c m  .	 (22)

Next, to find the velocity distribution of populations, 
ri
0(u), we limit our consideration to the condition of the low 
radiation intensity (18), assuming that the fraction of parti-
cles in the excited state m is negligible (Nm << N), and the 
velocity distribution of populations in the ground state n is 
close to Maxwellian. Expression (5) for the absorption prob-
ability P(u) takes the simplest form: 

( ) 2 | | ( ) ( )P G Y W2u u u= .	 (23)

Under spatially homogeneous conditions, from kinetic equa-
tions (2) with allowance for expressions (20) and (23) we find 
the velocity distribution of populations, which can be conve-
niently represented as 

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

N P P
W
Wm

m m
m

m
0

1 2
2

2G H
G H

r
t u t u

t u
t uu

u u
u
u

= + ,
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( )
( ) ( ) ( )N W Pn

n

0

1
r

t u
u

u u= -

	 –  ( ) ( )
( ) ( )
( ) ( )P P
W
P

m
n

m

m
1

2

2G H
G H
G H

t u
t u
t u

u
u
u

G - +) 	

(24)

	 ´  W ( )n n1 1 u[ ( ) ( ) ( )]WG Ht u t uu - 3 ,

where

( )
( )
; ( )

[ ( )]
( )

;1
m

m m
m

m m m

m
1 2t u

n u
t u

n u
n u

G G G=
+

=
+

	 ( )
( )
( )

( )n
n

m
m1 1t u

n u
n u

t u= .	
(25)

From (24) it follows that the velocity distributions of popula-
tions, rm

0 (u) and rn
0(u), represent the sum of the anisotropic 

parts directly induced by radiation [function P(u)] and iso-
tropic parts generated by the arrival term in the collision inte
gral (20).

In the limit of large transport collision rates (these are 
typical conditions in LDP experiments), 

nm(u) >> Gm ,	 (26)

and at low intensity (18), the velocity distributions of popula-
tions (24) contain only the isotropic parts and coincide with 
the Maxwell distribution: 

( ) ( ), ( ) ( )P NW NWm
m

n
0 0r ru u u u

G
= = .	 (27)

As a result, for mean transport collision rates, from relation 
(21) with formulas (22) and (27) taken into account we find 
the expression: 

3

( )exp d
3
8tr

i
T T

i5
4

2

2

0p
n

u
u

u
u n u u= -d ny .	 (28)

As can be seen, mean transport collision rates trin  of absorbing 
particles with buffer particles, appearing in LDP theory, do 
not depend on the frequency detuning W of radiation. This 
means, according to (19) that the spectral dependence of the 
LDP signal DN at a low radiation intensity always coincides 
with the shape of the absorption line, determined by the radi-
ation absorption probability P. 

Thus, the spectral anomalies in the LDP effect predicted 
by theoretical studies [11, 12] for an idealised model of the 
Lorentz gas (the limiting case of M << Mb) are typical only 
for this gas. At a realistic ratio of the masses of absorbing and 
buffer particles the spectral anomalies do not arise in the LDP 
effect. 

The reason behind the appearance of spectral anomalies 
in the LDP effect when it is considered in the Lorentz gas 
model is as follows. In the case of heavy buffer particles, the 
condition M << Mb allows one to distinguish between two 
scales of the collision relaxation rate: the direction [ni(u)] and 
the magnitude [ni(u)M/Mb] of the velocity u of resonant par-
ticles. Given that 

GmMb/M >> nm(u) >> Gm ,	 (29)

which can only be fulfilled in the Lorentz gas (this condition 
was used in calculations of Refs [11, 12]), the atom during its 
lifetime in the excited state 1/Gm does not change the modulus 

of its velocity u = |u|. Therefore, the non-equilibrium of the 
velocity distribution of particles, directly induced by radia-
tion [function P(u)], is effectively transferred to the orthogo-
nal direction of the wave vector k. These non-equilibrium 
structures in the distributions of populations in velocity mod-
ulus u at the levels m and n determine the dependence of the 
mean of transport collision rates tr

in  on the frequency detun-
ing W of the radiation, which leads to the appearance of the 
spectral anomalies in LDP effect for the Lorentz gas. 

For the non-Lorentz gas, the effect of collisional transfer 
of non-equilibrium in the velocity distribution of resonant 
particles in a laser field is weak and can be neglected 
[24, 29, 30]. In view of this, the mean transport collision rates 
tr
in  do not depend on the frequency detuning W of radiation, 
and therefore the spectral anomalies in the LDP effect do not 
arise. 

4. Conclusions 

The analysis conducted in the present study has shown that 
the mean transport collision rates tr

in  of absorbing particles 
with buffer particles appearing in the LDP theory do not 
depend on the frequency detuning W of radiation. This means 
in particular that the spectral dependence of the LDP signal  
DN º N – N0 at a low radiation intensity always coincides with 
the absorption line shape. Spectral anomalies in the LDP 
effect predicted in [11, 12] are only possible in an idealised 
model of the Lorentz gas (the limiting case of heavy buffer 
particles: M << Mb). 

We note the following fact. The magnitudes of the LDP 
effect and of the so-called normal LDP effect are propor-
tional to the factor Dn/n º ( tr

mn  – tr
nn ) / tr

nn , which is equal to a 
relative change in the mean transport collision rates of 
absorbing particles in the excited and ground states with buf-
fer particles. A comparison of the theory with the experimen-
tal results on the LID or LDP allows one to define the param-
eter Dn/n. This fact forms the basis of effective, independent 
methods for measuring the diffusion coefficient of the parti-
cles in short-lived excited states (with the help of LDP 
[5,  6,  8 – 10] and LID effects [7, 31 –  33]). For a number of 
atoms and molecules the so-called anomalous LID was exper-
imentally observed [13 – 21]. In the case of the anomalous 
LID, the magnitude of the effect is not proportional to the 
factor Dn/n, and thus, it cannot be used to measure the diffu-
sion coefficients of the particles in the short-lived excited 
states. We have shown that the magnitude of the LDP effect, 
as opposed to that of the LID, is always proportional to the 
factor Dn/n. Therefore, the measurement of the diffusion coef-
ficients of excited particles by using the LDP effect as an inde-
pendent method is a good addition to the method based on 
the LID effect. 
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