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Abstract.  A numerical model of a soliton fibre laser with a semi-
conductor saturable absorber mirror (SESAM), characterised by 
the complex dynamics of absorption relaxation, is considered. It is 
shown that stationary bound states of pulses can be formed in this 
laser as a result of their interaction via the dispersion-wave field. 
The stability of stationary bound states of several pulses is analysed. 
It is shown that an increase in the number of pulses in a stationary 
bound state leads eventually to its decay and formation of a random 
bunch. It is found that the bunch stability is caused by the manifes-
tation of nonlinear self-phase modulation, which attracts pulses to 
the bunch centre. The simulation results are in qualitative agree-
ment with experimental data.

Keywords: soliton fibre laser, semiconductor saturable absorber 
mirror, bound states of pulses. 

1. Introduction 

It is known that passively mode-locked fibre lasers with an 
anomalous-dispersion cavity are generators of soliton-like 
pulses, the duration and energy of which are in unambiguous 
correspondence. The pulse duration is basically determined 
by the cavity parameters (i.e., the cavity length, dispersion 
and characteristics of a saturable absorber) [1]. An insignifi-
cant increase in pumping only slightly affects the pulse param-
eters, changing mainly the non-soliton component of radia-
tion. A more pronounced increase in pumping leads to a suc-
cessive increase in the number of pulses in the cavity [2 – 5]. As 
a result, the cavity may contain a large number of pulses and 
the time intervals (which can be referred to as distances) 
between pulses change constantly, which is mainly related to 
the interaction between pulses and the non-soliton compo-
nent of radiation [6]. The change in the interpulse distance 
can also be affected by gain saturation [3], electrostriction and 
acoustic effects [7 – 9].

One of the key elements of a laser source of ultrashort 
pulses is a saturable absorber. The most popular saturable 

absorbers are based on either carbon nanotubes [10] or semi-
conductor saturable absorber mirrors (SESAMs) [11, 12]. 
Note that a semiconductor saturable absorber may exhibit 
both fast (with characteristic times t < 1 ps) and slow (t ~ 
1 ps) dynamics of absorption recovery [1]. This is related to 
resonant or nonresonant absorption in the bulk of a semicon-
ductor or in the structure of quantum dots and wires. 
Resonant excitation and absorption of charge carriers are 
related to the slow absorption component. The near-reso-
nance effects at the band edges, intraband scattering of carri-
ers and thermalisation processes are characterised by short 
(subpicosecond) recovery times [11]. Various designs of satu-
rable absorbers based on semiconductor structures are used 
in lasers; they differ in both the characteristic recovery times 
of each component and the contribution to absorption. Thus, 
one can select two groups of saturable absorbers with pre-
dominantly slow or fast responses. It is noteworthy that mode 
locking and generation of subpicosecond pulses in a soliton 
fibre laser can be implemented using both fast and slow (with 
a relaxation time of several tens of picoseconds) saturable 
absorbers; however, a fast saturable absorber is much more 
suitable to provide the pulse stability and suppress the spuri-
ous non-soliton component [1]. Thus, when developing fibre 
soliton lasers, the technologies aimed at shortening the satu-
rable-absorber response time (based on low-temperature and 
metamorphic growth of semiconductor structures, ion irradi-
ation, etc.) become of key importance [12 – 14].

In this study we consider a model of a soliton laser based 
on a semiconductor saturable absorber mirror with a complex 
absorption recovery dynamics (fast and slow relaxation); the 
slow-component relaxation time is sufficiently long (t > 100 ps). 
Our experiments show that a SESAM, which possesses only 
slow response with this relaxation time, cannot initiate mode 
locking and may cause only instable operation of a 
Q-switched laser [15]. At the same time, the absorbers of 
SESAM type have a number of interesting properties. First, 
they are characterised by more rapid switching on of mode 
locking [16]. The second (and especially important) feature 
are the interesting patterns of complex pulse dynamics, 
which is observed in the cavity of soliton lasers with a satu-
rable absorber of this type. The aforementioned dynamics, 
at which pulses are independently located in the cavity and 
the distances between them constantly change, is typical of 
lasers based on standard ‘fast’ saturable absorbers. The 
lasers based on a SESAM with complex relaxation may 
demonstrate a qualitatively different joint dynamics of 
pulses: their mutual attraction with formation of stable 
bound states of solitons with equal and constant distances 
between them (up to 100 pulse durations) or grouping pulses 
into a close random bunch with small and continuously 
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27Generation of bound states of pulses in a soliton laser

changing interpulse distances. The behaviour of these pulse 
groups is determined by the cavity parameters [15 – 18].

The purpose of our study si to analyse the joint dynamics 
of several pulses in the cavity of aforementioned lasers, deter-
mine the nature of interaction between pulses and specify the 
influence of cavity parameters on the characteristics of soliton 
groups. Determination of the conditions for generating sta-
tionary bound states with a constant interpulse distance and 
revealing of negative factors leading to the formation of ran-
dom soliton bunches may also have applied importance 
(potential use of laser sources of bound solitons as master 
oscillators, in metrological problems, etc.).

To solve the above-stated problem, we simulated a fibre 
laser with a ‘two-time’ saturable absorber SESAM having dif-
ferent cavity parameters, under different pump levels and ini-
tial conditions.

2. Model 

Let us consider the following model of a fibre laser (Fig. 1). 
Propagation of radiation in active and passive fibre elements 
is described by the Ginzburg – Landau equation and nonlin-
ear Schrödinger equation (NLSE), respectively:
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Here, A(z, t) is a slowly varying field amplitude; z is the coor-
dinate along the cavity; t is time in the related coordinate sys-
tem; b2a, b2p, ga and gp are the group-velocity dispersions and 
Kerr nonlinearity coefficients for the active and passive fibres, 
respectively; and la and lp are the loss factors in the active and 
passive fibres, respectively. Spectral gain filtering is taken into 
account through coefficient b2f = g/W 2

f, i.e., a parabolic 
approximation of the gain line with a half-width Wf is used. 
Furthermore, we will be interested in only the soliton regime, 
i.e., the cavity is assumed to have a significant anomalous dis-
persion  2b2aLa + 2b2pLp < 0, where La and Lp are the lengths 
of active and passive fibres, respectively. The dynamics of the 
saturable gain g is determined by the standard equation
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where g0 is the small-signal gain, tg is the relaxation time and 
Pg is the active-medium saturation power. In the case under 
consideration, the active-medium relaxation time is suffi-
ciently long in comparison with the individual pulse duration 
and cavity round-trip time Tr; therefore, the saturable gain 
can be replaced with the cavity-averaged value
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In addition, the wave field in the cavity is affected by discrete 
elements: saturable absorber, output coupler and polariser. 
This influence can be described by the transfer function

Aout = JAin.

For example, the output coupler with a coupling ratio R 
can be presented as a discrete element with a transfer coeffi-
cient A RA1out in= - .

In this model we neglect the vector nature of solitons in a 
fibre laser, and the operation of polarisation filters is qualita-
tively described using the effective model for the transfer 
function [19, 20]:

sin sin cos cosJ 2 2 2 2J j J j= +

	 +  (2 ) (2 ) ( )sin sin cos
2
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fib polJ j j j+ .	 (4)

Here, J and j are, respectively, the polariser and analyser ori-
entation angles; jfib is the phase accumulated during trans-
mission through the fibre; and jpol is the phase jump caused 
by passage through the polariser.

The saturable absorber used in our model has two charac-
teristic relaxation times, which correspond to the so-called 
fast and slow SESAM responses. The large difference in the 
relaxation times (tslow >> tfast) and the smallness of absorp-
tion modulations (afast, aslow << 1) suggest that the field inter-
acts with the saturable absorber independently for each field 
component (this was confirmed experimentally [16]):

[1 ( )] [1 ( )]A Aout slow fast ina t a t= - - .

The dynamics of the absorption coefficient components  
aslow(t) and afast(t)  is described by equations of the same type:
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where a0 is the modulation depth; Esat fast and Esat slow are the 
saturation energies; and tfast and tslow are the relaxation times 
of the fast and slow absorbers, respectively. The first term on 
the right-hand side describes the absorber relaxation and the 
second term describes the saturable absorption. Since the 
fast-response relaxation time tfast is much shorter than the 
pulse duration, it can be simulated within the instantaneous 
response approximation:
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3. Simulation of pulse bound states 

The parameters used in the simulation were taken to be typi-
cal of Er-doped fibre lasers:
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Figure 1.  Schematic diagram of the laser used in simulation. 
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At the aforementioned fibre dispersion values, the net 
cavity dispersion bnet is – 0.132 ps2.

Under the initial conditions imposed on the input radiation 
in the form of white noise and active-medium saturation 
energy Eg = 30 pJ, an individual pulse is generated. At the out-
put point the pulse envelope is close to |A(t)|2 = P0sech2(t/t0); its 
parameters are in the vicinity of P0 » 68 W and t0 = 0.28  ps, 
values corresponding to an average pulse energy of about 
39 pJ. Along with the pulse, the cavity contains also the so-
called non-soliton component, whose origin is related to the 
perturbation of the pulse shape during amplification and 
transmission through individual discrete elements. To specify 
terminology, we will refer below to this component as disper-
sion waves (or oscillating tails of pulses).

Due to the presence of the slow component in a SESAM 
and the corresponding low absorption behind a pulse, the dis-
persion waves generated in this region have a higher intensity. 
Periodic scattering of pulse energy in the field of high-power 
dispersion waves leads to discrepancy between the period of 
variation in the pulse parameters and Tr. Calculations show 
that in the stationary single-pulse regime, a laser generates a 
pulse with characteristics changing with a period ~3Tr. The 
generated non-soliton field also evolves in the cavity under 
the action of discrete elements and dispersion effects. In total, 
this leads to small periodic changes in energy and peak pulse 
power with a period on the order of several tens of Tr (see 
Figs 5a and 5c). The existence of these oscillations is closely 
related to the nonlinear dynamics of dissipative solitons 
[21, 22].

To analyse the formation of a coupled state, we simulated 
this laser system with initial conditions in the form of two 
sech2 pulses with durations of 0.28 ps at different distances 
between them; to implement generation of two pulses, the 
active-medium saturation energy Eg was increased to 60 pJ. It 
was shown that, for an initial interpulse distance of 8 – 15 ps 
and simulation of up to 2 ́  104 cavity round trips, the two 
pulses form a bound state, in which they move jointly through 
the cavity with equal velocities, being spaced by a constant 
distance. The simulation results for an initial interpulse dis-
tance of 12 ps are shown in Figs 2 – 5.

The joint evolution of a pair of pulses is accompanied by 
their interaction via long oscillating tails. This interaction can 
be described using a conditional analogy with the interaction 
of two wave sources (floats) in a one-dimensional reservoir of 
linear waves (Fig. 2). The first pulse is located in the region of 
higher absorption of the slow component and has a lower 
peak power, while the second pulse is in the low-absorption 
region, has a high peak power, and emits more intense disper-

sion waves. The dispersion-wave powers are much lower than 
the pulse powers; they can be considered as linear, because the 
influence of nonlinearity in the interpulse region is negligible.

As in the case of a single pulse, one can select some char-
acteristic evolution periods for the pair of pulses. The short 
period (3Tr) is related to the evolution of the second, higher-
power pulse in the cavity, while the second period (11Tr) is 
related to the periodic change in the dispersion-wave field. 
This assignment is illustrated in Fig. 2c, which shows the 
phase difference between pulses. It is determined by two con-
tributions: a linear part, proportional to time and related to 
dispersion waves, and a nonlinear part, which depends on the 
peak pulse powers. Note that the phases corresponding to 
equal peak pulse powers [curves ( 1 ) and ( 4 ) in Fig. 2c] and 
having identical nonlinear contributions may nevertheless 
significantly differ. Thus, we can suggest that the phase differ-
ence is mainly determined by the linear part, related to long 
oscillating pulse tails. This suggestion is confirmed by the 
almost complete coincidence of curves ( 1 ) and ( 2 ), which dif-
fer only in the period of change in the dispersion-wave field 
(11 cavity round trips). Another confirmation is the spectra of 
states ( 1 ) and ( 2 ) (Fig. 3a). The spectrum of a pair of pulses 
has a characteristic lobate structure. The envelopes of inter-
ference spectra coincide with the individual-pulse spectrum; 
the frequency of the most intense dispersion waves can be 
estimated by the Kelley peak frequency Dws.

The spectrum acquires a lobate structure because of the 
interference between the spectra of two pulses, which are 
shifted with respect to each other by D; note that the lobe size 
is inversely proportional to the distance D between the pulse 
peaks. With a change in the phase difference between the 
pulses, the characteristic lobe size is retained, but the entire 
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Figure 2.  (a) Instantaneous frequency, (b) envelopes of pulses in a pair 
and (c) phases of pulses and the absorption level of the SESAM’s slow 
component aslow; ( 1 ) pulse parameters after 2000 cavity round trips; 
curves ( 2 ), ( 3 ) and ( 4 ) differ from ( 1 ) by 11, 33, and 3 cavity round 
trips, respectively.
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structure of the spectrum is shifted. The identical structure of 
the spectra of states ( 1 ) and ( 2 ) in Fig. 3a confirms that these 
states have close phase characteristics. Small differences are 
related to the change in the second-pulse peak power. Recall 
that this value changes for a time of 3Tr. A comparison of the 
pulse parameters (instantaneous frequency, amplitude and 
phase) differing by the common multiple evolution period 
33Tr shows their almost complete coincidence (Fig. 2).

Nevertheless, the periodic repetitions of the characteris-
tics of pulses and the dispersion field formed by these pulses 
are not absolutely identical. The interaction between pulses 
and dispersion-wave field leads to small fluctuations in the 
pulse positions. When observing interaction for a rather long 
time (on the order of 104 cavity round trips), one can note a 
change in the distance between pulses and formation of their 
bound state, in which pulses move with equal velocities 
(Fig. 3b). Our observations revealed that the oscillating tails 
of pulses merge into a general self-consistent field, and the 
bound state of pulses is formed as a result of their drift in this 
field. To clarify this issue, we will consider the interaction of 
pulses with the dispersion-wave field in more detail.

First, we will select the forces exerted by dispersion waves 
on the pulse producing them. Since the net cavity dispersion is 
anomalous, the frequency shift at the trailing edge of the 
pulse with respect to the carrier is positive, while the shift at 
the leading edge is negative (Fig. 2a). The evolution of disper-
sion-wave field ud in fibre elements is linear; it is described by 
the following equations (the absorption and spectral filtering 
are disregarded):
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A simple analysis of these equations shows that the function 
of the field amplitude ud is proportional to the factor 
exp(iw[ b2wz/2 – t]), which determines the dispersion flow 
direction. In the anomalous-dispersion region ( b2 < 0), dis-
persion waves move toward the pulse (wave source), whereas 
in the normal-dispersion region ( b2 > 0), they move away 
from the pulse. In addition, the dispersion field is affected by 
the saturable absorber. Due to the saturation of the slow 
component, the dispersion-wave intensity behind the pulse 
exceeds the intensity before it; this circumstance determines 
the pulse drift velocity in the dispersion-wave field.

Having analysed the saturation equation for the slow 
component (5b), with neglected absorption recovery for a 
time on the order of pulse duration, we find that the differ-
ence in the linear-wave absorption before and behind the 
pulse, Daslow, is determined by the pulse energy Ep and the 
absorption before the pulse, aslow(tp):

( )expt E
E

slow slow p
satslow

pa aD = -c m  ,	 (7)

where tp is the time coordinate directly before the pulse. On 
the assumption that the pulse energies have close values and 
the slow component in the vicinity of the second pulse is in a 
much more saturated state aslow(t2) < aslow(t1), we obtain the 
condition Daslow1 > Daslow2, which indicates that the differ-
ence in the dispersion-wave intensities near the second pulse is 
much smaller. Therefore, before the formation of a bound 
state, the velocity of the second-pulse drift (caused by the 
interaction with the dispersion waves produced by this pulse) 
is lower than the corresponding velocity of the first pulse.

Hence, one can conclude the following: pulses should 
repulse in a cavity having no normal-dispersion regions. 
Indeed, in this case, each pulse is constantly affected by a lat-
eral force directed forward (toward less intense dispersion 
waves). The distance between the pulses will increase, because 
the first-pulse drift velocity greatly exceeds that of the second 
pulse. This process is presented in Fig. 4. Here, all parameters 
of the system are the same as in the case of formation of a 
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bound state; the only difference is that exactly the same net 
cavity dispersion is obtained for an active fibre with anoma-
lous dispersion. In the absence of other pulses in the cavity, 
the walk-off of pulses occurs while Daslow1 » Daslow2; this 
inequality is satisfied when t2 – t1 > tslow. In this case, the 
characteristics of each pulse are asymptotically close to those 
of a single pulse in the cavity.

If there are normal-dispersion regions ( b2a > 0), the inter-
action of a pulse with the dispersion waves produced by it 
allows pulses to come closer (compare Figs 3b and 4). This 
process is shown in more detail in Fig. 5. Here, it is of impor-
tance that, beginning with a certain instant, each pulse is sig-
nificantly affected by the dispersion waves produced by the 
second pulse of the pair. Initially, the dispersion waves from 
different pulses have different phases, and the neighbouring-
pulse effect leads to only small fluctuations. The fluctuations 
increasing the distance between pulses (i.e., opposite to the 
tendency of pulses to approach) are suppressed. The fluctua-
tions making pulses approach increase with decreasing inter-
pulse distance, because the amplitude of interacting disper-
sion waves increases. This results in pulse approach with a 
constant acceleration (Figs 5b, 5d).

It can also be seen in Fig. 5 that the change in the distance 
between pulses has a characteristic step form. In contrast to 

the continuous repulsion in Fig. 4, which is related to the 
interaction between a pulse and a dispersion field induced by 
this pulse, the approaching pulse is affected by the counter-
propagating dispersion-field source. Each step corresponds to 
a quasi-stationary bound state of pulses, when there are an 
integer number of dispersion-wave periods between them [23]. 
The interaction of a pulse with an intrinsic dispersion field 
shifts pulses to quasi-stationary states of a lower level, which 
corresponds to their further approach. In sum, the interfer-
ence of pulse dispersion fields leads to the formation of a gen-
eral self-consistent dispersion-wave field; the pulses form a 
stable bound state by interacting via this field.

The distance between pulses in the bound state is deter-
mined in many respects by the parameters of the slow compo-
nent of a saturable absorber. Indeed, the difference in the dis-
persion field intensities before and behind each pulse should 
be such as to make equal the drift velocities of the pulses 
interacting with this field. A more careful analysis is planned 
to perform in order to clear up the relationship between the 
parameters of a SESAM’s slow component, which specifies 
the differences in the dispersion-field intensities before and 
behind the pulses and the bound-state parameters.

The formation of a bound state is accompanied by an 
increase in the amplitude of peak power oscillations and 
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matching of long periods of these oscillations (Figs 5a, 5c). 
This pattern is typical of the formation of a stable energy 
exchange between pulses. In the thus formed bound state, 
counterpropagating pulses exchange energy through long 
oscillating tails. Since the interfering tails are in phase, there is 
no energy loss. The amplitude of peak power oscillations 
increases because of partial transfer of pulse energy to the 
general field; i.e., due to the formation of binding energy.

The distance between pulses in the thus formed state of 
bound solitons exceeds 25 their durations, i.e., this state 
belongs to loosely bound ones. A periodic transfer of some 
part of pulse energy to the dispersion-wave field causes small 
fluctuations of the interpulse distance, which can be observed 
in Fig. 5d. These fluctuations correspond to transitions 
between two closely located points of the system equilibrium: 
the point of constant pulse (equilibrium of lateral forces) and 
the point of stationary energy [24].

To complete this section, it is important to note that the 
simulation result predicting impossibility of the bound-soli-
ton-state formation in a laser with a two-time SESAM in the 
absence of normal-dispersion regions in the cavity was con-
firmed experimentally in [25].

4. Bound states of several pulses and their 
stability

Below we will consider the formation of bound states of sev-
eral pulses and investigate their stability in more detail. To 
this end, we will continue our analysis of the laser system with 
an active normal-dispersion fibre at a higher (Esat slow = 30 pJ) 
slow-component saturation energy. As simulation shows, this 
increase in the saturation energy increases the ratio of the 
dispersion-wave field energy to the pulse energy and, conse-
quently, enhances the interaction of pulses through the gen-
eral dispersion field and facilitates fast development of a par-
ticular scenario of their joint propagation.

In the first step we will consider initial conditions in the 
form of three 0.28-ps sech2 pulses, located at different dis-
tances from each other. Propagation of these pulses is main-
tained at active-medium saturation energy Eg > 120 pJ; fur-
ther results are obtained at Eg = 130 pJ. We modeled 104 cav-
ity round trips.

The simulation results indicate that the initial distances 
between the pulses (10 – 20 ps) affect significantly the pulse-
group evolution. If at least one of the initial distances is 
smaller than 12 ps, the bound state is not formed. A typical 
scenario is the attraction of pulses and their joint propagation 
with a random change in the interpulse distance. This regime 
can arbitrarily be referred to as a minibunch. It will be dis-
cussed in more detail below. Joint propagation of a bound 
state of two pulses and the third (individual) pulse is also 
observed.

A characteristic feature of pulse propagation is the forma-
tion of the aforementioned quasi-stationary states, in which 
there are an integer number of dispersion-wave periods 
between pulses. As in the case of two pulses, the drift under 
dispersion waves leads to a transition between quasi-station-
ary states and interaction of the stationary bound state of two 
pulses with the third pulse; under these conditions, an 
exchange between bound pulses or formation of a three-pulse 
bound state may occur [21].

Figures 6 and 7 show one of the ways to form a three-
pulse bound state. As in the case of two pulses, it is reasonable 
to use the analogy with model pulses in a one-dimensional 

linear reservoir of dispersion waves. The drift velocity of a 
pulse is determined by the difference in the linear-wave inten-
sities before and behind it. A bound state is formed when the 
average drift velocities of all pulses become equal; this equali-
sation occurs via interaction through long oscillating tails. If 
two pulses are bound through the general dispersion field (the 
distance between them is equal to an integer number of dis-
persion-waves periods), the influence of the third pulse can be 
considered as a small perturbation, leading to fluctuations of 
the interpulse distance. In this case, the perturbations leading 
the system to equilibrium (i.e., reducing the effect of lateral 
forces) become naturally advantageous. The process of 
changing the distances between pulses is shown in Fig. 7a. It 
can be seen that the perturbing effect of the third pulse causes 
only small fluctuations of the interpulse distance in each pair 
until this effect is resonantly summed with fluctuations of the 
dispersion field, which binds pulses in a pair. As a result, the 
interpulse distance changes stepwise; in each pair this distance 
changes by a dispersion-wave period. As a result, a stable 
bound state of three pulses with equal interpulse distances is 
formed (Fig. 7b). As simulations show, pulses fluctuate near 
the equilibrium position in this state, which corresponds to 
small interpulse-distance fluctuations.

Based on the above results, one can conclude that the 
interaction of a group of pulses through the general disper-
sion-wave field in the presence of a slow absorber component 
should lead to the formation of a bound state of pulses located 
at approximately equal distances from each other. However, 
this holds true for only a small number of pulses and a suffi-
ciently large initial distance between them. In other cases one 
observes propagation of a noise group of closely located 
pulses, the distance between which randomly changes (a 
bunch). To clarify the origin of this bunch, we should con-
sider the stability of bound states.

Figure 8 shows in a simplified form a deformation of a 
bound state, which is caused by fluctuation of the position of 
one of the pulses. The change in the slow-component absorp-
tion, corresponding to this fluctuation, is also shown. As was 
noted above, the change in the average pulse drift velocity is 
related to the change in the dispersion-wave intensity before 
and behind it and is caused by the difference in absorption 
because of the saturation of the slow absorber component. 
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Figure 6.  Trajectories of three pulses during the formation of a bound 
state.
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This difference (Daslow) is approximately described by expres-
sion (7).

It follows from (7) that the initial saturation of the slow 
component before the pulse, aslow(tp), is an important factor. 
When considering not very small saturation levels (i.e., an 
absorber with margin saturation), one can suggest that the 
bound-state deformation barely changes the aslow(tp) value 
and, therefore, the absorption difference Daslow. Small fluc-
tuations of the pulse position lead only to a small mismatch 

between the dispersion fields of pulses, which generate lateral 
forces, returning the pulse to the equilibrium position.

However, if the slow component is highly saturated (for 
example, because of the small distance between pulses or their 
large number in a group), the depth of the ‘potential well’ 
determining the pulse-position stability rapidly decreases. 
Under these conditions, a deformation of a bound state 
may induce an avalanche-like growth of instabilities and 
transformation of a regular bound state into a random bunch. 
Indeed, at a highly saturated slow component, even small fluc-
tuations of the pulse position change significantly (decrease 
in Fig. 8) aslow(tp) and, therefore, reduce the absorption dif-
ference Daslow and the difference in dispersion-wave intensi-
ties. The latter effect leads to a decrease in the pulse drift 
velocity and, as a result, makes the first and second pulses 
come closer; their approach causes a further decrease in aslow(tp) 
and Daslow etc.

A small distance between pulses causes a wave of insta-
bilities, which are related to deep saturation of the slow com-
ponent of the absorber. A pulse located in an absorption 
minimum is maximally amplified, its duration decreases and 
the peak power and spectral width increase. Under these con-
ditions, the limited width of the gain spectrum makes pulse 
splitting energetically favourable [1]. Thus, a low-absorption 
region (or several regions) arises, to which the energy of other 
pulses (which are at a disadvantage in competition for gain, 
being located in the region of high slow-component absorp-
tion) is transferred. As a result, one can observe a transforma-
tion of a group of pulses into a random bunch. This process in 
the system under consideration (at eight initial pulses) is 
shown in Fig. 9a.

Based on the above analysis, one can conclude that a 
bunch is formed at excessively deep saturation of the 
SESAM’s slow component, which does not provide a stable 
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position of an individual pulse. The simulation results show 
that the slow-component saturation energy Esat slow, sufficient 
for maintaining the bound state stability, should constitute a 
significant part of the total pulse energy; its exact value is 
determined by the cavity parameters. In the case under con-
sideration, a bunch is formed at Esat slow < 1/6 of the total 
pulse energy; there may be no more than four pulses in the 
bound state. This condition is valid at only a sufficiently large 
initial distance between pulses (more than 40 pulse durations 
in our case).

Despite the strong interaction between pulses in a bunch, 
which now occurs not only via the dispersion-wave field but 
also through direct interpulse interactions, the joint pulse 
propagation is stable because of the attraction of pulses from 
the periphery to the bunch centre. This force originates from 
the Kerr nonlinear self-phase modulation by a group of pulses 
(Fig. 9b). Due to the nonlinearity of self-phase modulation, 
the rise in phase at the bunch edges can be approximated by a 
parabolic dependence F – F0 = –с(t – t0)2/2, which, in turn, is 
indicative of approximately linear frequency modulation of a 
group of pulses with a modulation rate (chirp) с: Dw » –с(t – t0). 
In the case considered here, the nonlinear chirp of a group of 
pulses can be estimated as a rather large value (с > 
2.5 ́  1022  s–2). One can see (Fig. 9a) that, when the extreme 
pulses are ejected beyond the bunch, an effective attractive 
force arises in the region of high-frequency modulation, 
because, when the cavity has intermediate anomalous disper-
sion, the group velocities at the leading and trailing edges are, 
respectively, lower and higher than the average bunch veloc-
ity [26, 27]. The above-described process makes the soliton 
bunch propagation stable.

The above simulation results are in agreement with exper-
imental data. In particular, as experiments show, stationary 
bound soliton states with a symmetric autocorrelation func-
tion (i.e., constant interpulse distance) and a number of pulses 
as high as five or six can be generated. The interpulse distance 
amounts to several tens of individual soliton durations and 
depends on the cavity parameters: dispersion, gain spectrum 
width and SESAM characteristics. As was mentioned above, 
bound soliton states are generated only when the active fibre 
has normal dispersion. The increase in the number of pulses 
due to the increase in pumping or passive-fibre elongation 
(i.e., increased nonlinearity) leads to destruction of the bound 
state and formation of a bunch with closely located pulses. 
The interpulse distance in a bunch amounts to several soliton 
durations and constantly changes; nevertheless, the bunch 
propagates as a stable whole. The bunch width fluctuates; 
however, it is on average proportional to the number of 
pulses. The width fluctuations are caused by random dis-
placements of pulses at the bunch boundaries [15, 18].

5. Conclusions

In this study we have analysed a soliton fibre laser with a 
semiconductor saturable absorber mirror; the latter is charac-
terised by complex absorption relaxation dynamics, i.e., dem-
onstrates both fast and slow relaxation. As experiments show, 
this laser exhibits interesting properties in the regime of mul-
tipulse generation. In particular, when the active medium has 
normal dispersion, pulses are mutually attracted to form sta-
tionary bound soliton states with an interpulse distance up to 
100 pulse durations. Another version of group dynamics is 
the formation of a narrow bunch with a random change in the 
distance between pulses.

We have developed a laser model based on the description 
of pulse propagation in fibre elements using the Ginzburg – 
Landau equation and on the consideration of individual 
effects of lumped elements: saturable absorber, polariser and 
output coupler. The simulation has shown that the pulses 
generated by this laser system are characterised by a pulsating 
variation in parameters, which is related to partial transfer of 
pulse energy to the field of dispersion waves excited during 
amplification and transmission through discrete elements.

A simple fundamental model has been proposed to 
describe the interaction of pulses drifting under the action of 
linear dispersion waves. The slow component of saturable 
absorption determines the difference in the dispersion-wave 
intensities and the pulse drift velocity. The model developed 
explains the repulsion of pulses in the case of anomalous dis-
persion of the active fibre and their attraction under condi-
tions of normal dispersion. The formation of the bound state 
of pulses is determined by the equalisation of drift velocities 
of pulses in their common dispersion field.

The stability of bound states is considered. It is found that 
it is mainly determined by the degree of saturation of the 
SESAM’s slow component. This condition limits the pulse 
energy in the stationary bound state. 

At a large number of pulses (or at a small distance between 
them), the slow component is in the highly saturated state, 
and the force induced by it from the side of dispersion waves 
with different intensities cannot prevent development of 
instabilities. In this case, a typical scenario involves the for-
mation of a random pulse bunch, the width of which fluctu-
ates around some average value, proportional to the number 
of pulses in the bunch. The bunch stability is caused by the 
manifestation of nonlinear self-phase modulation, which 
leads to frequency modulation of the group of pulses and 
their efficient attraction from the periphery to the bunch cen-
tre.

The results of numerical simulations are in fundamental 
agreement with experimental data. In continuation of this 
study, we are planning to consider in more detail the influence 
of the cavity parameters (dispersion, nonlinearity, gain, 
absorber saturation energy, etc.) on the characteristics of 
pulse groups and determine the critical values of the parame-
ters corresponding to transitions between stationary bound 
states and random bunch.
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