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Abstract.  Investigated are statistical properties of the phase differ-
ence of oscillations in speckle-fields at two points in the far-field 
diffraction region, with different shapes of the scatterer aperture. 
Statistical and spatial nonuniformity of the probability density 
function of the field phase difference is established. Numerical 
experiments show that, for the speckle-fields with an oscillating 
alternating-sign transverse correlation function, a significant non-
uniformity of the probability density function of the phase differ-
ence in the correlation region of the field complex amplitude, with 
the most probable values 0 and p, is observed. A natural statistical 
interference experiment using Young diagrams has confirmed the 
results of numerical experiments.

Keywords: speckle-field, speckle-modulation, phase distribution, 
probability density function of phase difference, diffraction, auto-
correlation function, Fourier transform, speckle pattern.

1. Introduction 

In coherent optical systems with scatterer, speckle-modulated 
optical fields are formed as a result of interference of scattered 
waves [1 – 7]. Random arrangement of scattering centres and 
random phase shifts in the waves scattered by these centres 
determine the random values of the amplitude and phase of a 
resultant interference field, i.e., the speckle-field. Such fields 
arise in recording optical holograms of objects with scattering 
surfaces [8, 9], in implementation of methods of speckle pho-
tography [3 – 6] and laser interferometry of diffusively scatter-
ing objects and media [4 – 6, 10, 11], as well as of methods of 
speckle-interferometry in optical astronomy [12, 13] and 
also in systems of wavefront reconstruction [14] and forming 
images of scattering objects [15, 16], including the system of 
human visual perception [17].

Developed diffraction speckle-fields are formed at the 
phase shifts of scattered waves in the interval [–p, p]   and 
greater. The complex amplitude at any point of a developed 
speckle-field within the diffraction zone has a Gaussian statis-

tics [18], while the oscillation phase has a uniform probability 
density function in the interval [–p, p]  [1, 2, 19, 20].

Spatial transverse phase distribution of the speckle-field 
has deterministic and stochastic components. The determinis-
tic component is determined by the configuration of the opti-
cal system intended for speckle-field formation and observa-
tion, including the effect of the scheme’s optical elements. It is 
assumed that the stochastic component of the phase within an 
individual field speckle remains virtually invariable, while, in 
transition to a neighbouring speckle, the phase is changed 
with equal probability by a random value in the range [–p, p]. 
In other words, the stochastic component of the phase differ-
ence Dj(P1, P2) at the points P1 and P2 of the speckle-field, 
which fall into the neighbouring speckles of the field, is equi-
probably distributed within the interval [–p, p] .

In the general case, as shown by our experiments, for the 
sources of scattered coherent field with a scatterer aperture of 
arbitrary shape, this representation is valid. However, the 
authors of [21 – 25] have shown that, when using a scatterer 
with a symmetric aperture as a speckle-field source, a statisti-
cally nonuniform phase difference distribution of the field in 
the neighbouring speckles is observed in the far diffraction 
zone. For the field phase difference at the points which mostly 
fall into a single speckle, there exists a maximum of the prob-
ability density for Dj = 0. This is expectable, since the sto-
chastic component of the phase spatial distribution within a 
single speckle remains invariable. However, for the field phase 
difference at the points that mainly fall into the neighbouring 
speckles, the maxima of the probability density function for 
Dj = ±p are clearly distinguishable in the experiment. In [25], 
these statistical regularities are revealed by means of a numer-
ical experiment for the scatterers with apertures of different 
shapes.

We believe that the reason for the nonuniformity of the 
statistical distribution of the phase difference in a diffraction 
speckle-field with maxima for Dj = ±p is due to peculiarities 
of spatial correlation properties of the speckle-field. In the 
formation of speckle-fields with transverse correlation prop-
erties which determine the alternating-sign correlation field 
function, spatial variation in the probability density function 
of the field phase difference must be nonuniform, with max-
ima for Dj = 0 or ±p, depending on the distance between the 
field points within its correlation region, the size of which 
may exceed the size of an individual speckle. In [25], the rela-
tionship between the correlation properties of the speckle-
field and the probability density function of the phase differ-
ence has been confirmed.

The objective of this work is to establish the properties of 
spatial changes in the probability density function of the 
phase difference in a developed speckle-field in the far-field 
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diffraction region and to reveal a relationship between these 
changes and transverse correlation properties of the field.

2. Correlation properties of speckle fields  
in the far-field diffraction region

Correlation properties of a scattered field in the far-field dif-
fraction region depend on the distribution of the mean field 
intensity on the scatterer surface [2, 18]. The size and shape of 
the scatterer aperture exert a significant effect on the mean 
intensity distribution, and hence on the correlation properties 
of the field. The spatial transverse correlation function of the 
complex amplitude of the speckle field in the far-field diffrac-
tion region can be determined by means of the Van 
Cittert – Zernike theorem as a Fourier transform of the distri-
bution of mean field intensity from the d-correlated source 
[1,  2, 18, 26]. In the case of a symmetrical distribution of the 
field mean intensity and symmetrical source aperture, the cor-
relation function of the diffraction field represents a real-val-
ued function, which, in the general case, follows from the 
properties of the Fourier transforms [27]. Moreover, under 
these conditions the correlation function takes the real and 
alternating-sign oscillating values with abrupt changes in the 
field mean intensity at the source aperture edges. In particu-
lar, the correlation functions G(Dx, Dh) (Dx, Dh are the differ-
ences in spatial coordinates in the diffraction speckle-modu-
lated field) of the diffraction speckle-field generated by the 
sources having a uniform spatial distribution of the mean 
radiation intensity and a symmetrical aperture in the form of 
a square and an annular square (Figs 1a, b) can be written in 
the analytical form [27]:

G1(Dx, Dh) = a2 sinc(paDx) sinc(paDh),	
(1)

G2(Dx, Dh) = a2 sinc(paDx) sinc(aDh)

	 – b2 sinc(pbDx) sinc(pbDh),

where a and b are the dimensions of the source apertures 
shown in Fig. 1. In Fig. 2, for the normalised correlation func-

tions [curves ( 2, 3, 4 )] constructed for annular squares with dif-
ferent widths of the annular region, we can observe a marked 
increase in the amplitude of the alternating-sign oscillations 
when decreasing width (a – b)/2 of the annular region.

In the case of asymmetric shape of the source aperture, the 
diffraction correlation function may have no alternating-sign 
oscillations at all, or may have small oscillations. For exam-
ple, for the field correlation functions in the far-field diffrac-
tion region, in the case of source apertures having the shape of 
a regular triangle and an annular regular triangle, the follow-
ing expression can be obtained:
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Figure 1.  Apertures of scatterers – sources of speckle-fields – and the fragments of simulated speckle patterns generated by such sources with the 
apertures having the form of (a) square, (b) annular square, (c) triangle and (d) annular triangle.
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Figure 2.  Normalised correlation functions of the complex speckle-
field amplitude at Dh = 0 for the sources with apertures in the form of a 
square with a = 10 mm ( 1 ) and an annular square with the ratio a/b 
equal to ( 2 ) 4, ( 3 ) 2 and ( 4 ) 4/3.
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where h = (a – b)/2 3  is the width of the annular region. The 
normalised correlation functions of the speckle-fields for the 
sources with such apertures are shown in Fig. 3. If the source 
has an aperture in the form of a triangle (Fig. 1c), the field 
correlation function has constant-sign oscillations [Fig. 3, 
curve ( 1 )]. In the case of an annular aperture in the form of a 
triangle (Fig. 1d), moderate alternating-sign oscillations 
occur, the amplitudes of which increase with decreasing annu-
lar aperture width [Fig. 3, curves ( 2 – 4 )].

From the physical viewpoint, the correlation properties of 
a diffraction speckle-field, described by its correlation func-
tion, can be explained in terms of wave diffraction on the scat-
terer aperture representing a speckle-field source. The diffrac-
tion field can be represented as a superposition of elementary 
fields arising in diffraction of planar waves on the scatterer 
aperture (or, in general case, spherical waves converging in 
the observation plane of the field diffraction pattern). These 
elementary diffraction fields constitute a thin ampli-
tude – phase structure of the resulting diffraction field and 
actually determine its correlation properties [28]. The trans-
verse size e^ of the field speckles, virtually coinciding with the 
field’s transverse correlation length, is approximately equal to 
the width of the central maximum of the elementary diffrac-
tion field. This view is confirmed, in particular, by the coinci-

dence of integral expressions used to determine the complex 
amplitude of the elementary diffraction field and the trans-
verse correlation function of the diffraction field defined on 
the basis of the Van Cittert – Zernike theorem. In the case of 
symmetric apertures, these elementary diffraction fields are 
described by real-valued sign-alternating functions and, as a 
consequence, the correlation function also takes the real-val-
ued sign-alternating values.

3. Numerical experiment to determine  
the spatial probability density function  
of the phase difference in the diffraction  
speckle-field 

We performed a numerical statistical experiment to determine 
the spatial probability density function of the phase difference 
in the far-field diffraction region of the speckle-field. In this 
experiment, the probability density of the phase difference 
p(Dj, Dx) was determined graphically versus the phase differ-
ence Dj in the range of [– p, p] and the difference in spatial 
coordinates Dx in the speckle-modulated diffraction field. A 
scheme of the natural experiment being equivalent to the pro-
cedure of numerical experiment is presented in Fig. 4.

The field source of a diffraction speckle-modulated field 
was simulated according to the following algorithm. Two 
matrices of random independent real values ukj and nkj, dis-
tributed in the interval from –1 to +1 in accordance with the 
normal law, are generated. On their basis, a matrix of random 
complex variables U0(k, j ) = ukj + inkj is formed, which creates 
a random, pixel-by-pixel-correlated Gaussian field of com-
plex variables [18]. This field is modulated by a binary aper-
ture function P(k, j ) of a certain form, equal to unity within 
the aperture and to zero outside it. The complex amplitude 
distribution of the field source is specified in the form of a 
discrete array of independent complex random Gaussian 
variables U(k, j ) = U0(k, j )P(k, j ). Provided the aperture is 
large enough (in our experiments, 100 ´ 100 pixels), the pixel-
by-pixel correlation of the field allows us to consider such a 
field as virtually d-correlated. A graphical representation of 
the normalised correlation function of the complex field 
amplitude is shown in Fig. 5. 

The field of complex amplitudes is surrounded by 
sequences of zeros, which physically determine an opaque 
screen region, so that the entire field source matrix has 2000 ´ 
2000 pixels. Such an increase in the number of the field source 
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Figure 3.  Normalised correlation functions of the complex speckle-
field amplitude at Dh = 0 for the sources with apertures in the form of a 
triangle with a = 10 mm ( 1 ) and an annular triangle with the ratio a/b 
equal to ( 2 ) 4, ( 3 ) 2 and ( 4 ) 4/3.
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Figure 4.  Schematic of a natural experiment to determine the phase difference at the speckle-field points in the far-field diffraction region: ( 1 ) il-
luminating parallel light beam; ( 2 ) scatterer; ( 3 ) aperture, i.e. an opaque screen with an opening; ( 4 ) lens; ( 5 ) speckle pattern in the far-field dif-
fraction region.
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pixels allows us to obtain a diffraction speckle-modulated 
field, wherein each speckle contains not a single pixel, as when 
using a matrix with aperture dimensions, but a sufficiently 
large number of pixels – in our case, for example, each speckle, 
for a square aperture, contains an average of 400 pixels.

The complex amplitude of the speckle-field in the far-field 
diffraction region is formed by means of the Fourier trans-
form of the field source, using a fast Fourier transform algo-
rithm. Thus, a matrix of complex amplitudes of the diffrac-
tion field, having a size of 2000 ´ 2000 pixels, is generated. 
The apertures of the speckle-field sources and the fragments 
of relevant simulated diffraction speckle patterns formed by 
such sources are presented in Fig. 1.

Random sampling of two points (P1 and P2) located in the 
diffraction speckle-field at a certain distance from each other 
along the x axis is performed, and the phase difference Dj of 
the fields at these points is numerically determined. The dis-
tance Dx (on the scale of spatial frequency x) between the 
points P1 and P2 is defined relative to the width of a central 
maximum of the correlation function of the diffraction field, 
actually (from the physical viewpoint) relative to the minimal 
transverse size e^ of the speckles [2, 18].

Using a sample of N = 90000 values, histograms of the 
statistical distribution of the phase difference in the interval 
[– p, p] are formed by partitioning this interval into m = 40 
intervals. The envelopes of the histograms can be regarded as 
the curves describing the probability density functions of the 
phase difference p(Dj, Dx = const) at a certain distance Dx 
between the field points:

( ) ( )
2

p N
N
m

i i 11 1 pj j j jD D D D D= + ,	 (3)

where DN(Dji < Dj < Dji + 1) is the number of hits of the 
sample values into the phase difference range [Dj, Dji + 1]. For 
different distances Dx, we have obtained histograms and, 
accordingly, spatial distributions of the phase difference 
p(Dj, Dx) for the speckle-field sources with apertures of vari-
ous shapes.

Figure 6 shows the functions p(Dj, Dx) of the speckle-
fields, obtained for the sources with apertures having the 
shape of a square ring (Fig. 1b) and an equilateral triangle 
(Fig. 1c). The outer side a of the triangle (Fig. 1a) amounts to 
100 pixels, while its internal side b – to 80 pixels; for the trian-
gular aperture (Fig. 1b), a = 100 pixels; the average size of the 
speckles in the diffraction field is 15 – 20 pixels for both aper-
tures. The function p(Dj, Dx) in Fig. 6a demonstrates a sig-
nificant nonuniformity of the density distribution of the phase 
difference p(Dj, Dx) for the distances Dx between the field 
points, exceeding the transverse size of the field speckles, Dx > 
ê . The maxima of p(Dj, Dx) for the phase difference Dj = ±p 
and Dx » 1.5ê  or Dx » 3.5e^ can be observed. From the phys-
ical standpoint, that means that the most probable value of 
the phase difference of the speckle-field in the neighbouring 
speckles is equal to p.

For a speckle field with constant-sign correlation proper-
ties, such as the field generated by the source with a triangular 
aperture, a virtually uniform distribution p(Dj, Dx) is observed 
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for Dx > e^: p(Dj, Dx > e^) » 1/2p (Fig. 6b). From the physi-
cal viewpoint, that means that the phase difference in the 
neighbouring field speckles may take values in the entire 
interval [– p, p] with equal probability.

The dependences of the probability density function of the 
phase difference on the parameters of the scatterer aperture 
manifest themselves most vividly in the cross sections for the 
fixed distances between the field points, p(Dj, Dx = const). 
Figure 7 presents such dependences for the scatterer apertures 
in the form of a square and an annular square, with different 
ratios of the sides a/b for some typical distances between the 
points. From the physical viewpoint, these curves may be 
interpreted as follows.

When the distance Dx between points P1 and P2 of the 
speckle-field is equal to half the average speckle size (Dx » 
0.5ê ), the probability for the points to fall into one and the 
same speckle attains its maximum; at the same time, the pos-
sibility for the points to fall into the neighbouring speckles is 
not excluded. In this case, nearly zero phase difference values 
are the most probable (Fig. 7a). When Dx » e^, the points fall 
within a single or neighbouring speckles with equal probabil-
ity: in this case, a virtually uniform phase difference distribu-
tion is observed (Fig. 7b). At a distance Dx » 1.5e^, which is 
numerically equal to the coordinate of the first local maxi-
mum of the speckle-field correlation function, falling of the 
randomly sampled points into the neighbouring speckles is 
the most probable, though they may also fall into a single 
speckle. In this case, the values of the phase difference near –p 
and p are the most probable (Fig. 7c). At a distance Dx » 

2.5e^, numerically equal to the coordinate of the second local 
maximum of the correlation function of the speckle field, it is 
most probable that the randomly sampled points fall into the 
speckles through one; nevertheless, this does not exclude the 
possibility for them to fall into the neighbouring speckles and 
even into one and the same speckle. In this case, the values of 
the phase difference near zero are the most probable (Fig. 7d).

The results of numerical experiments show that the larger 
the absolute values of extremums of the correlation function 
of the complex amplitude of the speckle-field, the greater the 
maxima of the probability density function of the phase dif-
ference p(Dj, Dx) at two points of the speckle-field (Fig. 7). 
The greatest oscillation amplitudes of the field correlation 
function take place for annular apertures of the speckle-field 
source.

Figure 8 represents the probability density function of the 
phase difference p(Dj, Dx = const) of the field sources with an 
aperture in the form of an annular square, when Dx increases 
from 0.5ê  up to 1.5ê  (Fig. 8a) and from 1.5ê  up to 2.5ê  
(Fig. 8b). In Fig. 8, with increasing Dx, the maxima of 
p(Dj, Dx) at Dj = 0 decrease down to a nearly equiprobable 
distribution at Dx » e^, and then the maxima for Dj = ±p 
increase with increasing Dx up to 1.5ê . In Fig. 8b, the max-
ima of p(Dj, Dx) for Dj = ±p decrease down to a nearly equi-
probable distribution at Dx » 2e^, and then the maxima of 
p(Dj, Dx) for Dj = 0 at Dx » 2.5ê  increase.

The correlation function of the speckle-field generated by 
the source with an aperture in the form of a triangle has no 
alternating-sign oscillations (Fig. 3). An expressed maximum 
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of the probability density function of the phase difference is 
observed near Dj = 0 on the dependences p(Dj, Dx = const) 
for the points falling into one and the same speckle (Fig. 9a). 
In other cases, a virtually uniform distribution of Dj holds 
true over the entire interval [–p, p] (Figs 9b – d).

In the case the aperture has a shape of an annular triangle, 
small alternating-sign oscillations of the correlation field 
function occur (Fig. 3). Therefore, the values of p(Dj, Dx) 
slightly increase near Dj = ±p for the points falling into the 
neighbouring speckles (Fig. 9b). For the points falling into 
one speckle, we observe an expressed maximum near Dj = 0 

(Fig. 9a), while, in other cases, the distribution over the entire 
interval [–p, p] turns out virtually uniform (Figs 9b – d). 
Similar to the case of a symmetric source aperture of the 
speckle-field, the smaller the annular region width, the greater 
the modulus of the first negative maximum of the autocorre-
lation function and relevant maximum for Dj = ±p (Fig. 9c).

Figure 10 shows the behaviour of the probability density 
of the phase difference of the speckle-fields for the fixed val-
ues Dj = 0 and p when increasing the distance Dx between the 
points for the speckle-field source with an aperture in the 
form of a square and an annular square. The smaller the 
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annular region width on the source aperture, the greater the 
oscillation amplitude of the probability density function for 
the phase difference Dj = 0 and p, and the slower the oscilla-
tions are damped with increasing Dx, which is an evidence of 
extension of the phase correlation region. 

The results of numerical experiments (Figs 6 – 10) show 
that changing the sign of the correlation function of the com-
plex amplitude of the speckle field is associated with a change 
in the sign of the complex field amplitude in a transition from 
one speckle to another. The greater the modulus of the first 
negative maximum of the correlation function, the greater the 
maxima of the probability density of the phase difference 
p(Dj) forDj = ±p and, consequently, the nonuniformity of 
the density distribution of the phase difference of the speckle-
field.

4. Natural statistical experiment to determine 
the phase difference in the speckle-field

We have performed a statistical laboratory experiment to 
determine the phase difference of oscillations at two points of 
the speckle field, with computer processing of relevant inter-
ferograms, which provided the opportunity to operate with 
large sampling numbers – up to N = 1000 for each histogram. 
We have analysed four scatterer-restricting apertures such as 
the speckle-field source: square, annular square, triangle and 
annular triangle. For each aperture, statistics of changes in 
the phase difference at two speckle-field points for two char-
acteristic distances between the points is determined. A phase 
difference between the oscillations arises in the interference 
experiment. The Young interferometer is the most suitable 
tool to determine the phase difference between two field 

points, since it allows observing interference of the waves out-
coming from two openings in an opaque screen, upon which 
the field under study falls. If the screen openings are small 
compared to the transverse correlation length of the illumi-
nating field, these quasi-point-like openings serve as the sec-
ondary sources of quasi-spherical waves. When the openings 
are illuminated by a spatially-coherent field, such as the laser 
speckle-modulated field, the interference of allocated waves is 
observed at any distance between the openings. However, the 
position of interference fringes depends on the phase differ-
ence of field oscillations in the openings. This circumstance 
makes it possible to determine the change in the phase differ-
ence of these oscillations by replacing the field realisation on 
the screen with openings and changing the spatial distribution 
of the phase of the illuminating field when changing the dis-
tance between the openings. Thus, the use of the Young inter-
ferometer offers an opportunity of performing a statistical 
experiment to determine the spatial probability density func-
tion of the phase difference at different field points versus the 
distance between them. This experiment assumes determina-
tion of the displacements of interference fringes relative to 
their period when replacing the realisations of the speckle-
field incident on a screen with the openings.

Figure 11 presents a schematic of experimental deter-
mination of the phase difference at two points of the 
speckle-field with the Young interferometer. A beam from 
a laser ( 1 ) is reflected from a mirror ( 2 ), is expanded by 
means of a microlens ( 3 ), is collimated by a lens ( 4 ), and 
then passes through another lens ( 5 ) restricted by an aper-
ture ( 6 ). The distance z0 from aperture 6 to the screen with 
two point-like apertures ( 8 ) is much larger than the aper-
ture size. The aperture’s external size a is about 5 mm (the 
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Figure 10.  Probability density function of the phase difference at two speckle-field points with Dj = 0 ( 1 ) and Dj = p ( 2 ) vs. distance Dx between 
these points for the sources with apertures in the form of a square (a) and an annular square with the ratio a/b equal to (b) 2, (c) 4/3 and (d) 10/9.
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ratio a/b of the annular aperture sizes is equal to 2); the 
distance z0 is about 1500 mm. Thus, we may assume that 
the screen with openings, on which the speckle-field falls, 
is located in the far-field diffraction region. In this exper-
iment, we employed linearly polarised radiation from a 
He – Ne laser (the power of 25 mW power, the wavelength 
of 0.63 mm) and a digital camera (CMOS sensor, 5.7 mm  ́   
4.28, 2592 ´ 1944 pixels).

In our experiment, the distance Dx between the screen 
openings remains constant (Dx = 0.5 mm), while the speckle 
size e^ is varied by changing the distance z0 from the lens to 
the screen. Accordingly, the ratio Dx/e^, which constitutes 
1.5 and 2.5 in the experiment, is also changed. The interfer-
ence fringe pattern is formed on the digital camera matrix 
(Fig. 12), position of which depends on the phase difference 
Dj of the field in the apertures of the screen ( 8 ). When dis-

placing lens  5 transversely by a value exceeding the aperture 
size, a complete replacement of the speckle-field realisation 
on the screen surface occurs. Variation in the field phase dif-
ference in the screen openings is determined from the trans-
versal shift Dx' of interference fringes in fractions of their 
period L:

Dj = 2pDx’/L.	 (4)

The fringe shift Dx' for each image of the interference pat-
tern relative to the position of fringes in a reference image is 
determined by means of computer image processing of inter-
ference patterns as the displacement of the central peak of 
cross-correlation functions of the reference and current 
images of interference fringes relative to the position of the 
central peak of the autocorrelation function of the intensity 
distribution in the reference image.

The histograms presented in Fig. 13 are constructed on 
the basis of statistical data for the phase difference Dj. The 
histograms in Figs 13a – d show a distinct nonuniformity of 
the probability density function of the phase difference at two 
points of the speckle field for the sources with apertures in the 
form of a square and, especially, in the form of an annular 
square. For the sources with such apertures, as indicated 
above, the speckle-field correlation function possesses local 
extremums being sufficiently pronounced (see Fig. 2). The 
greater those extremums in modulus, the greater the maxima 
of the probability density function of the phase difference, as 
can be seen from Fig. 13 for the case of an annular square 
aperture. At Dx » 1.5ê , when the Young interferometer 
openings with maximal probability correspond to the neigh-
bouring speckles, a maximum of the probability density func-
tion of the phase difference is observed at Dj = p. At Dx » 
2.5ê , when, with maximal probability, the speckles fall 
through one into the screen openings, the maximum is 
attained at Dj = 0.

The histograms in Figs 13a – d demonstrate a nearly 
jumpwise increase in the maxima near Dj = 0, p, and a 
nearly uniform phase difference distribution in the rest of 
the interval. This can be explained by the fact that, in the 
natural statistical experiment, when changing the speckle 
field realisation, only bright and clear images of interfer-
ence fringes have been selected. In these cases, the openings 
in the Young interferometer screen fall either into a single 
speckle, or the neighbouring speckles, or the speckles 
through one, and it is most probable that the phase differ-
ence herewith equals p or zero. In the realisation of the 
conditions Dx » 1.5e^ by means of increasing the distance 
z0, the field’s mean intensity decreases, and the images of 
interference fringes in diffraction halo become less bright 
than those at Dx » 2.5e^, which results in a lesser number 
of recorded ‘good’ images.

The field correlation function generated by a scatterer 
with an asymmetric aperture (in particular, having the form 
of a triangle) has no alternating-sign oscillations, while in the 
case of an annular triangle, the field correlation function 
undergoes sign-alternating oscillations of small amplitude. 
Therefore, the speckle-fields generated by the scatterers with 
such apertures are expected to have a nearly uniform proba-
bility density function of the phase difference. The results of 
the natural experiments presented in Figs 13e – h confirm this 
assumption as applied to the sources with asymmetric aper-
tures.
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Figure 11.  Schematic of the experiment on determination of the phase 
difference at two speckle-field points using the Young interferometer: 
( 1 ) laser; ( 2, 7 ) mirrors; ( 3 ) micro-objective, ( 4 ) lens; ( 5 ) scatterer; ( 6 ) 
aperture; ( 8 ) screen with two point-like apertures; ( 9 ) digital camera; 
( 10 ) image of interference fringes on the matrix of the digital camera.

Dx'

Figure 12.  Displacement Dx' of interference fringes in the diffraction 
halo when changing the speckle-field realisation. The period of interfer-
ence fringes on the camera matrix is L »0.45 mm (~200 pixels).
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5. Conclusions

The nonuniformity of the statistical distribution of the phase 
difference in a developed speckle-field with the most probable 
Dj values equal to 0 and ±p, depending on the distance 
between the field’s points at which the phase difference of 
oscillations is determined, is conditioned by peculiarities of 
transverse correlation properties of the fields. Such a nonuni-
formity of the probability density function of the phase differ-
ence p(Dj) is observed within the speckle field correlation 
range, the transverse correlation properties of which are 
determined by the oscillating, alternating-sign function of the 
field’s transverse correlation. Similar field correlation proper-
ties arise when a scatterer with a symmetric aperture is used as 
the speckle-field source. Moreover, these properties manifest 
themselves in a significantly greater degree when a symmetric 
structured aperture is used, in particular, an annular square 
aperture. In this case, the spatial correlation function of the 
field undergoes oscillations of a relatively high amplitude 
and, as a consequence, fairly large maxima in the probability 
density function of the phase difference p(Dj) at Dj = ±p are 
observed if the distance between the points coincides with the 
oscillation intervals of the correlation function. Under these 
conditions, there is a nonuniform, oscillating in space, prob-
ability density function of the speckle-field phase difference. 
The nonuniformity of p(Dj) is observed within the region of 
the transverse correlation of the speckle-field, where oscilla-
tions of the complex field amplitude remain noticeable. 
Outside that region, the distribution of p(Dj) becomes virtu-
ally uniform.

It is commonly accepted that the separate speckles in the 
spatial intensity distribution of a speckle-modulated field (in 
the speckle pattern) can be considered as the region of the 
field correlation. The results obtained in this work show that 
the region of the field correlation has considerably larger lim-
its. This especially applies to the speckle-fields formed by 
means of the scatterers with structured apertures. The size of 
speckles in the transverse intensity distribution in the speckle 
pattern is determined by the width of the central maximum of 
the field correlation function. However, significant correla-
tions may still persist in the speckle-field beyond the limits of 
that maximum, which is manifested in the nonuniformity of 
the distribution p(Dj). 

The most probable phase difference Dj = ±p of the field 
in the neighbouring speckles of the diffraction zone may, in 
some cases, allow reconstruction of the phase information 
about the object field, which has been lost when recording the 
speckle-field intensity. As shown in [21 – 23], this fact can be 
employed to restore the image of a scattering object by record-
ing the diffraction field intensity. A knowledge on statistical 
properties of the phase difference in the neighbouring speck-
les of the scattered field may also be of practical importance 
in laser interferometry, in particular, for evaluation of the sta-
tistical parameters of signals from laser speckle-interferome-
ters during an analysis of the micro-displacements of scatter-
ing surfaces when a few speckles of a scattered object field fall 
into the photodetector aperture. The statistical regularities of 
the phase distributions, revealed in this work, may also be 
used to study the impact of the speckles on operation of wave-
front sensors. 

References
  1.	 Goodman J.W. Speckle Phenomena in Optics: Theory and 

Applications (Englewood: Roberts & Company Publ., 2006).
  2.	 Goodman J.W. In: Laser Speckle and Related Phenomena. Ed. by 

J.C. Dainty (Berlin: Springer-Verlag, 1975) p. 9.
  3.	 Franson M. Laser Speckle and Applications in Optics (New York: 

Acad. Press, 1979; Moscow: Mir, 1980).
  4.	 Jones R., Wykes C. Holographic and Speckle Interferometry. A 

Discussion of the Theory, Practice and Application of the 
Techniques (Cambridge: Cambridge University Press, 1983; 
Moscow: Mir, 1986).

  5.	 Klimenko I.S. Golographiya sfokusirovannykh izobrajenii i 
spekl-interferometriya (Holography of Focused Images and 
Speckle Interferometry) (Moscow: Nauka, 1985).

  6.	 Badalyan N.P., Kiiko V.V., Kislov V.I., Kozlov A.B. Kvantovaya 
Elektron., 38, 477 (2008) [ Quantum Electron., 38, 477 (2008)].

  7.	 Ivanov A.P., Katsev I.L. Kvantovaya Elektron., 35, 670 (2005) 
[ Quantum Electron., 35, 670 (2005)].

  8.	 Collier R., Burckhardt C.B., Lin L. Optical Holography (New 
York: Acad. Press, 1971; Moscow: Mir, 1973). 

  9.	 Schnars U., Juptner W. Digital Holography (Berlin: Springer-Ver
lag, 2004).

10.	 Rezchikov A.F., Ryabukho V.P. Probl. Mashinostr. Nadezn. 
Mashin, 1, 68 (2010) [ Journal of Machinery Manufacture and 
Reliability, 39 (1), 56 (2010)].

11.	 Kul’chin Yu.N., Vitrik O.B., Lantsov A.D. Kvantovaya Elektron., 
36, 339 (2006) [ Quantum Electron., 36, 339 (2006)].

12.	 Labeyrie A. Ann. Rev. Astron. Astrophys., 16, 77 (1978).
13.	 Martinache F. J. Opt. A: Pure Appl. Opt., 6, 216 (2004).
14.	 Larichev A.V., Ivanov P.V., Iroshnikov N.G., Shmal’gauzen V.I. 

Kvantovaya Elektron., 31, 1108 (2001) [ Quantum Electron., 31, 
1108 (2001)].

15.	 Trisnadi J.I. Proc. SPIE Int. Soc. Opt. Eng., 4657, 131 (2002).
16.	 Yurlov V., Lapchuk A., Yun S., Song J., Yeo I., Yang H., An S. 

Appl. Opt., 48, 80 (2009).
17.	 Svet V.D. Open J. Biophys., 3, 165 (2013).
18.	 Goodman J.W. Statistical Optics (New York: John Willey & Sons, 

Inc., 1985; Moscow: Mir, 1988).
19.	 Uozumi J., Asakura T. Appl. Opt., 20, 1454 (1981).
20.	 Kadono H., Takai N., Asakura T. J. Opt. Soc. Am. A, 3, 1080 

(1986).
21.	 Gorbatenko B.B., Ryabukho V.P., Maksimova L.A. Opt. 

Spektrosk., 101, 861 (2006).
22.	 Gorbatenko B.B., Maksimova L.A., Ryabukho V.P., Norov Yu.V. 

Komp’yuternaya Optika, 31, 26 (2007).
23.	 Gorbatenko B.B., Maksimova L.A., Ryabukho V.P. Opt. 

Spektrosk., 106, 323 (2009).
24.	 Maksimova L.A., Mysina N.Yu., Gorbatenko B.B., 	

Ryabukho V.P. Proc. SPIE Int. Soc. Opt. Eng, 8699, 869910 
(2013).

25.	 Mysina N.Yu., Maksimova L.A., Gorbatenko B.B., 	
Ryabukho V.P. Komp’yuternaya Optika, 37, 451 (2013).

26.	 Born M., Wolf E. Principles of Optics (London: Pergamon Press, 
1959; Moscow: Nauka, 1973).

27.	 Goodman J.W. Introduction to Fourier Optics (New York: 
McGraw-Hill, 1968; Moscow: Mir, 1970).

28.	 Klimenko I.S., Ryabukho V.P., Feduleev B.V. Zh. Tekh. Fiz., 55, 
1338 (1985).


