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Abstract.  Internal emission of photoelectrons from metal films and 
nanoparticles (nanowires and nanospheres) into a semiconductor 
matrix is studied theoretically by taking into account the jump of 
the effective electron mass at the metal – semiconductor interface 
and the cooling effect of hot electrons due to electron – electron col-
lisions in the metal. The internal quantum efficiency of photoemis-
sion for the film and nanoparticles of two types (nanospheres and 
nanowires) is calculated. It is shown that the reduction of the effec-
tive mass of the electron during its transition from metal to semi-
conductor may lead to a significant (orders of magnitude and 
higher) decrease in the internal quantum efficiency of bulk photo-
emission. 

Keywords: bulk photoemission, plasmonic nanoantennas, internal 
quantum efficiency, effective mass of the electron, Schottky barrier. 

1. Introduction 

Recently, photodetectors based on resonant photoemission 
of electrons from plasmonic nanoantennas [1, 2] and metal 
films [3] have been proposed and experimentally demon-
strated, which has resulted in exploring the possibility of 
using resonant photoemission in photovoltaics [4, 5]. In nano-
antennas, i.e., nanometre-sized metal particles, resonant pho-
toemission occurs upon excitation of localised oscillations of 
the electron density (localised surface plasmon resonance – 
LSPR) under the action of an external electromagnetic field 
of a certain frequency. The LSPR appearance leads to a sig-
nificant increase in the electromagnetic field strength inside 
and around nanoantennas and, as a consequence, to an 
increase in the absorption of the electromagnetic field energy 
by the electrons of the metal. Accordingly, if the energy of the 
absorbed field quantum is sufficient for the electron of the 

metal (hot electron) that has absorbed this quantum to over-
come the potential barrier at the matrix – nanoantenna inter-
face, then the LSPR excitation is accompanied by a resonant 
increase in photoemission. 

In addition to the plasmon resonance, an increase in the 
efficiency of photoemission from nanoantennas stems from 
their small size, i.e., in the case when the mean free path of the 
photoelectron is comparable with at least one of the nanoan-
tenna dimensions, the hot electron has a higher (than in the 
case of photoemission from macrobodies) probability of 
reaching the nanoantenna boundary and go beyond it [3]. In 
this case, it is important to consider the cooling of hot elec-
trons in electron – electron and electron – phonon collisions 
[5]. To account for the cooling of hot electrons, use is made of 
one of the most suitable techniques, i.e., the Monte Carlo 
method (see, e.g., [6]), which is however very cumbersome. In 
this connection, several approximate methods were devel-
oped (see papers [3, 5, 7, 8] and references therein). Below we 
use the model of the cooling of hot electrons, proposed in [7], 
to obtain a number of analytical results. 

In metal films and nanoparticles, surface photoeffect can 
be quite pronounced [2, 8, 9], which is manifested in the fact 
that an electron absorbs a photon in a collision with the 
metal – semiconductor interface. In addition, there is also a 
bulk photoeffect – the process during which a photon is 
absorbed in the bulk of a nanoparticle, i.e., in a collision of a 
free electron of the metal with a phonon or a defect in the 
crystal lattice of the metal. Note that the detailed description 
of the absorption of a photon by an electron in collisions is 
not required for our purposes. Similarly to other works (see, 
e.g., [3, 5, 7]), we confine our consideration to the bulk pho-
toeffect solely. 

One of the main characteristics of photoemission is its 
internal quantum efficiency (IQE), i.e., the probability of 
passing the interface by a hot photoelectron. The problem of 
finding this probability is divided into two: calculation of the 
Schottky barrier shape at the metal – semiconductor matrix 
interface and calculation of the probability of overcoming of 
this barrier by a photoelectron. A detailed calculation of this 
barrier was performed in a number of studies [10, 11], but to 
compare the photoemission IQE from different nanoparti-
cles, we use a simple approximation for its shape – a rectangu-
lar potential step with a height equal to the work function 
from metal into semiconductor. By excluding the image force, 
the work function is calculated as the difference between the 
work function from this metal into vacuum and the electron 
affinity of a semiconductor matrix. 

For a barrier (in the form of a step) it is easy to find the 
exact quantum-mechanical expression for the probability that 
an electron will pass through the barrier, the jump of the 
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effective electron mass at the interface being taken into 
account. As we will show below, the account for this jump is 
extremely important because it can significantly affect the 
effective barrier height and consequently the quantum yield 
of photoemission. Note that the effective masses of an elec-
tron in a metal nanoparticle and in a surrounding semicon-
ductor may vary by more than an order of magnitude. For 
example, m/m* » 4 for Au/Si and about 15 for Au/GaAs [12], 
where m and m* are the effective masses of an electron in the 
metal and the semiconductor matrix, respectively. The need 
to take account of the effective mass jump in the calculation 
of the transmission coefficient of the potential barrier in the 
problem of photoemission has been noted previously [13, 14]. 
In this paper, we investigate in detail, in particular, the effect 
of this difference in the masses on photoemission from metal 
films and nanoparticles that are of interest for photodetectors 
and solar cells. 

In Section 2 we present the methods for calculating the 
IQE of metal films and nanoparticles for the cases of both 
homogeneous and inhomogeneous electric field distributions 
in the metal within the framework of a three-step photoemis-
sion model with the account for inelastic scattering of hot 
electrons by ‘cold’ electrons of the metal. In Section 3 we 
describe the used models of the transmission coefficient of the 
potential barrier at the metal – semiconductor interface. In 
Section 4 we present formulas for the IQE of a flat film and 
nanoparticles of two simple shapes: spheres and wires of cir-
cular cross section. In Section 5 we discuss the spectral depen-
dence of the IQE near the long-wavelength interface for a flat 
film, nanosphere and nanowire; namely, we compare the IQE 
for two cases: the exact quantum-mechanical solution for a 
rectangular potential step and approximation of the transmis-
sion coefficient by the Heaviside function. The obtained 
results and possible directions of further research on bulk 
photoemission from metal films and nanoparticles are dis-
cussed in Conclusions. 

2. IQE of photoemission from metal films  
and nanoparticles 

The general scheme of the phenomenon in question is shown 
in Fig. 1. A plane light wave of the form Re[E0exp(–iwt)]prop-
agates in a semiconductor matrix with embedded metal 
nanoparticles (for brevity we speak, as a rule, of nanoparti-
cles, bearing films in mind). Field Ei(r) inside a nanoparticle 
in the general case can be expressed as 

( ) ( )FE r r Ei 0= t ,	 (1) 

where ( )F rt  is the operator (matrix), which depends on the 
shape and size of the nanoparticle, field polarisation E0 with 
respect to the nanoparticle and dielectric constants ei(w) and 
ee of the nanoparticle and matrix materials, respectively. 

For the nanoparticles’ shapes and the film under study, it 
is convenient to introduce the characteristic size Ln: for a 
sphere and a cylinder it is the diameter and for a film it is the 
thickness. If the nanoparticle is ellipsoidal, then in the quasi-
static approximation, i.e., when the characteristic size of the 
nanoparticle is much smaller than the wavelength of light in 
the matrix, the field inside the nanoparticle is homogeneous 
[15] and the operator ( )F rt  is independent of the coordinate r 
inside the particle:   ( )F Fr /t t. If the incident field E0 is polar-
ised along one of the axes of the ellipsoid, the field Ei is paral-
lel to E0, i.e., the operator Ft  is actually a scalar: ( )F Fr /t . 

Bulk photoemission involves three stages [16, 17]. In the 
first stage the metal electrons in collisions with phonons, lat-
tice defects or impurity atoms absorb photons of the incident 
electromagnetic wave with energy 'w and are excited to ener-
gies exceeding the Fermi energy, i.e., become hot (Fig. 2). In 
the second stage hot electrons move to the nanoparticle 
boundary, losing on the way their energy (being cooled) in 
electron – electron and electron – phonon collisions. In the 
third stage photoelectrons penetrate into the matrix through 
the nanoparticle boundary (for simplicity, as a matrix mate-
rial we consider an n-type semiconductor) or are reflected 
from the boundary back into the metal. 

Obviously, the specific rate of photoemission, rem(r) (in 
s–1 m–3), which describes photoemission from nanoparticles 
upon excitation of hot electrons at point r on the nanoparti-
cle, is proportional to the specific rate of absorption of pho-
tons in the metal nanoparticle, rabs(r) (in s–1 m–3): 

rem(r)  = hi
local (r) rabs(r).	 (2) 
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Figure 1.  Metal nanoparticle in a semiconductor matrix. 
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Figure 2.  Three stages of bulk photoemission: I – excitation of the elec-
trons of the metal (in collisions with phonons or lattice defects) from the 
occupied energy states in the conduction band into the unoccupied 
states above the Fermi level  EF; II – electron transport in the metal; III 
– interaction of electrons with a Schottky barrier (overcoming of a bar-
rier or reflection from it). Curve ( 1 ) shows the Schottky barrier without 
image forces, curve ( 2 ) – taking these forces into account; Wa is the 
work function from the metal into the semiconductor; and  Ev  and Ec  
is the top of the valence band and the bottom of the conduction band of 
the semiconductor, respectively. 
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The proportionality factor hi
local (r) is, by definition, the 

local IQE of photoemission – the probability that a photo-
electron, which has absorbed a photon at point r, experiences 
photoemission, i.e., will reach the nanoparticle boundary and 
go beyond it. The specific rate of photon absorption, rabs, [15] 
can be expressed in terms of the imaginary part iem  of the 
dielectric constant of the metal, ei ( ii i ie e= +el m), and the field 
strength in the nanoparticle: 

i2( ) | ( )| | ( ) |r Fr E r r E
2
1

2
1

abs i
0 0

0
2

' '
e e

= =ie em m t .	 (3) 

We can write a relation, similar to (2), for the entire 
nanoparticle and thus determine its IQE, hi: 

Rem = hi Rabs,	 (4) 

where Rabs and Rem are the rates of photon absorption and 
photoelectron emission from the nanoparticle, respectively 
(in s–1); 

( ) , ( )d dR r r R r rr rabs abs em em
V V

3 3

n n

= =y y ;	 (5)

( ) | ( ) | | ( ) |d dF r F rr r E r Ei
local

V V
0
2 3

0
2 3

n n

h h= i
t ty y ;	 (6) 

and Vn is the nanoparticle volume. Obviously, the IQE in for-
mula (6) [when Ft  is the linear operator (the field strength is 
not too large, and nonlinear effects can be neglected)] does 
not depend on the modulus of the vector E0. In the case of a 
homogeneous field in the nanoparticle, when the scalar Ft  is 
independent of r, it follows from (6) that 

( )dV rr1
i

n

local

V

3

n

h h= iy ,	 (7) 

i.e. hi in this case is the local IQE averaged over the nanopar-
ticle volume. 

The local IQE entering expressions (6) and (7) can be 
found as follows. Specific absorption rabs (r) can be written as 

( ) | ( )| ( , ) [ ( ( )) ( ( ))]r B f k f kr E r k k E Eabs i e e= -
2 l ly

	 ( ( ) ( ) )d dk kk kE E 3 3
# 'd w- +l l,	 (8)

where ( )f Ee  is the Fermi function of the electron distribution 
in energy E ; integration over d d dk k k k

3 2 W=  includes inte-
gration over moduli k of the wave vectors k (dk) and their 
directions (dWk); similarly – integration over d d dk k k k

3 2 W=l l l ; 
the function ( , )B k kl ) describes the induced transition from a 
state with the wave vector kl to a state with the wave vector k 
with the absorption of a photon [correspondingly, ( , )B k kl  
describes the transition from a state with the wave vector k to 
a state with the wave vector kl with the emission of a photon]; 
and ( , )B k kl  = ( , )B k kl . In formula (8) the integral over d k3 l 
denotes summation over all the initial states of the electrons, 
and the integral over  d k3  – averaging over all possible final 
states for each initial state. 

We assume that the distribution density of the electron 
energy states in the metal corresponds to the isotropic para-
bolic dispersion law: E  µ k2. Performing in (8) the integration 

over d k3 l with account for the delta function ( ( )kEd -l  
( ) )kE 'w+  and the fact that ( ) ( ) /( )k k m2E 2'= , we obtain 

( ) ( , )dr r kr r kabs exc
3

= y ,	 (9)

where 

( , ) | ( )|r r k E rexc i
2

=

	 ( ) ( ( ) ) ( ( )) ( )B k f k f k kE E Ee e# ' 'w w- - -l 6 @ 	 (10) 

is the specific excitation rate in the phase space (in s–1 m–3 m3 
= s–1). Additional constant factors arising from the integra-
tion in (8) are included in ( )B kl . Then, we can introduce a 
specific photoemission rate rem(r), which is different from 
rabs(r) (9) by the factor Pem(r, k) under the integral [Pem(r, k) is 
the probability of emission of a photoelectron excited at point 
r with the wave vector k]: 

( ) | ( )| ( , ) ( )r P B kr E r r kem i em
2

= ly 	

	 ( ( ) ) ( ( )) ( ) df k f k k kE E Ee e
3

# ' 'w w- - -6 @ .	 (11) 

Thus, according to (7) 

( )rlocalh =i 	 (12)

( ) [ ( ( ) ) ( ( ))] ( )

( , ) ( ) ( ( ) ) ( ( )) ( )

d

d

B k f k f k k k

P B k f k f k k kr k

E E E

E E E

e e

em e e

3

3

' '

' '

w w

w w

- - -

- - -

l

l 6 @

y
y

. 

Expression (12) can be greatly simplified by assuming the 
product ( ) ( )B k kE 'w-l  to be independent of k. This 
assumption dates back to the classical statistical theory of the 
Fowler photoelectric effect [18]. In this case, it is obvious that 

( )
[ ( ( ) ) ( ( ))]

( , ) ( ( ) ) ( ( ))

d

d

f k f k k

P f k f k k
r

r k

E E

E E
local

e e

em e e

3

3

'

'
h

w

w
=

- -

- -

i

6 @

y
y

.	 (13) 

Note that if ( ) ( )B k kE 'w-l  does not depend on k, the 
dependence of rexc(r, k) on k is determined only by the differ-
ence of the Fermi functions ( ( ) ) ( ( ))f k f kE Ee e'w- -  [see Eqn 
(10)]. 

The influence of the thermal excitation of electrons on the 
spectral characteristics of the metal – semiconductor contact 
can be neglected at photon energies that are greater than the 
work function from the metal into the semiconductor, Wa, by 
(2 – 3)kBT (kB is the Boltzmann constant, and T is the tem-
perature) [19, 20]. By neglecting the thermal excitation of 
electrons located above the Fermi surface, EF (i.e., assuming 
T = 0), it is easy to obtain that the difference ( ( ) )f kEe 'w- -  

( ( ))f kEe  in the above formulas is equal to unity in the region  
E E EF F '1 1 w+   and to zero outside this region. Therefore, 
the specific rate of excitation in the phase space, rexc(r, k), dif-
fers from zero only in the layer 

k k kF1 1 'w 	 (13а)

of the phase space above the Fermi surface of the metal, 
where 2k mEF F' =  and 2 ( )k m EF' 'w= +'w . At T = 0 
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the assumption that ( ) ( )B k kE 'w-l  is independent of k 
means that the pump rate of hot electrons to the phase layer 
(13a) is uniform, i.e., does not depend on k: 

( , ) | ( )|r Br k E rexc i=
2 r ,	 (13b) 

where ( ) ( )B B k kE '/ w-lr . Accordingly, expression (9) for 
the specific absorption can be rewritten as 

( ) | ( )|r BVr E rabs i k=
2 r ,	 (13с) 

where 4 ( ) /V k k 3k
3 3p= - F'w  is the volume of the phase layer 

(13a). Note that by comparing relations (13c) and (3), we can 
express the coefficient Br  and hence the specific excitation rate  
rexc(r, k) through the imaginary part iem  of the dielectric con-
stant ei of the metal. 

At Т = 0 from (13) we obtain

( ) ( , )dV P kr r k1local
em

k V

3

k

h =i y .	 (13d)

Thus, the local photoemission rate rem(r) can be computed 
using formulas (2), (3) and (13d), and thereafter the photo-
emission rate Rem and IQE of the nanoparticle can be calcu-
lated by formulas (5) and (7), respectively. 

To account for the scattering of photoelectrons we use 
here a simple model considered in [7] (see also its description 
in [8]), which makes it possible, in some cases, to obtain ana-
lytical expressions for the IQE. It is assumed in this model 
that multiple reflections of the electrons from the boundary 
can be neglected; therefore, the probability Pem(r, k) in (13d) 
is represented as 

( , ) ( ( ), ( , )) [ ( , ) / ]expP D k L lr k r e r eEem ek ka= - ,	 (14)

where D is the coefficient of the photoelectron transmission 
through a barrier at the interface; a is the angle of incidence 
of photoelectrons at the interface; ek = k/|k| is the unit vector, 
co-directional with the vector k; L is the distance along a 
straight line from the point of generation of a photoelectron 
to the boundary; and le is the mean free path in electron – elec-
tron scattering. Here we assume that the photoelectron moves 
along a straight line from the point of its generation to the 
boundary. In addition, in the first electron – electron scatter-
ing event, the photoelectron loses approximately half its 
excess (relative to the Fermi level) energy [6]; therefore, it can 
be treated as the one that has not overcome the potential bar-
rier at the interface. Thus, the likelihood that the photoelec-
tron reaches the boundary is equal to the probability that the 
photoelectron will experience no electron – electron scattering 
events on its way to the boundary and, therefore, will not lose 
the energy, and this probability is taken into account by the 
factor exp(–L/le). Note that the mean free path in electron –
electron scattering is, generally speaking, a function of the 
electron excess energy above the Fermi level rather than a 
constant. The influence of this dependence on the quantum 
efficiency of photoemission was considered in [21, 22]. In this 
paper we consider a narrow range of photon energies near the 
long-wavelength boundary, and so this dependence is 
neglected. In addition, it is possible to take it into account 
only by numerical methods. 

Electron – phonon scattering in model (14) is completely 
ignored, because scattering by phonons is almost elastic. 
Electron energy loss in a single event of collision with a pho-

non is ~3.10 eV, and the mean free path of electrons in elec-
tron – phonon collisions for gold and silver nanoparticles is 
~50 nm [6]. For nanoparticles with characteristic dimensions 
less than 100 nm, this means a loss of no more than tenths of 
a percent of the initial electron energy on the way from the 
point of generation to the boundary, which in this case can be 
neglected. 

3. Calculation of the transmission coefficient  
of the potential barrier  
at the nanoparticle – matrix interface 

To calculate the transmission coefficient D [appearing in (14)] 
of the potential barrier at the nanoparticle – matrix interface, 
we assume that the photoelectron – a plane wave with the 
wave vector k0 – falls from medium 1 at the interface between 
media 1 (metal) and 2 (surrounding semiconductor matrix), 
which is subjected to the action of a potential in the form of a 
rectangular step of height W (Fig. 3). The interface between 
the media will also be assumed to be locally flat. This approx-
imation is fulfilled when the de Broglie wavelength of the 
photoelectron is much smaller than the radius of curvature of 
the nanoparticle surface in place where the electron passes 
through the interface between the media. Despite the fact 
that, in general, reflection of hot electrons from the boundary 
is of mirror-diffuse nature [23], we use below the model of 
specular reflection, which is commonly used in the theory of 
the photoelectric effect [24] when it is assumed that the wave 
vector k1 of the reflected wave lies in the plane of incidence of 
the electron on the boundary and the angle of reflection 
equals the angle of incidence. 

Let us assume that the amplitude of the incident wave is 
equal to 1, that of the reflected wave – to A and that of the 
refracted wave – to B. In addition, we take into account that 
k0 = k1. Thus, the electron wave function can be written as 

( ) ( )exp iBr k ry =

( ) ( ) ( ) 1,  
2,

exp expi i in medium
in medium
Ar k r k r1 0 1

2 2

y = +
) 	 (15)

where ( ) /k m U2 Ei i i '= - ; Ui = 0 at i = 1 and Ui = W at i = 2; 
m1 = m, m2 = m* (m and m* are the effective masses of the 
electron in the metal and the matrix, respectively); and E  is 

A B

z

y

n

k1

k0

k2

q

q

j

Medium 1 Medium 2

Figure 3.  Schematic representation of the passage of the photoelectron 
through the interface between two media and its reflection from the in-
terface. 
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the kinetic energy of the incident electrons ( WE 2 ). Two 
boundary conditions (Bastard conditions [25]) are imposed 
on the wave function (15): the continuity of the wave function 

y1(O) = y2(O)	 (16)

and the continuity of the normal component of the probability 
flux density through the boundary, leading to the condition

m m
n n1 1

O O
1 2d dy y=

*
,	 (17) 

where O is an arbitrary point on the boundary, and n is unit 
vector of the normal to the boundary (Fig. 3). In addition, 
from the condition of specular reflection of the electron from 
the boundary follows the continuity of the tangential compo-
nent of the wave vector of the electron: 

k0 sinq = k2 sinj,	 (18) 

where q is the angle of incidence of the electron on the bound-
ary. From equations (15) – (18) we obtain the unknown quan-
tities: 

, ,
cos
cos

A B r
k
k

1
1

1
2

m
0

2

z
z

z
z

q
j

=
+
-

=
+

= ,	

(19)

,

, ,

arcsin sin sin

sin

k
k

k
k

k
k

1

2
1

2

0

2

0

2

0

1

Hpj
q q

q
=

,c m
Z

[

\

]]

]]
 

where rm = m/m*. Using (19), the transmission coefficient D 
can be determined as the ratio of the normal components of 
the probability flux density vector on both sides of the inter-
face: 

( )
Re ReD r

k
k B

1
4

m
z

z

0

2 2
2z

z
= =

+
c m ; E.	 (20) 

It is convenient to rewrite this formula in a form similar to the 
formula in the case of normal incidence of the electron on the 
rectangular potential step in the absence of a jump of its effec-
tive mass (see, e.g., [26]): 

[ ( / )]

[ ( / )]
ReD

r U

r U
4

1 1

1

E

E
/

/

q
m z

m z

1 2 2

1 2

=
+ -

-

r

r

"
)

,
3,	 (21) 

where 

( 1) ; ;sinU W r E E Em
2q= + - =r r r 	

; /(2 );cos k mE E Ez
2 2

0
2'q= = 	

(22)

Ez  is the electron kinetic energy associated with the normal 
component (to the interface) of its momentum; and similarly,  
E r is the kinetic energy associated with the tangential compo-
nent. Model dependence (21) is called the model of a rectan-
gular potential step. In this case, the transmission coefficient 
depends on Ez  and the effective barrier height Ur, which is 
dependent on the E r. In the case of rm > 1 and oblique inci-
dence of the electron onto the interface between the media, Ur 
is always greater than W by the value of the jump (positive)   
E r during transition from medium 1 to medium 2. This leads 
to the fact that the maximum angle of incidence of the elec-

tron with fixed energy E  onto the interface at which it still 
overcomes the potential barrier 

( ) arccos r
W r1 1E
E

/

max
m

m

1 2
q = + -c m; E ,	 (23) 

decreases monotonically with increasing rm, i.e., the electron 
exit cone narrows down. Accordingly, the IQE of the 
nanoparticle decreases. 

For the transmission coefficient, a simpler model is widely 
used in the literature (see, e.g., [17 – 19]) than the rectangular 
potential step model. For the transmission coefficient this 
model uses the Heaviside function: 

( ) ( )D UE Ez z0 1 Q= - r- ,	 (24) 

whereе Ezand Ur are defined by formulas (22). Model depen-
dence (24) will be called the ‘0 – 1’ model. In the case of rm = 1 
= 1 and arbitrary angle of incidence or arbitrary rm = 1 and 
normal incidence, the ‘0 – 1’ model describes the classical 
transmission coefficient. The value of this simple model is, 
inter alia, in that in many cases it allows one to obtain ana-
lytical results for the IQE of nanoparticles. Expressions (21) 
and (24) for the transmission coefficient are limiting and cor-
respond to an extremely sharp (rectangular step) and 
extremely smooth [W(x) = W  for x Î (–¥, +¥)] change in the 
potential at the interface between the media. Therefore, it can 
be assumed that the IQE values calculated for any other 
potentials (at least those for which the tunnelling effects are 
insignificant) will lie between the values calculated for the two 
potentials: maximum IQE values correspond to the ‘0 – 1’ 
model, and the minimum ones – to the rectangular potential 
step model. 

4. IQE for films and nanoparticles 

In this and following sections, the calculations are carried out 
under the assumption that the electric field is uniform in the 
nanoparticle. In this case, the IQE of the nanoparticle is cal-
culated by formula (7), in which the local IQE has the form 

( ) ( ( ), ( , ))
( , )

exp dV D k
l

L
kr r e

r e1 Elocal

ek
k

V

k 3

k

h a= -i ; Ey ,	 (25) 

where 3 34 ( ) /V k k 3Fk p= -'w . The integral in (25) can be conve-
niently written in spherical coordinates: 

( ) sind dV kr 1local

k k

k
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2
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F

h j q q=
p p 'w

i y y y

	 ( ( ), ( , , ))
( , , )

exp dD k
l

L
kr

r
E

e
# a q j

q j
-; E .	 (26) 

Using (26) we calculate the IQE for three simple objects: a 
flat film, a nanowire with a circular cross section and a nano-
sphere. As will be shown below, due to the presence of the 
symmetry axes, the IQE in these cases can be calculated ana-
lytically. In the general case, the corresponding integrals are 
evaluated numerically. 

4.1. Flat film 

First, we consider the case of a flat film (Fig. 4a). The auxil-
iary coordinate system x y zl l l, from the axes of which the 
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angles of the spherical coordinate system are measured (q – от 
zl and j – from xl), is oriented so that the   zl axis is perpen-
dicular to the film surface, and the other axes are oriented 
arbitrarily. Integrals (7) and (26) can be written as 

( )di
local

0

1
h h x x= iy ,	 (27)

33( ) ( , , )d dk k N I k k
2
3 /local

sd f
k

k1

0

2

F

h x q x q= -
p- 'w

i F'w^ h yy ,	 (28) 

where Nsd = 1, 2 is the number of sides of the film, through 
which the photoemission occurs; x = x/Lf ; x is the distance to 
the film surface; Lf is the film thickness;  

( , , ) ( ( ), ( , ))
( , )

sin expI k k D k
l

L
Ef

e

2
#x q q a x q

x q
= -; E; and

( , ) ; ( , ) / cosL Lfa x q q x q x q= = .
	 (29)

In the case of the ‘0 – 1’ model at rm = 1 and le = ¥, calcu-
lating integral (27) we obtain 

( )
N
2 1

1
2
1

2
3

/
/ / /

i
sd

3 2
3 2 1 2 3 2h

d
g g d d=

-
- +- -` j,	 (30)

where 1 / ; / ; andW W WE E EF F F a'd w g= + = = + .

4.2. Nanowire 

Consider now the case of a nanowire with a circular cross sec-
tion (Fig. 4b). The coordinate system x y zl l l is oriented so that 
the zl axis is perpendicular to the side surface of the cylinder 
and the xl axis is parallel to the cylinder axis. Integrals (7) and 
(26) will be rewritten in the form 

2 ( ) di
local

0

1
h h x x x= iy ,	 (31)

33( ) k k
2
3local 1

ph x = -
-

i F'w^ h

	 ( , , , )d d dI k kcyl
k

k

00 F

# q f x q f
pp 'wy yy ,	 (32) 

where x = r/R; r is the distance to the axis of the cylinder; R is 
the radius of the cylinder; and the function Icyl (k, x, q, f) is 
written analogously to If (k, x, q) in formula (29) with the only 
exception that the functions a and L from the integration 
variables now have the form a(x, q, j) and L(x, q, f) and are 
determined by solving the problem of the intersection of the 
straight line, given in parametric form r = r (s), with the cylin-
der surface. The corresponding system of equations (with 
respect to the variables s, y and z) has the form 

r (s) = r0 + eks,	
(33)

y2 + z2 = R2, 

where r = (x, y, z); r0 = (0, 0, xR); ek = (sinq cosj, sinq sinj, 
cosq); and the first equation is written only for the y- and 
z-components of the vectors. If s0 is the solution to system 
(33), then L = |ek s0|, and the angle a is determined as the angle 
of intersection of the vectors ek and ns = (0, –y(s0), –z(s0)). 

4.3. Nanosphere 

Finally, we present expressions corresponding to the case of a 
spherical nanoparticle (Fig. 4c). The coordinate system x y zl l l 
is oriented so that the zl axis is perpendicular to the sphere 
surface, and the other axes are oriented arbitrarily. Integrals 
(7) and (26) have the form 

 ( ) d3i
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0

1 2h h x x x= iy ,	 (34)
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Figure 4.  Nanoparticles and auxiliary coordinate systems: (a) flat film, 
(b) nanowire and (c) nanosphere; ns is the internal normal to the surface 
of the nanoparticles at point of its intersection with the photoelectron 
trajectory. 
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where  x = r/R; r is the distance to the centre of the sphere; R 
is the radius of the sphere; and the function Isph(k, x, q) is writ-
ten similarly to functions If (k, x, q) and Icyl (k, x, q, j), and the 
dependences of a and L on the integration variables have the 
form 

( , ) ( )arcsin sina x q x q= ,	 (36)

( , ) ( )sin cosL R 1 2x q x q x q= - -6 @.

In the case of the ‘0 – 1’ model at rm = 1 and le = ¥, the 
integral in (34) can be calculated analytically [8]: 

( )ln
1

1
2
3 1/

/ /
i 3 2

3 2 3 2h
d

d g gd=
-

- +- 8 B$ ..	 (37) 

4.4. Spectral dependence of the IQE 

Using the expressions obtained in Sections 4.1 – 4.3 for hi and 
localhi , we can construct the spectral dependences of the IQE 
for various nanoparticles (spherical nanoparticles, cylindrical 
nanowires) and a flat film (Fig. 5). Numerical calculations 
are performed for gold nanoparticles surrounded by a GaAs 
matrix for the following parameters: rm = 15, .5 51EF =  eV, 
W = 6.31 eV, le = 41 nm [8, 12]. The calculations were carried 
out using the ‘0 – 1’ model. The film thickness and the diame-
ters of the sphere and cylinder were taken equal to 100 nm. 
One can see from Fig. 5 that the IQE is equal to ~10–3 at a 
wavelength of l = 500 nm and to ~10–6 at l = 1500 nm and 
increases monotonically with increasing photon energy. In 
addition, the calculations show that spherical nanoparticles 
have the highest IQE (at equal characteristic sizes), the IQE of 
a cylindrical nanowire and a two-sided film being approxi-
mately 1.5 and 3 times smaller, respectively (for a one-sided 
film the IQE is ~6 times smaller). These relations are carried 
out with an error of no more than 20 %. 

5. Spectral dependence of the IQE  
of photoemission from nanoparticles near  
the long-wavelength boundary 

In order to simplify the formulas for the IQE of nanoparti-
cles, use is made of two approximations.

1. The energy of the photoelectron is only slightly greater 
than the barrier height so that 'w » W EF- . 

2. In calculating the photoelectron exit cone, the bound-
ary is considered flat. This approximation is fulfilled either in 
a film with flat boundaries or under the condition that the 
mean free path of an electron, le, is much smaller than the 
characteristic size of the nanoparticles: le << Ln. In this case, 
the photoelectrons can only penetrate the matrix from a thin 
surface layer of the metal whose thickness is on the order of le. 

With these assumptions being realised, the wave vectors 
of the photoelectrons overcoming the potential barrier at the 
interface are located inside the exit cone with a small opening 
angle and axis directed along the normal to the nanoparticle 
boundary (in the case of a flat film these are two coaxial cones 
with a common vertex). In this case, the axis of the polar 
coordinate system, which is used to calculate integral (26), 
can be directed for convenience along the normal to the 
nanoparticle surface and we assume that sinq » q, cosq » 1, 
and therefore L(r) = Ls(r)/cosq » Ls(r), where Ls(r) is the 
shortest distance from point of the photoelectron generation 
to the nanoparticle surface (length of the normal to the sur-
face drawn from the point of the photoelectron generation). 
From formulas (7) and (26) for the IQE of the nanoparticle 
we obtain the expressions 
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In formula (38), the parameter Gstr is a structural factor that 
depends only on the nanoparticle shape and the mean free 
path of the photoelectron, and GD is a factor that depends 
only on the chosen formula for the transmission coefficient D. 

For D of form (21) (a rigorous solution for a rectangular 
potential step) and for D of form (24) (‘0 – 1’ model), we can 
write the approximate expression for GD: 

G a
W Z1 E /

F
D

m

3 2 1

= -b
a

-

r
c m; E ,	 (39) 

where a = 5/12, a = 5/2 and b = 0.65 for D of form (21) and 
a = 3/16, a = 2 and b = 1 for D of form (24). As was noted 
above, expressions (21) and (24) for the transmission coeffi-
cient are limiting and therefore for other potentials (at least 
those for which the tunnelling effects are insignificant) the 
exponents in (39) must be in the range of 2 £ a £ 2.5 and 1 ³ 
b ³ 0.65. 

One can see from (39) that at not too large photon ener-
gies the account for the jump of the effective electron mass at 
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Figure 5.  IQE of different nanoparticles as a function of light wave-
length l (or photon energy 'w): ( 1 ) spherical nanoparticle, ( 2 ) cylindri-
cal nanowire, ( 3 ) film with emission of the electrons from both sides 
and ( 4 ) film with emission of the electrons from one side. 
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the metal – semiconductor interface always reduces the IQE of 
the nanoparticle, and this reduction is described by a simple 
(exponential) dependence of the IQE on the ratio of effective 
masses of electrons in the metal and semiconductor. This 
allows one, without numerical calculations, to estimate imme-
diately a decrease in the IQE due to the effective mass jump. 
For example, for gold nanoparticles in a GaAs matrix the 
account for the jump of the effective electron mass provides 
an IQE reduction by 6 – 15 times, depending on the chosen 
model of the transmission coefficient. 

The analytical expression for the structural factor Gstr in 
the case of a flat film with an arbitrary le has the form 

expG N L
l

l
L1str sd

f

e

e

f= - -c m; E,	 (40) 

and for other structures with curvilinear boundaries at le << Ln 

G l V
S

str e
n

n= ,	 (41) 

where Sn is the surface area of the nanoparticle. For a sphere 
of radius R, the structural factor Gstr = 3le /R, and for a cylin-
der of radius R, Gstr = 2le /R. Then, at equal characteristic sizes 
of the sphere, cylinder and two-sided film, the ration of their 
IQEs is 3 : 2 : 1, respectively. The numerical calculations show 
that the ratio is fulfilled within tens of percent at an arbitrary 
le (including le = ¥). 

In this paper the IQE was calculated numerically for a 
100-nm-thick two-sided gold film surrounded by a GaAs 
matrix (Fig. 6). Figure 6a presents the results of numerical 
calculations by the ‘0 – 1’ model and rectangular potential 
step model with and without the effective mass of the jump 
taken into account. The data of Figure 6a allows one to 
draw two conclusions. Firstly, the ‘0 – 1’ model gives a higher 
IQE value as compared to the rectangular potential step 
model. Secondly, a difference in the results obtained for 
these models decreases with increasing rm (dashed curves 
calculated by taking into account the effective electron mass 
jump are far less different than the solid curves calculated 
without this jump taken into account). The first is related to 
the fact that ( , ) ( , )D DE Eq 0 1Gq q-  for any electron energies 
E  and angles q of its incidence on the boundary, and the 
second to the fact that, according to formula (39), the IQE 
calculated by the ‘0 – 1’ model decreases with increasing rm 
faster than the IQE calculated using the exact solution for a 
rectangular potential step (µ1/rm vs. µ1/rm

0.65). Thus, if the 
jump of the mass is sufficiently large, it does not matter what 
model of the potential is used: ‘extremely sharp’ or ‘extremely 
smooth’; therefore; in calculations use can be made of a sim-
pler ‘0 – 1’ model with an extremely smooth change in the 
potential. This conclusion should be further verified in the 
case when the tunnelling effects on the boundary are signifi-
cant. 

Figure 6b shows the dependences ( )i 'h w  calculated 
numerically and analytically by formula (39) taking into 
account the effective mass jump. One can see that the numer-
ical and analytical results are pretty close, although formula 
(39) better describes the dependence ( )i 'h w  calculated by the 
‘0 – 1’ model for the transmission coefficient than that calcu-
lated by the rectangular potential step model. This is due to 
the absence of the approximation error of the transmission 
coefficient in the derivation of relation (39) for the ‘0 – 1’ 
model. 

6. Conclusions 

In this paper we have obtained expressions for the IQE of the 
bulk photoelectric effect for metal nanoparticles and flat films 
in a semiconductor matrix. The consideration takes into 
account the jump of the effective electron mass at the nanopar-
ticle – matrix interface and the cooling effect of hot electrons 
due to electron – electron collisions. Using the example of 
photoemission from gold nanoparticles into a GaAs matrix 
we have shown that the account for the effective electron 
mass jump reduces the IQE by 6 – 15 times depending on the 
chosen model of the transmission coefficient of the Schottky 
barrier. 

Expressions are obtained for the spectral dependence of 
the IQE in the approximation of a plane boundary for a flat 
film and nanoparticles of two types (nanosphere and nanow-
ire with a circular cross bsection) and for two models of the 
transmission coefficient at the nanoparticle – matrix interface: 
exact quantum-mechanical solution for a rectangular poten-
tial step (rectangular potential step model) and its approxi-
mation by the Heaviside function (‘0 – 1’ model). For a sphere, 
cylinder and two-sided flat film with the same characteristic 
dimensions the found IQE ration equals 3 : 2 : 1. This ratio is 
fulfilled accurately, provided that the mean free path le of the 
photoelectron in the scattering is much smaller than the char-
acteristic size of the nanoparticle, and with an accuracy of 
20 % at an arbitrary le (including le = ¥). Thus, the nanostruc-
turing of metals not only leads to increased local fields due to 
plasmon excitation, but also increases the probability that 
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Figure 6.  IQE of a two-sided gold film in a GaAs matrix as a function 
of photon energy: (a) numerical calculation using ( 1, 3 ) ‘0 – 1’ model 
and ( 2, 4 ) rectangular potential step model for the transmission coeffi-
cient D without ( 1, 2 ) and with ( 3, 4 ) the effective electron mass jump 
taken into account, and (b) ( 1, 3 ) numerical calculation and ( 2, 4 ) cal-
culation of formula (39) using a rigorous solution for ( 1, 2 ) a rectangu-
lar potential step and ( 3, 4 ) ‘0 – 1’ model with the effective electron mass 
jump taken into account.
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electrons will reach the boundary of the nanoparticle with the 
matrix before it loses energy in other collisions. 

The impact of the effective mass jump of the photoelec-
tron during its passage through the boundary manifests itself 
not only in the reduction of the IQE. It turns out that if rm (the 
ratio of the effective masses of the electron in the metal and 
semiconductor) is 10 or higher (such as in the case of photo-
emission from gold into GaAs), the results of IQE calcula-
tions are weakly dependent on the model of the potential at 
the boundary, at least if the tunnelling effects are not taken 
into account. We have proposed analytical formulas for cal-
culating the IQE to ensure that the results are in good agree-
ment with numerical calculations. 

In the calculations we have taken into account not all the 
effects of the impact of the actual shape of the potential bar-
rier on the passage of electrons across the interface; in par-
ticular, we have not considered the tunnelling of electrons. In 
the future, these effects can be taken into account in the 
numerical calculations by introducing the appropriate expres-
sion for the IQE of the dependence of the transmission coef-
ficient on the electron energy for the barriers of a more realis-
tic shape [27]. 

For nanoparticles of more complex (than those discussed 
in this paper) shape, one should take into account the nonuni-
form field distribution inside the particle. This inhomogeneity 
can be accounted for by the spatial dependence of the factor 
Ft  [see expression (1)], which is of no importance for numeri-
cal calculations of the IQE. 

The results can be used to design promising highly sensi-
tive photodetectors and photovoltaic devices. In particular, it 
is expected that hot electron photoemission will find applica-
tions to increase the operating spectral range of solar cells and 
thus their efficiency. In addition, the effects studied will be 
used in the development of photoconductive metamaterials.
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