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Abstract.  The adiabatic approximation is used to obtain an ana-
lytical solution to a nonintegrable problem of propagation of a 
plane elliptically polarised light wave with zero mean amplitudes of 
orthogonal circularly polarised field components through an isotro-
pic gyrotropic medium with local and nonlocal components of Kerr 
nonlinearity and second-order group velocity dispersion. We 
describe the aperiodic evolution of bound (attributable to the 
medium nonlinearity) paired states, which are responsible for the 
propagation of two orthogonal polarisation components – cnoidal 
waves with significantly different periods.

Keywords: cubic nonlinearity, spatial and frequency dispersion, lin-
ear and nonlinear gyrotropy, nonlinear Schrödinger equation, ellip-
tical polarisation, adiabatic approximation, bound states, aperiodic 
dynamics.

1. Introduction

Propagation of a plane elliptically polarised wave through an 
isotropic medium with Kerr nonlinearity and second-order 
group velocity dispersion is described by a system of two cou-
pled nonlinear Schrödinger equations. In the general case, 
this system is not integrable [1 – 4] and, taking into account 
the terms responsible for linear and nonlinear gyrotropy, has 
the form [5 – 7]
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Here, A±(z, t) are the truncated amplitudes of the field com-
ponents with the right- and left-hand circular polarisations 
and frequency w propagating along the z axis; t is the time in 
the running coordinate system; the constant k2 = ∂2k/∂w2 

characterises the dispersion; and k is the wavenumber. 
Parameters   s1 = 4pw2 /( )kc( )
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are determined by the independent components of the local 
cubic nonlinearity tensor c(3)(w; – w, w, w), and r0,1 = 2pw2 g0,1/

c2 are defined through the pseudoscalar constants g0,1 of lin-
ear and nonlinear gyration. The latter terms take into account 
the spatial nonlocality of these processes when the amplitudes 
of the field components slowly vary in the direction of z prop-
agation on the wavelength scales.

A number of numerical [5, 6] and particular analytical 
[7 – 10] solutions to system (1) are known. To construct its 
approximate solutions, the linearization method was used 
[11, 12]. It was shown that excitation of one of the normal (in-
phase or anti-phase) nonlinear modes results in a periodic 
regime of changes in the polarisation state, i.e., in propaga-
tion of elliptically polarised cnoidal waves. Otherwise, the 
Stokes parameters [13] change irregularly due to the beatings, 
because the frequencies of the two modes in the general case 
are incommensurable. In paper [14] system (1) was solved by 
using the adiabatic approximation [15 – 17]. Within the frame-
work of the latter there were constructed bound (attributable 
to the nonlinearity) paired states of the field components cor-
responding to the consistent propagation of two waves – 
orthogonally polarised components with sign-alternating and 
sign-constant amplitudes and significantly different periods.

Below we also use the adiabatic approximation but con-
sider a scenario that is slightly different with respect to [14]. In 
this scenario the amplitudes of both field components are sign 
alternating and their mean values are equal to zero. As is 
known, the signal, in which the zero-frequency harmonic in 
the Fourier spectrum is absent, is optimal for transmission 
along long paths. We will show that in this case there are sim-
ilar (to those described in [14]) bound complexes with signifi-
cantly differently scaled but consistent evolution of orthogo-
nally polarised components of the wave in time, because the 
contributions of the latter to the total energy of the system are 
determined by the second-order moments (i.e., their intensi-
ties) and are not zeroed. Another important feature of the 
resulting approximate solution is the absence of exact particu-
lar solutions of (1) for the chosen values of the nonlinearity 
and gyrotropy parameters.

Note that from the practical point of view, the resulting 
periodic and aperiodic solutions may be relevant in the design 
of the fibre optic communication lines, the development of 
Faraday decoupling elements for high-power lasers with 
high-Q ring resonators, etc.

2. Potential energy and adiabatic approximation

As in [14], we first separate the variables, assuming that
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where k± are the separation constants, and r±(t) are the 
unknown real functions. Substituting expression (2) into (1), 
for k2 ¹ 0, we obtain the same (as in [14]) system of ordinary 
differential equations
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Here, Dk± = k± " r0. Below, the variables and parameters in 
(3) are considered dimensionless and normalised because of 
the choice of unit values for the constants describing the lin-
ear gyrotropy ( r0 = 1), dispersion (k2 = 1) and one of the 
components of the local cubic nonlinearity (s1 = 1), which is 
equivalent to the following substitution of variables:  zr0 ® z, 

/t k0 2r  ® t, /r 1 0s r!  ® r±, s2/s1 ® s2, r1/s1 ® r1  and  
k±/r0 ® k±.

Considering now (3) as a system describing the motion 
(evolution of the radius vector r = {r–, r+}) of a unit-mass 
point, we introduce its potential energy U(r–, r+):

2 4( , ) [4 4 ( 2 )U r r
k

r r r
4
1
2

2
1 1k k s rD D=- + + -- + + + - - +

	 +  4( 2 ) 2( 2 ) ]r r r1 1 1 2
2 2s r s s+ + +- + - .	 (4)

In contrast to [14], we are interested in the equilibrium point  
{ , } {0,0}r rreq = =- +u u , corresponding to the minimum of the 

potential energy U due to certain choice of the parameters. To 
analyse the behaviour of the solutions in the vicinity of this 
point, we will use the same (as in [14]) method of search for 
approximate solutions – adiabatic approximation [15 – 17].

Small oscillations in orthogonal directions r± in the vicin-
ity of point req = 0 are the normal modes with frequencies w±, 
given by the expressions
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Therefore, in view of the chosen normalisation (k2 = 1) we are 
interested in the Dk± < 0 values corresponding to a local min-
imum of U and the oscillations, the frequency of which in one 
of the directions (for example, r–) is much smaller than in the 
other (r+), i.e.,

Dk+ << Dk– .	 (6)

In this case, the adiabatic approximation should be appli-
cable.

An alternative to approximate solutions of (3) with respect 
to the position of point  req = 0 could be the exact particular 
solutions of sc and cs types [10, 18, 19], which may exist at  r1 
> 0, k2( r1

2  + s1s2 + s2
2) < 0 and – r1 < s2 < r1 and at r1 < 0, 

k2( r1
2  + s1s2 + s2

2) > 0 and r1 < s2 < – r1. However, as we 
have seen, in contrast to [14], in the case we consider below 
for k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 = – 0.45, Dk+ = –10 and 
Dk– = –1 these particular solutions do not exist.

3. Solution of the problem in the adiabatic 
approximation

In cases when inequality (6) is fulfilled, the approximate solu-
tions are constructed according to the scheme described in 
[14]. First, for the selected values of Dk± we fix an arbitrary 

(valid) value r– and seek for a solution for r+(t) in the selected 
class of elliptic functions. In this case, we solve the equation
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assuming that

r+(t) = B+sn(n+t, m+).	 (8)

Here, sn(nt, m) and сn(nt, m) (see below) are the Jacobi elliptic 
functions with the modulus 0 G m G 1 [20]. Substituting (8) 
into (7), we find
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One of the parameters in (8) and (9) (we assume that it is m+) 
remains free, and therefore, we define a whole family of solu-
tions of the corresponding type.

Next, we average the second equation of (3) over the fast 
oscillations r+(t):
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Here G...Ht denotes averaging over time. Because
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where K( m+) and E( m+) are the complete elliptic integrals of 
the first and second kind [20], and taking into account (9a), 
we obtain
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and equation (10) takes the form
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Now we can find an analytical solution for the second 
component of the field r–(t) in the corresponding class of ellip-
tic functions. Substituting

r–(t) = B–cn(n–t, m–)	 (14)

into (13), we obtain
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Note that, although point m– = 2–1/2 in (15) is singular, the 
parameter m– is also independent.

Substituting (14) into (8) and (9), we derive the final 
expression for the desired consistent evolution of the fast cir-
cularly polarised component of the light field in the form

r+(t) = B+sn(n+t, m+),	 (16a)

( ) ( )
2 [2 ( , )]cn

B
B t

1 2
22

2
1 1

2
1 2

2 2

m s r
m k s s n mD

=-
+ -

+ +
+

+

+ + - - -] g
,	 (16b)

( )
2 ( , )

k
B cn t

1
22

2
2

1 2
2 2

n
m

k s s n mD
=-

+

+ +
+

+

+ - - -] g
,	 (16c)

where B–
2 and n–2 are given in (15). Equations (14) – (16) define 

a desired consistent solution r±(t) of problem (3) in the first 
iteration [correction of the dependence r+(t) to (16) by substi-
tuting expression (14) into (8) and (9)] of the calculation in the 
adiabatic approximation. In principle, the iterative series can 
be continued [21, 22] by refining the expression for Gr+2 Ht fol-
lowed by substitution of (16) into (10), and so on. However, 
we will not do this here.

Recall again that the parameters m± in (14) – (16) are free 
and their variations define a family of approximate solutions 
of the corresponding class. Restrictions on the values of these 
parameters are only due to the fact that at any time moments 
t, the condition of applicability of the adiabatic approxima-
tion must be valid. However, because the spectrum of nonlin-
ear oscillations is continuous, we will compare the squares of 
their periods, which describe the position of the maxima of 
the spectral density for the corresponding oscillations. Since 
according to [20] for the solutions (14) and (16), these periods 
are defined by the expressions T+ = 4K( m+)/n+ and T– = 
4K( m–)/n–, instead of (6) we obtain
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Taking into account above relations (15) and (16), condition 
(17) allows us now to choose such values of 0 < m± < 1 ( m– ¹ 
2–1/2), which provide the possibility of using the adiabatic 
approximation.

Note, however, that the correct assessment of the applica-
bility limits of the adiabatic approximation is an independent, 
complex and still unsolved problem (see, e.g., [32]).

4. Behaviour of the solutions

The behaviour of approximate solutions (14) – (16) is illus-
trated in Fig. 1, which shows the greyscale map of the U(r–, r+) 
distribution in the vicinity of the equilibrium point req = 0. 
The values of the parameters (k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 
= – 0.45, Dk+ = –10 and Dk– = –1) are chosen such that the 

potential well is elongated in the r– direction and forms a long 
‘channel’. The thick solid line shows the trajectory r+(r–), cor-
responding to the solution of (14) – (16) for m+ = 0.3584 and 
m– = 0.95 at t Î [0, 43]. Note that an alternative periodic exact 
particular solution of sc type [8, 10] in the case under consid-
eration (for the parameters used above) is absent.

Here, we should make two important remarks. First, we 
consider the case of excitation of two normal nonlinear modes 
(Fig. 1). In this case, the possibility of using the adiabatic 
approximation is determined by the significant difference of 
their frequencies. Therefore, the solutions with multiple peri-
ods of changes in r±(t) (the case of regular evolution) can be 
considered almost impossible. Second, the r+(r–) trajectory of 
the solution (Fig. 1) is a classical Lissajous figure [23]. 
However, in the case of independent harmonic oscillations, 
the phase space of the system [part of the {r–, r+} plane filled 
in during the r±(t) evolution] would represent a rectangle [23]. 
With the consistent evolution of the r±(t) field components we 
deal with nonlinear Lissajous figures [24], and the phase space 
of the system is determined by the geometry of the potential 
well in the vicinity of point req = 0 (Fig. 1). In principle, this 
allows the nonlinear coupling behaviour to be investigated. 
Note that a similar approach (method of trajectories) is 
widely used in nonlinear dynamics [24, 25], chemical physics 
[26 – 28], nonlinear acoustics [29] and rheology [30, 31].

Dependences r+(t) (16) and r–(t) (14) – (15) for the same 
values of the parameters (k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 = 
– 0.45, Dk+ = –10, Dk– = –1 at m+ = 0.3584 and m– = 0.95) and 
the behaviour of the evolution of the intensity I(t) = r+2(t) + 
r–2(t) for the obtained approximate solution are shown in 
Fig.  2. In the initial parts of the dependences one can clearly 
see the slow modulation of high-frequency nonlinear oscilla-
tions of a rapidly varying field component r+(t) (Fig.  2a) and 
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Figure 1.  Greyscale map of U(r–, r+) distribution in the vicinity of point  
req = 0 at k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 = – 0.45, Dk+ = –10, Dk– = –1. 
The potential well is elongated in the r–direction. The thick solid line 
shows the r+(r–) trajectory corresponding to the solution of (14) – (16) at 
m+ = 0.3584 and m– = 0.95 for t Î [0, 43].
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the total intensity I(t) (Fig. 2c) by low-frequency nonlinear 
oscillations of a slowly varying component r–(t) (Fig. 2b). 

Then, the evolution of r+(t) and I(t) clearly becomes more 
irregular and the brokenness of the corresponding depen-
dences grows.

A gradual (with increasing t) change in the behaviour of 
dependences r+(t) and I(t) (Fig. 2) can be explained as follows. 
A set of harmonics, which are present in the Fourier spectrum 
of the amplitude r+(t), as a result of slow modulation of its 
parameters, is phased in a certain way by a particular choice 
of initial conditions at the time moment t = 0. The initial 
phase relations can be modified, for example, due to changes 
in the initial phases of the functions sn and cn, which in this 
case are also the solutions of the corresponding equations. 
During the subsequent evolution (propagation), the phase 
shifts between different harmonics vary due to frequency dis-
persion, and we observe their gradual ‘randomisation’ (the 
system gradually ‘forgets’ the initial conditions). This fact dis-
tinguishes this stage from the initial stage of evolution, where 
the dependences r+(t) and I(t) are almost regular. The calcula-
tion of the dynamics of the components for different initial 
phases of sn and cn functions confirmed the fact that for cho-
sen values of the parameters the initial stage duration Dt is 
always ~10. The above-presented interpretation is very simi-
lar to the classical interpretation of multiphoton processes 
(including so-called non-Markovian relaxation processes) 
presented, for example, in [32].

Figure 3 illustrates the foregoing and shows the time 
dependence of arg = tn+(t) (solid line) of the elliptic function 
sn in expression (16a). One can easily see that as a result of 
strictly periodic modulation of n+(t) (16c), the argt depen-
dence becomes very complex and aperiodic. The open circles 
show the points {ti, argti}, at which argti = 4K( m+)n, where i, 
n = 0, 1, 2, ... are the integers, and the initial value of the ellip-
tic function sn remains the same [20]. One can see from the 
presented dependence that the points t = ti are arranged non-
uniformly on the time axis. Moreover, in the course of evolu-
tion (change in ti) the argt value varies nonmonotonically and 
at sufficiently large n the same arg value appears at different 
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Figure 2.  Dependences r+(t) (16) and r–(t) (14) – (15) (a and b) as well as 
I(t) = r+2 (t) + r–2 (t) (c) at k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 = – 0.45, Dk+ = 
–10, Dk– = –1, m+ = 0.3584 and m– = 0.95 for t Î [0, 43].
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Figure 3.  Time dependence of arg = tn+(t) (solid curve) of the elliptic 
function sn (16a) at k2 = 1, s1 = 1, r0 = 1, s2 = 0.4, r1 = – 0.45, Dk+ = –10, 
Dk– = –1, m+ = 0.3584 and m– = 0.95 for t Î [0, 63]. The open circles show 
the points at which arg = 4K( m+)n, where n = 0, 1, 2, ... is an integer.
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time moments. This means that during the evolution, the 
change in the field components r+(t) over time in accordance 
with (16) becomes purely aperiodic, which is fully consistent 
with the behaviour of the dependences shown in Fig. 2.

‘Chaotic’ behaviour of the evolution of the polarisation 
state is illustrated in Fig. 4, showing the trajectory of the end 
of the Stokes vector s on the Poincaré sphere [13] at k2 = 1, s1 
= 1, r0 = 1, s2 = 0.4, r1 = – 0.45, Dk+ = –10 and Dk– = –1 for 
the approximate solution of (14) – (16) at m+ = 0.3584 and m– = 
0.95. For greater clarity we assume that the observation 
plane moves with constant velocity and t = 0.54z (t Î [0, 43]). 
One can see a purely aperiodic behaviour of the evolution of 
the polarisation state. The reason behind the irregular 
changes, as in [8, 9, 11, 12], is incommensurable frequencies 
and dephasing of the Fourier spectrum harmonics of the 
r+(t) function.

5. Conclusions

Thus, using the adiabatic approximation, we have obtained 
an analytical solution to a nonintegrable problem of propaga-
tion of a plane elliptically polarised light wave with zero mean 
amplitudes of orthogonal circularly polarised components of 
the light field through an isotropic gyrotropic medium with 
local and nonlocal components of Kerr nonlinearity and sec-
ond-order group velocity dispersion. We have found that in 
this case, as in those situations that were previously consid-
ered in [14], there exist bound (attributable to the nonlinear-
ity) states of orthogonally polarised components of the light 
field with significantly differently scaled but time consistent 
evolution. The reason behind this is that the contributions of 
the latter to the total energy of the system are not zeroed in 

this situation because they are defined by the second-order 
moments (intensity). It is shown that the solutions obtained in 
this approximation correspond to the case of simultaneous 
excitation of two normal nonlinear modes at substantially 
different frequencies, i.e., they are responsible for the propa-
gation regimes (aperiodic evolution), resembling the polarisa-
tion ‘chaos’. Note also that in the situation considered here 
(for the specific choice of the values of a set of parameters), 
exact particular periodic solutions, which would be an alter-
native to the class of approximate solutions we have described 
here, do not exist.

We should also note that a gradual transition from a situ-
ation with almost regular dynamics of the fast field compo-
nent at the initial stage to an aperiodic (‘chaotic’) evolution in 
the subsequent stages is very similar to the classical transition 
from regular dynamics (inhomogeneous broadening of the 
transition) to irreversible relaxation processes due to the so-
called multiphoton transitions described, for example, in [32].

In the vicinity of the considered minimum req = 0, one can 
similarly construct various differently scaled solutions to 
problem (1) both for a potential well elongated along the r+ 
axis, when the components r+ and r– will be slow and fast, 
respectively, and in the form of other combinations of elliptic 
functions: cn(n+t, m+) and sn(n–t, m–), sn(n+t, m+) and sn(n–
t, m–),  and cn(n+t, m+) and cn(n–t, m–).
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