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Abstract.  The propagation of frequency-modulated pulses in one-
dimensional photonic crystals with gain is considered. A correct 
expression is derived for the delay time of the pulse maximum. This 
expression takes into account the input pulse characteristics: dura-
tion, frequency modulation and spectrum position in the photonic 
band gap. The analytical results are basically in agreement with the 
results of numerical simulation. The influence of gain in the pho-
tonic-crystal structure is considered. It is shown that the parame-
ters of a transmitted pulse can be controlled by changing the input-
pulse frequency modulation.

Keywords: one-dimensional photonic crystals, frequency-modu-
lated pulses, delay time. 

1. Introduction 

Tunnelling (transmission of a quantum particle through a 
potential barrier the height of which exceeds the particle 
energy) is a fundamental quantum effect. When determining 
the tunnelling time, the key problem is to find out the particle 
velocity in the region where its momentum has an imaginary 
value [1, 2]. Calculation of the particle tunnelling time using 
the stationary-phase method leads to the well-known 
Hartman paradox, according to which the tunnelling time 
does not exceed some finite value. If the barrier is sufficiently 
thick, particles or wave packets may have superluminal tun-
nelling velocities [2, 3].

Some ways to explain the Hartman paradox have been 
discussed for a rather long time; this discussion includes the 
solution of the quite classical optical problem of transmission 
of electromagnetic waves through macroscopic photonic bar-
riers [2, 4 – 12]. This problem is also of applied importance: 
the possibility of controlling wave velocity or delay time of a 
wave packet propagating through a barrier [13, 14] can be 
used in some optoelectronic devices.

In the last decade researchers have paid much attention to 
one-dimensional photonic crystals (PCs), which are layer-
periodic structures based on different materials. Due to the 
periodic modulation of the refractive index in these struc-
tures, their spectrum has a band gap, within which the trans-
mittance is close to zero, and light incident on them is almost 
completely reflected [15 – 17]. Propagation of wave packets 

within the band gap is in essence similar to tunnelling, because 
the time-independent Schrödinger equation is similar to the 
Helmholtz equation, which describes wave propagation in 
one-dimensional PCs.

A number of experiments on propagation of wave packets 
in one-dimensional PCs [5 – 7] confirmed the paradoxical the-
oretical conclusion about the convergence of the wave-packet 
delay time to some finite value, which is independent of the 
barrier thickness in the limit. The interpretation of superlumi-
nal tunnelling of a wave packet as reconstruction of its enve-
lope [8] or propagation of its individual spectral components 
[9, 10] was heavily criticised [11, 12]. One of the most reason-
able explanations of this paradox is that the tunnelling time is 
the release time of the energy stored in the barrier rather than 
the passage time through the barrier; within this concept, 
damped modes do not propagate in the barrier and can be 
considered as virtual photons that do not exist beyond the 
barrier [11, 18].

Analytical and numerical calculations of the wave-packet 
delay time in one-dimensional PCs were performed by differ-
ent researchers [11, 19 – 21]. Note that the results of these 
studies are somewhat incomplete. The reason is that the main 
purpose was to explain the paradoxical dependence of the 
delay time, while some applied aspects of this problem were 
not considered. One of these aspects is the possibility of 
amplifying waves in PCs (for example, in active semiconduc-
tor heterostructures [22]) or the frequency modulation of 
propagating wave packet.

The purpose of our study was to calculate the propagation 
time of a frequency-modulated wave packet in an active PC, 
compare the derived expressions with the known results and 
discuss their potential applications.

2. Basic relations

Let us consider the propagation of waves in a one-dimen-
sional PC (Fig. 1). For simplicity, we assume that the periodic 
change in the refractive index n on a segment [0, L] can be 
written as

( ) ( / )cosn z n n z0 1 L= + .	 (1)

This approximation describes fairly correctly a two-compo-
nent PC with a step change in the refractive index of layers of 
the n0 – n1, n0 + n1 type, under small modulation (n1 << n0). 
Note that the condition of modulation smallness, being 
appropriate for most real PC structures, is not necessary and 
is used only to simplify calculations, making it possible to 
apply the coupled-wave analysis. Refractive-index modula-
tion can also be set by a ‘real’ step profile, which only some-
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what complicates the form of the coupling coefficient between 
waves [23]. The structure period L determines the Bragg fre-
quency for a given PC: wB = pc/(n0L) (from here on, we limit 
our consideration by the region of the first-order Bragg reflec-
tion, where the band gap is maximal). The electric field in a 
one-dimensional PC can be presented as a superposition of 
waves propagating in opposite directions:

( ) ( ) ( ) ( ) ( )exp expi iE z A z z A z z1 2b b= - + .

The incident wave A1(z), propagating along the z axis, will be 
referred to as forward. The periodic change in the refractive 
index interrelates the initial forward wave with the backward 
wave A2(z), propagating in the opposite direction. The exis-
tence of gain in the system is taken into account by the incre-
ment a. In this case, the dynamics of forward and backward 
waves can be described by the system of equations for their 
amplitudes [23]:

¶
¶ (2 )expi i
z
A A A z1

1 2a s d- = ,

¶
¶ ( 2 )expi i
z
A A A z2

2 1a s d+ =- - .	

(2)

Here, s is the coupling constant between the forward and 
backward waves, which can very easily be calculated for a 
harmonically changing refractive index (1): s = pn1/L; and d 
= b – p/L = (w – wB)n0/c is the detuning from phase matching 
for oppositely directed waves. This form of equations takes 
into account that the propagation constant b = n0w/c when 
the modulation n(z) is small. The boundary conditions for 
system (2) (a forward wave propagating along the z axis) are 
set as A1(0) = A0, A2(L) = 0; in this case, the solution to the 
system has the form [23, 24]

( )
( )

( ) ( ) ( )
( )

cosh sinh
cosh sinh

exp
i
i

iA z A
s sL sL

s s L z s L z
z1 0 a d

a d
d=

- -

- - - - ,

( )
( )
( )

( )
cosh sinh

exp
i

i sinh
iA z A

s sL sL
s L z

z2 0 a d
s

d=
- -

-
- ,	

(3)

where ( )is 2 2s a d= + - . Complex transmittance T and 
reflectance R of the active photonic-crystal structure, defined 
at the ratios of the transmitted- and reflected-wave ampli-
tudes to the input-wave amplitude, can be written as

T)| | (exp iT T= - 'j
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Expression (4) contains phases of complex reflectance and 
transmittance, j'R and j'T, respectively. The spectral depen-
dence of T(w) and R(w) is determined by their dependence on 
detuning d.

Let us now describe the transmission of a pulse with a 
time envelope A(t) and carrier frequency w0. An expression 
for the transmitted pulse envelope can be obtained using the 
inverse Fourier transform from the convolution of initial-
pulse Fourier transform with complex transmittance T(w):

3

( ) ( ) ( ) ( )exp i dA t A T t
2
1

inT 0p wW W W W= +
3-

ty ,	 (5)

where

W = w – w0; 
3

( ) ( ) ( )exp i dA A t t tin W W= -
3-

t y .

The complex transmittance has the form

T ( ))wT ( ) ]w( ) ( ( ))exp expi iT Tw wF= - = - ''j'j[ (i- ,

T ( )w | ( )|'' ln T w=-j .

Approximate expressions for AT (t) and the delay time for a 
pulse transmitted through a PC can be derived by expanding 
T(w) in a Taylor series in the vicinity of the carrier pulse fre-
quency w0. Let us introduce some designations to use below, 
based on the fact that

TT
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We calculate the delay time on the assumption that the initial 
Gaussian pulse has a linear frequency modulation (chirp) C:

( ) [ (1 ) /2 ]exp iA t A C t0
2

0
2t= - + ,	 (6)

where t0 is the pulse duration and chirp C = at0
2; the frequency 

modulation rate along the pulse is constant: a(t) = const. In this 
case, the expression for the transmitted-pulse envelope AT (t), 
obtained by neglecting terms of an order higher than the sec-
ond one in the Taylor series, has a Gaussian form [25 – 27]:

( ) ( ) [ ( )]exp iA t t tT r f= ,	 (7)
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Here, we introduced (using parameters c1 = (CDr – Di)t0
–2 and 

c2 = (CDi + Dr)t0
–2 the duration of transmitted pulse:

A1(0)
A1(L)

A2(0)

z = 0 z = L

Figure 1.  Schematic diagram of wave propagation in an active one-di-
mensional PC. 
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We introduced also the parameter
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which depends on not only the characteristics of the PC band 
gap but also on the duration and frequency modulation of the 
pulse. When considering the transmission of pulses with an 
initial chirp, the S value is of key importance. 

The shift (ts) of the maximum of the pulse envelope,

( ) ( )t K SKs r i0 0t w w= - -

	 = T

¶
¶

¶
¶ | |' ln

t S
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0 0w
j

w- -
w w w w= =

	 (10)

is of greatest interest when solving the problem of pulse delay 
in a PC.

The position of the pulse carrier frequency in the spectrum 
of the PC band gap determines to a great extent the shift of the 
pulse maximum. Time ts is an analogue of time in the related 
coordinate system in an extended dispersive medium:  t = t – z/ug, 
where ug = ∂w/∂b is the group velocity. The delay time of a 
pulse transmitted through a PC was calculated in [11, 19 – 21] 
with allowance for only one term. This approach holds true 
for non-chirped pulses (C = 0) and far from the band gap 
edges [at (∂ln|T |/∂w)|w = w0 ® 0]. In this case, the delay time

T¶ ¶( / ) |'d 0j w w w=t = .	 (11)

To illustrate the above considerations, we will derive an 
expression for td from formulas (4) in the case of a passive 
(a = 0) PC, within its band gap (d < s). Here,

j'T = arctan(dtanh(sL)/s).

According to (11), the delay time is [18] 
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When considering extremely wide barriers (L ® ¥), one 
arrives at a paradoxical conclusion that the delay time con-
verges to a finite value td = n0/sc; the expression is especially 
simple in the middle of the band gap (at d = 0): td = n0/sc = 
Wc

–1, where Wc is the band gap width. The paradox related to 
the infinite tunnelling velocity is solved if the delay time is not 
considered as the pulse transmission time through the barrier. 
The spatial ‘size’ of the pulse exceeds the barrier thickness L, 
and the pulse propagates quasi-statically. As a result, the field 
distribution in the barrier is stationary. In this context, the PC 
is similar to a capacitor, and the delay time is the ratio of the 
average accumulated energy to the introduced power [28]. 
The energy of the radiation with a spectrum lying within the 
band gap is concentrated near the barrier surface, and its den-
sity rapidly (almost exponentially) decreases over the barrier 
length. In the example of a passive PC considered above, the 

radiation energy density at the Bragg wavelength (d = 0) is 
distributed over the PC length:
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2
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Hence, at sufficiently large L values, the energy accumu-
lated in a PC is rapidly saturated with length according to the 
law ? tanh sL. Specifically this circumstance explains the 
saturation of delay time td, i.e., the Hartman paradox. An 
interested reader may also refer to review [11] and references 
therein, where experiments aimed at verifying the Hartman 
paradox are described in detail and the arguments of all par-
ticipants of the discussion are analysed.

3. Delay time in active photonic crystals 

When considering the delay time td for active PCs, one should 
take into account that the introduction of gain does not 
change radically the dependence of the delay time td in the 
middle of the band gap on the barrier width. Bragg reflection 
excludes penetration of radiation with frequencies w » wB 
deep into the structure, and the so-called energy capacitance 
of a PC barely changes at these frequencies. Specifically this 
circumstance leads to conservation of td. At the same time, 
one can observe interesting effects near the band gap edges at 
d ® s, which are related to the change in td. Since we consider 
the transmission of a pulse with a carrier frequency near the 
band gap edge, the derivative (∂ln|T |/∂w)|w = w0

 cannot be 
equated to zero and, strictly speaking, one must apply a more 
general expression (10) to calculate the delay time in this case. 
However, |S| << 1 for a pulse without frequency modulation, 
and the delay time for the maximum of the transmitted pulse 
can be estimated from the standard formula td = (∂j'T /∂w)|w = w0.

Figure 2 shows spectral dependences of transmittance 
modulus |T | and delay time (11), calculated for active PC 
structures with the following parameters: n0 = 3 and 2n1 = 
0.015. The aforementioned values are close to the parameters 
of widespread semiconductor structures based on Al0.7Ga0.3As 
at frequency wB, which corresponds to a wavelength of about 
1.5 mm [29].

For a passive PC (dashed curves in Fig. 2), one can show, 
proceeding from (12), that, at d ® s, the delay time increases 
to the value equal to the PC transmission time for a wave with 
a velocity equal to the speed of light in the medium: td = 
n0L/c. An introduction of gain leads to a sharp increase in 
parameter td in a narrow (d » s) spectral band [curve ( 1 )]. 
This effect is explained by the rather deep penetration of radi-
ation at this frequency into the structure, multiple rereflection 
in this band and increase in the PC energy capacitance. This 
spectral region contains a singularity of complex transmit-
tance T(w), at which the denominator of expressions (4) 
becomes zero. At this point |T | ® ¥, and the energy release in 
the structure does not call for the input radiation; i.e., genera-
tion occurs. Each singularity corresponds to one of the dis-
tributed-feedback (DFB) laser modes [23]. Note that the 
delay time increases to infinity at the generation point, 
because the PC structure emits at the zero introduced energy.

One can see that an increase in gain [Fig. 2, curve ( 2 )] 
makes the singularity of the coefficient T(w) pass to the range 
d > s; i.e., the next modes of the DFB laser have a larger 
detuning and are excited at a higher gain. It is noteworthy 
that phase j'T  rapidly changes in the frequency range before 
the singularity, and its derivative ∂j'T /∂w may change sign; 
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i.e., there may be negative td values. This phenomenon, which 
is rather typical of wave propagation in active media [30, 31], 
is in no way related to the violation of the causality principle 
and can be clarified by the following considerations. The 
mean energy, stored in a PC structure with a cross-sectional 
area b2,

L
(| | | | )dU n b A A z

2
0
2 2

1
2

2
2

0
= +y ,

is rapidly saturated with length L [in the range of finite values 
T(w), R(w) < ¥]. When the detuning and gain level satisfy a 
certain relation, the PC energy capacitance is insufficient for 
storing the energy generated in the structure. Actually, we see 
that the radiation is ‘pushed out’ from the PC.

This consideration is illustrated by Fig. 3, which shows 
the results of direct numerical simulation of system (5) for the 
above-discussed active PC structure with aL = 0.75. The spec-
trum of the initial Gaussian pulse with a duration t0 = 
3 ́  10–12 s lies in the range of negative values of the derivative 
∂j'T /∂w. High-power gain leads to a fast rise of the leading 
edge of the transmitted pulse [Fig 3b, curve ( 2 )]. The top of 
the transmitted pulse is shifted toward negative times, i.e., to 
the ‘future’ with respect to the input-pulse maximum. The 
limited PC energy capacitance leads to the following effect: 
the maximum of the transmitted pulse is formed when the 
input-pulse maximum is still beyond the PC. This phenome-
non is a striking example of envelope transformation 
[8, 30, 31]. The transmitted pulse spectrum (Fig. 3a, dotted 
curve) does not contain any low-frequency components of the 
initial pulse (the dashed curve). Thus, the transmitted pulse 
maps only partially the input pulse, and there is no ‘superlu-
minal’ data transfer.

4. Delay time of frequency-modulated pulses 
in a one-dimensional photonic crystal 

Let us consider again the expression for the shift ts of the 
pulse envelope maximum (10). Until now, our consideration 
was limited by the first term on the right-hand side of this 
expression. The radiation delay was provided by the disper-
sion dependence of the transmittance phase td = (∂j'T /∂w)|w = w0. 
With due regard to the term –S∂ln|T |/∂w|w = w0, one can note 
that the displacement time of the transmitted-pulse maximum 
is determined not only by the PC structure parameters but 
also by the pulse characteristics, in particular its frequency 
modulation (chirp).

In this part of the study we investigated the influence of 
the chirp of the input pulse on its output parameters, includ-
ing the delay time ts of the pulse maximum. To this end, we 
performed direct numerical simulation of system (5) for the 
input Gaussian pulse (6) with a duration t0 = 10–7 s and linear 
frequency modulation C = 2 ́  104. For comparison, a similar 
numerical solution was performed for an initial Gaussian 
pulse of the same spectral width but without frequency modu-
lation. Its duration was t'0 = t0(1 + C2)–1/2 » t0/C = 5 ́  10–12 s.

To exclude generation, the calculated gain parameter of 
the active PC was chosen to be smaller than in the example 
considered above, while the other PC-structure parameters 
were the same. The pulse carrier frequency w0 was chosen so 
as to correspond to the PC band gap edge.

Figure 4 shows normalised spectral power densities for 
the input and transmitted pulses, as well as the spectral depen-
dence of transmittance modulus |T | (dashed line). Since the 
transmitted pulse spectrum is determined by the convolution 
of the input pulse spectrum with the PC transmission spec-
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Figure 2.  (a) Modulus of transmittance (4) for a PC structure with s = 
5 ́  104 m–1 and L = 150 mm and (b) delay time td, calculated according 
to (11) for the aforementioned structures, at gains aL = ( 1 ) 0.15 and ( 2 ) 
0.75. The dashed curves are the dependences for a passive PC (a = 0). 
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Figure 3.  (a) Phase and modulus of transmittance (4) for a PC structure 
with s = 5 ́  104 m–1, L = 150 µm, and aL = 0.75 (the moduli of the spec-
tra of input and transmitted pulses |At (W)|, normalised to the maximum 
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of the ( 1 ) input pulse, |A(t)|2, and ( 2 ) pulse transmitted through an ac-
tive PC structure,  |AT (t)|2 .
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trum, ( ) ( ) ( )A A Tout inW W W=t t , coincidence of spectral densi-
ties of the non-chirped and chirped pulses, | ( )|Ain Wt , leads to 
coincidence of the spectral densities of transmitted pulses, 
| ( )|Aout Wt . Thus, pulses having different chirps but equal spec-
tral widths cannot be distinguished in Fig. 4. Nevertheless, 
the difference in the phase dependences ( )Ain Wt  leads to sig-
nificantly different envelopes of transmitted pulses, |AT (t)|2 
(see Fig. 5).

It can be seen in Fig. 4 that both chirped and non-chirped 
pulses have initially frequency components that are amplified 
in the active PC structure. In the case of chirped pulse (Figs 5a, 
5b), these components propagate at the leading edge of the 
long input pulse. The transmitted pulse, retaining the initial 
frequency modulation, loses the PC-filtered low-frequency 
components. As a result, one can see that the maximum of the 
transmitted pulse is located before the maximum of the input 
pulse; i.e., a negative pulse delay occurs again. In contrast to 
the previous case (Fig. 3), the envelope transformation is 
caused by not only the gain in the PC structure, but basically 
by filtering the components distributed over the pulse length. 
In the case of inverse linear frequency modulation (C < 0), a 
positive delay is observed, which is related to suppression of 
the leading edge and rise of the trailing edge of the pulse. 
Since the delay depends on chirp C, it cannot be described 
using only expression (11). As the first approximation, one 
can apply expression (10). It is of importance that the trans-
mitted pulse is much shorter than the input one. This effect 
can only arbitrarily be referred to as compression, because the 
transmitted pulse does not completely maps the input one. 
The compression is due to the fact that the transmitted fre-
quency band is concentrated in a narrow time interval at the 
leading edge of the pulse.

Concerning the transmission of a shorter but initially non-
chirped pulse (Figs 5c, 5d), it should be noted that its delay is 
determined by only the dispersion of complex transmittance 
T(w). The transmitted spectral components are uniformly dis-
tributed over the input pulse length. During multiple rereflec-
tions in the PC structure, these components are selected from 
the initial spectrum to form the transmitted pulse. Due to the 

dispersion dependence T(w), the transmitted pulse undergoes 
a dispersion spread and becomes frequency-modulated. The 
significant spectral narrowing of the transmitted pulse (in 
comparison with the input one), along with the dispersion 
spread, leads to a decrease in the peak power and an increase 
in the transmitted pulse duration. As was mentioned above, the 
delay time of the transmitted pulse maximum in the absence 
of initial chirp can be estimated (even at the band gap edge) 
based on standard formula (11). Indeed, in the case under 
consideration, the governing parameters (∂ln|T |/∂w)|w = w0 and 
S are, respectively, ~4.7 ́  10–12 s and ~0.08, and correction 
S(∂ln|T |/∂w)|w = w0 does not exceed few percent of (∂j'T /∂w)|w = w0.

Then we will consider the dependence of transmitted pulse 
characteristics on the initial chirp. The results of numerical 
calculations for a PC structure with the parameters indicated 
in Fig. 4 and an input Gaussian pulse with duration t0 = 10–7 s 
are presented in Figs 6 and 7. In accordance with the afore-
said, one can see that pulses with positive and negative chirps 
are characterised by negative and positive delays, respec-
tively. Several regions of values of input pulse chirp C with 
similar transmitted pulse characteristics can be selected. In 
the central region in Fig. 6 (in our case, |C| < 1.85 ́  104), the 
input pulse spectrum with width Dws » C/t0 lies mainly within 
the band gap. The peak power of the transmitted pulse is 
much lower than the input pulse power. The formation of its 
envelope is affected by two factors: dispersion shift of the tun-
nelling Gaussian pulse and transmission of the frequency 
components corresponding to the transmission band and 
compactly concentrated at one of the input pulse edges 
(Fig. 4). In both cases the pulse chirp plays a key role. When 
describing the shift of the maximum of chirped pulses, the 
third term in expression (10), S(∂ln|T |/∂w)|w = w0

, becomes 
determining at |C| > 100. The pulse shift proportional to 
∂j'T /∂w is independent of chirp and small [in the case under 
study it is about 10–12 s (see Fig. 5d)]. 

In the middle of the central region the factor related to the 
dispersion shift of the entire spectrum of chirped tunnelling 
pulse is dominant. In this case the transmitted pulse retains a 
Gaussian shape and is negatively and positively delayed at 
C > 0 and C < 0, respectively. With an increase in |C|, the frac-
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Figure 4.  Normalised (to maximum) spectral densities |At (W)|/max|At

(W)| of the ( 1 ) input (chirped and non-chirped) pulses and ( 2 ) a pulse 
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tion of the transmitted spectral components concentrated in a 
narrow part of the input-pulse leading edge increases. This 
effect leads to distortion of the transmitted pulse and forma-
tion of the second peak in it. The region of discontinuities in 
Fig. 6 corresponds to equalisation of powers in the peaks of 
the transmitted pulse. Note that analytical solution (10) can-
not be applied in this region, because the initial assumption 
that the shape of the transmitted pulse envelope is close to 
Gaussian (7) is not valid in principle because of the complex 
pulse distortion. The approach based on parabolic approxi-
mation of spectrum T(w) expanded in a series has limited 
applicability in this case.

With a further increase in |C| the maximum of the trans-
mitted pulse is related to only the second factor: transmission 
and amplification of the frequency band concentrated at one 
of the input pulse edges; the influence of the first factor 
becomes insignificant. The boundaries of the central region in 
Fig. 6 correspond arbitrarily to the chirp values at which the 
peak power of the transmitted pulse is equal to the input-
pulse peak power. In the regions of strong frequency modula-
tion (in our case, where |C | > 1.85 ́  104), one can see that the 
shift magnitude decreases with an increase in |C|. This can be 
explained by the fact that, with an increase in chirp, the time 
coordinate of the transmitted frequency components tends to 
the input pulse maximum t = 0. It is noteworthy that the 
transmitted pulse envelope takes again a shape close to sym-
metric Gaussian, and analytical expression (10), beginning 
with a certain |C| value, describes quite adequately the trans-
mitted-pulse delay time.

Figure 7 shows the results of numerical calculations 
according to (5), which illustrate the compression of the 
transmitted pulse with respect to the input one. As in Fig. 6, 
one can select a region of C values in which the transmitted 
pulse characteristics are determined by different factors. In 
the central region, at small |C|, the input pulse spectrum lies 
within the band gap; in this case, the peak power and energy 
of the tunnelling pulse are low. Its behaviour is determined by 
the dispersion spread, due to which the transmitted pulse 
duration exceeds the duration of the input pulse.

The situation radically changes with an increase in |C|. As 
was mentioned above, the input pulse spectrum is now char-

acterised by a higher intensity of the components falling in the 
transmission band and compactly concentrated at one of the 
pulse edges. This leads to the formation of a transmitted pulse 
with a high peak power and low duration, corresponding to 
the transmitted components. A further increase in |C| is 
accompanied by an increase in both the density of transmitted 
components (proportionally to |C|) and their intensity, 
because the region of their compact location approaches the 
input pulse maximum. As a result, the transmitted pulse 
undergoes compression, which increases with an increase in 
|C|. The compression saturation at very large chirp values, 
which is pronounced in Fig. 7, is due to the fact that the spec-
trum of the frequency-modulated input pulse becomes very 
wide, and its larger part falls not only in the narrow transmis-
sion band at the band gap edge but also covers the region of 
low spectral contrast T(w) (see Fig. 2). The dispersion factors, 
which accompany transmission in these regions, reduce the 
intensity of the spectral components in the narrow transmis-
sion band.

5. Conclusions

The main purpose of our study was to expand the description 
of pulse transmission in one-dimensional PCs in order to con-
sider the propagation of frequency-modulated pulses in PCs 
with gain. The emphasis was on the transmission of pulses 
with a spectrum located within the PC band gap. Based on the 
general approach, we obtained an expression for the time 
delay of the transmitted pulse maximum with respect to the 
initial pulse maximum. As the analysis showed, the obtained 
expression (10) refines the standard formula (11), which is 
used to calculate the delay time in one-dimensional PCs. The 
standard consideration leaves completely aside the pulse 
characteristics: its duration and frequency modulation, as 
well as the position of the pulse spectrum in the band gap. 
The derived expression (10) describes correctly the shift of 
the transmitted pulse maximum with due regard to these 
effects.

The analytical calculations were supplemented with a 
numerical simulation of the process under study. The results 
of this simulation, being in fundamental agreement with the 
theory, demonstrate the importance of considering the fre-
quency modulation of the input pulse, the position of its spec-
trum in the band gap, and the gain in the PC structure. In 
particular, it was shown that the PC-structure gain may lead 
to the occurrence of the so-called negative delay time, caused 
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by the transformation of the input pulse envelope (even in the 
absence of frequency modulation).

The main results of the study are related to the obtained 
dependences of the transmitted pulse characteristics (delay 
time, duration, and peak power) on the input pulse chirp. It 
was shown that, changing the chirp, one can control the 
transmitted-pulse delay time and implement, in particular, 
both negative and positive delays. It is also important that 
pulses with peak power and duration depending on the initial 
chirp can be formed.

The practical importance of this study is related to the 
possibility of developing a series of optoelectronic devices for 
radiation control. We believe devices with controlled pulse 
delay, which are necessary for different optoelectronic 
schemes, to be most promising. These devices can be based on 
semiconductor heterostructures with optical or electrical 
pumping.
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