
Quantum Electronics  45 (8)  736 – 742  (2015)	 © 2015  Kvantovaya Elektronika and Turpion Ltd

Abstract.  In the framework of a statistical model of an adaptive 
optics system (AOS) of phase conjugation, three algorithms based 
on an integrated mathematical approach are considered, each of 
them intended for minimisation of one of the following characteris-
tics: the sensor error (in the case of an ideal corrector), the corrector 
error (in the case of ideal measurements) and the compensation 
error (with regard to discreteness and measurement noises and to 
incompleteness of a system of response functions of the corrector 
actuators). Functional and statistical relationships between the 
algorithms are studied and a relation is derived to ensure calcula-
tion of the mean-square compensation error as a function of the 
errors of the sensor and corrector with an accuracy better than 
10 %. Because in adjusting the AOS parameters, it is reasonable to 
proceed from the equality of the sensor and corrector errors, in the 
case the Hartmann sensor is used as a wavefront sensor, the 
required number of actuators in the absence of the noise component 
in the sensor error turns out 1.5 – 2.5 times less than the number of 
counts, and that difference grows with increasing measurement 
noise.

Keywords: adaptive optics system, phase conjugation, deformable 
mirror, control algorithm, sensor error, corrector error, compensa-
tion error, matching of the number of counts to the number of 
actuators.

1. Introduction 

Operational efficiency of an adaptive optics system (AOS) of 
phase conjugation essentially depends on the control algo-
rithm that is being developed at the stage of theoretical 
research with regard to the system quality indicator. Based on 
that algorithm, information coming from the wavefront (WF) 
sensor is converted into control actions that are fed to the cor-
rector actuators, thereby forming the correcting phase distri-
bution. In accordance with AOS purposes, the AOS quality 
indicators can be divided into two groups: indicators for 
information optical systems and indicators for energy optical 
systems. In information systems, the quality indicator is com-

monly considered as a probability of a desired event (see, for 
example, [1 – 7]). In energy systems, WF approximation errors 
or WF gradient errors (see, for example, [1, 2, 4, 7]), which are 
directly related to a light intensity at an optical system focus 
and a beam divergence angle, are commonly used as a quality 
indicator.

This paper is a continuation and development of work [8]. 
In [8], in the framework of a statistical model of a phase-con-
jugating AOS, three algorithms are described, each of them 
intended for minimisation of one of the following (energy) 
quality indicators: error I of a WF sensor, error II of a WF 
corrector, and error III of WF compensation. Error I of the 
WF sensor is conditioned by discreteness and measurement 
noises; it is determined by taking into account the sensor 
parameters under the assumption of an ideal corrector capable 
of exactly reproducing any given distribution function. Error 
II of the WF corrector is caused by the fact that the basis of 
the response functions of actuators, in which the measured 
phase distribution is presented, generally represents an incom-
plete system of functions. This error is determined with regard 
to the corrector parameters under the assumption of an ideal 
WF sensor. Approximation errors I and II allow evaluation 
of the limiting possibilities of an AOS in the problem of the 
required phase distribution formation. Optimisation of param-
eters of the AOS designated for compensating the phase distor-
tions of the field (the number of sensor and corrector channels, 
operation speed, dynamic range of correction, etc.) is based 
on the analysis of error III that simultaneously takes into 
account all the aforementioned sources of errors.

In this paper, we introduce a coupling matrix between the 
WF sensor and corrector into the mathematical model of the 
AOS, which allows us, in the framework of an integrated 
mathematical approach to description of algorithms I, II 
and III, to study the functional and statistical relationships 
between these algorithms and corresponding approximation 
errors. The main objective of this research is to study the 
functional dependence of the compensation error on the sensor 
and corrector errors and to justify the possibility of designing 
a parameter-adjusted WF sensor and a corrector.

2. Basic calculation relations

As a rule, the target characteristics of an energy AOS do not 
depend on the phase averaged over the output aperture. 
Therefore, mathematical AOS models often contain expres-
sions in which the mean value of a function is subtracted 
from the function itself. Let us denote by angle brackets the 
operation of spatial averaging of the function f(r) over the 
variable r [r = (x, y) is the radius vector of a point in the 
plane]:
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where P(r) is the aperture function [P(r) = 1 within the 
output light aperture of the AOS and P(r) = 0 outside the 
aperture]. Two functions differing by the average value of one 
of them are denoted by pairwise lowercase and capital letters 
of the same alphabet and phonation: for example, if the func-
tion f(r) is introduced into the text, then F(r) = f(r) – á f(r)ñ; 
herewith áF(r)ñ = 0.

Let the function F (r) [ f(r)] describe the measured 
(subject to reconstruction and/or correction) random phase 
distribution with a known statistics. The phase distribution 
function Y(r) [ y(r)] that is actually formed by the AOS is 
generally different from the function F (r) and has, similar to 
F (r), a stochastic nature. The AOS control algorithm should 
bring the difference

D(r) = F(r) – Y(r)	 (1)

closer to zero. As an AOS quality indicator, we consider the 
mean square (variance) of the phase error (1):

( )2 2 rD D= ,	 (2)

where the bar denotes statistical averaging over the ensemble. 
In the problem of WF compensation, quantity (2) is directly 
associated (at D2 < 1) with the Strehl parameter IS » exp(–D2) 
equal to relative reduction in radiation intensity at the optical 
system focus [9].

The problem of calculating errors I, II and III are similar 
to each other. In all these problems, the current and/or a priori 
information about the phase distribution F(r) is present. In 
all these problems, the distribution function Y(r) formed by 
the AOS is represented in the basis of the corrector response 
functions. In solving problem I, we may assume that the 
conditionally used WF corrector is capable of reproducing 
exactly any given response functions. Therefore, the results of 
the analytical solution of problems I, II and III can be reduced 
to an integrated form. Below, we present the main general 
relations obtained by optimising the system according to the 
minimum condition of indicator (2), and then we specify the 
content of the control algorithms with the  peculiarities of 
each of these problems taken into account.

The expression for the optimal function Y(r) in all these 
problems can be reduced to the form

Y(r) = MHR(r). 	 (3)

Here the matrix M = ||Mm|| represents a row (the matrix 
dimension is 1 ́  m) composed of the WF sensor counts; m is 
the number of counts; the quantities {Mm} are of stochastic 
nature because they are functionally associated with the ran-
dom distribution F(r) under reconstruction and, in addition, 
generally comprise a noise component; the matrix function 
R(r) = ||Rn(r)|| represents a column (n ́  1) of linearly inde-
pendent corrector response functions Rn(r) [rn(r)]; n is the 
number of actuators of the WF corrector; H = ||Hmn|| is the 
deterministic coupling matrix ( m ́  n) between the WF sensor 
and corrector; and the quantities {Hmn} depend on the matrix 
function R(r), the autocorrelation characteristics for F (r) 
and M and the correlation matrix ( )M rF . The expressions 

for the matrix H as applied to each of the problems (I, II, III) 
are given in Appendix 1.

Expression (3) takes into account that the AOS control 
system contains three major devices: a sensor (counts M), an 
actuating device [corrector, the response function R(r)] and a 
device for generating the control actions (matrix H) to adjust 
the sensor data to the corrector capabilities.

Equation (3) assumes linearity of the response function 
Y(r) of the WF corrector relative to the control actions (the 
superposition property [1] of the actuator response functions 
{Rn(r)}). Therefore,

Y(r) = CR(r),   C = MH.	 (4)

where C = ||Cn|| is the row matrix (1 ́  n) of control actions; 
and Cn is the weighting factor of the response function of the 
nth actuator in the phase distribution.

In the statistical model of the AOS, one of the most 
important characteristics of the random function Y(r) is 
represented by the autocorrelation function KY ( r1,  r2). On 
the basis of (4) we have

KY ( r1,  r2) = ( () )1 2r rY Y  = RT(r1)CCR(r2),	 (5)

where

CC  = ||C Cn m|| = HTMM H	 (6)

is the correlation matrix (n ́  n) of control actions; MM  = 
||M Mn m|| is the correlation matrix ( m ́  m) of counts of the 
WF sensor; and the superscript T denotes transposition. The 
matrix MM  is considered nondegenerate. If the rank of 
the original correlation matrix is smaller than the number of 
counts, it is replaced by a submatrix that forms the basis 
minor; the row of counts is accordingly changed [10].

In all the problems (I, II, III) the minimised error (vari-
ance) of approximation (2) is calculated by the formula

D2 = s2F – s2Y.	 (7)

Here s2F and s2Y  are the variances of the AOS reconstructed 
and formed phase distributions, respectively. Taking into 
account (5), we obtain

s2F = áKF ( r1,  r2)ñ,   s2Y = áKY ( r1,  r2)ñ = Sp(áRRñCC ),	 (8)

where KF ( r1,  r2) = ( () )1 2r rF F  is the correlation function of 
the reconstructed phase distribution; áRRñ = ||áRn(r)Rm(r)ñ|| 
is the coupling matrix (n ́  n) of the corrector response func-
tions; and Sp(...) denotes the matrix trace [10]. Equation (7) 
is obtained with regard to the fact that, as shown below [the 
second formula in (15)], the error D and the function Y are 
uncorrelated. 

Expressions (4) – (8) are referred to the zonal method of the 
AOS control. However, in a search AOS with zonal control, 
the target function optimisation is complicated by the fact 
that the response functions of actuators are spatially interre-
lated (the coupling matrix áRRñ is nondiagonal in the general 
case). The nonorthogonality of the control channels leads to 
systematic errors and reduction of the signal-to-noise ratio. 
These drawbacks turn out less significant in the search AOS 
with modal control [1, 2]. Note that, in some cases, the use 
of  modal algorithms in non-search regime [2] allows one 
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to reduce the number of computational operations and thus 
increase the AOS operating speed.

Consider an AOS with a basis of the orthonormal modes 
that can be error-free reproduced by the WF corrector. In this 
case the mode response Fn(r) [ fn(r), n = 1, 2, ..., n] is imple-
mented by supplying the appropriate control actions into 
each of n actuators simultaneously. Then F(r) = AR(r), where 
A = ||Amn|| is the (n ́  n) matrix of transition from the basis 
{Rn(r)} to the basis {Fn(r)}. Given orthonormality of the 
modes, we have AáRRñAT = E, where E is the identity matrix. 
Herewith, Y(r) = CtF(r), where Ct  = CA–1 is the matrix of 
the  control mode actions, and A–1 is the matrix inverse to 
the A matrix. Each mode Fn(r) makes the contribution Sn

2 = 
ááKY ( r1,  r2) Fn(r1) Fn(r2)ññ ³ 0 to the variance of the phase 
distribution:

s2Y = Sp(CCt t ) = Sn
n

2

1

n

=

/ , 

where CCt t  = A–TCCA–1 is the correlation matrix of the control 
mode actions; and A–T = (AT)–1.

Of particular interest are the Karhunen – Loeve modes 
[7, 10]. They possess a distinctive feature of extremality. 
Consider various bases with numbering of modes in each of 
them satisfying the condition Sn

2 ³ S2
n + 1 (n = 1, 2, ..., n – 1). In 

this case, the variance of WF approximation using the first k 
(1 £ k £ n) Karhunen – Loeve modes does not exceed the 
error resulting from the use of other bases with the same n 
and k. Therefore, in the AOS with modal control, it is advis-
able to use the Karhunen – Loeve basis, which allows obtaining 
the minimum approximation error as quick as possible. Given 
work [10] and the results of works [8, 11], the Karhunen – Loeve 
modes can be found as the solution of the matrix equation 
with respect to the A and S2 values or from equivalent integral 
equations for F(r) and S2:

AáRRñCC  = S2A,   áF(r1)KY ( r1,  r)ñ = S2F(r).	 (9)

Here S2 = ||Sn
2 dnm||; dnm is the Kronecker symbol; averaging 

in the second relation is performed over the variable r1; and 
the KY and CC  values are determined by expressions (5) and 
(6). For completeness of the statistical AOS model, let us 
note the following. If the WF sensor and corrector are ideal, 
the Karhunen – Loeve mode can be found from the second 
(integral) equation in (9) at KY = KF. In this case, in the 
matrix equation 

CC  = áRRñ–1||áKF ( r1,  r2) Rn(r1) Rm(r2)ñ||áRRñ–1 

and the original basis {Rn(r)} must represent a complete set 
of functions (for example, Zernike polynomials [9]).

The Karhunen – Loeve modes allow approximation of a 
random function by a sum of spatially orthogonal func-
tions with statistically independent coefficients. Relations (9) 
generalise this description method to the problems in which 
the Karhunen – Loeve basis is formed from a set (finite or 
infinite) of the given functions. Methods for solving equa-
tions (9) are known [10].

In the framework of the statistical AOS model, relations 
(1) – (9) give a general description of the algorithms for optimal 
phase formation. Three matrices are required to calculate the 
AOS characteristics: the matrix function R(r) of the WF cor-

rector responses, the stochastic matrix M of the WF sensor 
counts and the deterministic matrix H of the correlation 
between the sensor and corrector. Using these matrices, all 
other matrices, functions and values present in (2) – (9) can be 
found. The expressions for the generating matrices R(r), 
M and H are given in Appendix 1. A detailed description of 
the algorithm for AOS control depends on its designation. 
According to formulas (A1.4), (A1.6) and (A1.7), we obtain 
for problems I, II and III, respectively,

R(r) = || ( )Mm rF ||,  M = ||Mm||,  H = MM 1- ,	 (10)

R(r) = ||Rn(r)||,  M = ||áF(r)Rn(r)ñ||,  H = áRRñ–1,	 (11)

R(r) = ||Rn(r)||,  M = ||Mm||, 

H = MM 1- ||á ( )Mm rF Rn(r)ñ||áRRñ–1.	
(12)

To implement algorithm (3), one must also know the stati
stical properties of the function F(r) and the counts {Mm}, as 
well as their joint correlation function. These characteristics 
can be determined experimentally by direct measurements 
and/or found from a priori information.

Now we proceed to examination of the relationships 
between the algorithms. To distinguish between the algorithms 
I, II and III, let us rename Y(r), D(r), s2Y and D2 by means of 
a  subscript. We introduce the functions Yx(r), Dx(r) = 
F(r)  – Yx(r), s

2
x = á ( )2 rY x ñ and D2

x = s
2
F – s

2
x, where the 

subscript x corresponds to m, n and mn for problems I, II and 
III, respectively. We investigate Yx(r) as an operator Yx(F) 
being linear with respect to F [neglecting the functional 
dependence of the counts M on F(r)]. Using (3) along with 
expressions (10) – (12), by means of algebraic and statistical 
transformations we find

Yx(Yx(F)) = Yx(F),  

Ymn(F) = Ym(Yn(F)) = Yn(Ym(F)).	
(13)

The second relation in (13) shows that the optimal compensa-
tion algorithm III takes into account both algorithm I and 
algorithm II.

Consider the relationship between the algorithms at a cor-
relation level. From general considerations, it is clear that the 
distribution Yx(r) and the error Dx(r) must be statistically 
independent:

( () ) 0r rD Y =x x ,   ( () ) 2r rD F D=x x , 

( () ) 2sr rY F =x x .	
(14)

Equations (14) are fulfilled by means of substituting Dx(r) = 
F(r) – Yx(r) into the expression for the correlation functions 
and subsequent averaging with regard to (10) – (12). In the 
same way can be found the relations coupling different algo-
rithms:

( () ) 0r rD Y =x mn , 

( ( ( () ) ) ) 2sr r r rY Y Y Y= =x mn m n mn .	
(15)

The analysis of control algorithms I, II and III given in 
Appendix 2 on the basis of relations (13) – (15) shows that, 
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given (A2.5), the compensation error variance can be pre-
sented in the form

D2mn = D2m + D2n – DmDnKmn,	 (16)

where Kmn is the aperture-averaged correlation coefficient of 
the errors Dm(r) and Dn(r). The value of Kmn varies in the 
interval [0, 1]. The nonnegativity of the correlation coeffi-
cient is related to the fact that the algorithms assume that the 
statistical properties of the measured phase distribution and 
the WF sensor counts are known. 

According to (A2.7), the compensation error lies within 
the following limits:

(D2m + D2n)/2 £ D2mn £ D2m + D2n,

Dmn » 0.85 (1±0.18)
2 2D D+m n .	

(17)

The upper limit for Dmn is attained when errors I and II do 
not  correlate with each other. The lower limit corresponds 
to the total correlation of errors I and II. From general con-
siderations, it is clear that this takes place when D2m » D2n.

Expressions (17) factorise the compensation error depen-
dence on the parameters m, n, which gives grounds for a sepa-
rate study of the sensor and corrector in the AOS develop-
ment. When matching the parameters m and n, it is advisable 
to proceed from the equality D2m » D2n, which allows avoiding 
unnecessary complication of the system in the sketchy develop-
ment of an AOS.

The expressions given above contain no explicit time 
dependence. To take it into account, for example, in the case 
of discrete time counts, it suffices to perform the following 
conversion in the formulas: to replace F(r), Y(r), {Mm} and 
{Cn} by F(r, t), Y(r, t), {Mm(tm)} and {Cn(t)}, respectively. 
Here t is the current time, and tm is the time moment of register-
ing the mth count. Herewith, the statistical averaging in all 
relevant expressions is performed with regard to the correla-
tion in time, and all the above relations preserve their form.

3. Results of the computational experiment

In a computational experiment, a circular deformable mirror is 
considered as a WF corrector, and the sensor is based on a 
Hartmann sensor (HS). The deformable mirror’s actuators are 
placed at the nodes of an equidistant grating, and the response 
functions are described by the Gaussian function: rn(r) = 
exp[–(r – pn)2/w2], where pn (n = 1, 2, ..., n) are the coordinates 
of nodes of an equidistant grating with the spacing p, and w 
is  the response function half-width. The grating nodes are 
located within the corrector’s light aperture with a radius RL. 

The HS possesses mg sub-apertures. The HS counts are 
proportional to the WF local slopes measured at the nodes of 
a square grating with coordinates qm = (qxm, qym), the points 
of  counts are located within the light aperture. The grating 
axes p and q are co-directed; their centres of symmetry coin-
cide with the light aperture’s centre. The HS counts are Mm = 
DuF(qm) + Nm, where Nm is the noise component; Du is the 
operator of differentiation with respect to the variable u, 
where u = qxm at m = 1, 2, ..., mg and u = qym at m = mg + 1, 
mg + 2, ..., 2 mg; and the total number of counts is m = 2 mg.

The correlation function of the random, normally distri
buted field j(r) with a zero average value is specified in the 
Gaussian form:

Kj ( r1,  r2) = ( () )1 2j jr r  = s2exp[–(r1 – r2)2/rc2],

where rc is the correlation radius; s2 is the phase variance. 
Quantity (7) of the square of the aperture-averaged phase is 

s2F = s2{1 – (2/a){1 – exp(–a)[I0(a) + I1(a)]}},	 (18)

where a = 2/c2; c = rc/RL is the relative radius of correlation; 
and I0(a) and I1(a) are the modified [12] Bessel functions of 
imaginary argument. As a result, we have the approximate 
relation s2F » s2/(1 + c2). This relation is obtained from 
(18) by matching the asymptotics at c >> 1 and c << 1 and 
provides an underestimated value of s2F with a relative error 
up to 5 %.

It is assumed that the sensor noises are not correlated with 
the slopes DuF(qm), the errors for the counts with different 
numbers and also the errors along the axes x and y are sta-
tistically independent; N 0m = , m (( )) /2gradN 2 2g j r= , where 

( )grad2j r  = 4s2/rc2 is the variance of the local slopes of the 
normal to the phase surface, and g is the relative fraction of 
noise.

The system parameters in the calculations are varied within 
the following limits: 0.1 £ c £ 1.0, 1 £ m £ 170, 1 £ n £ 137 
and 0 £ g £ 1.0. Typical results of the calculations based on 
relation (7) with regard to (10) – (12) and accepted constraints 
on the system parameters are shown in Figs 1 – 3.

Figure 1 presents the dependence of Dn/s [curve ( 1 ), 
algorithm II] on the number n of actuators and the depen-
dences of Dm/s [curves ( 2 – 6 ), algorithm I ] on the number of 
the counts m for different relative fractions g of noise. As 
expected, if the phase gradient is used as the counts, the 
approximation error Dm/s increases with increasing measure-
ment error [curves ( 3 – 6 )]. With increasing number m of the 
counts, the magnitude of Dm/s begins to be determined by 
the noise component and approaches sns » 2pg/ c2m . This 
estimate has been obtained by considering the fact that the 
phase error for the mth count is proportional to the product 
Nm(RL p / 2m ). Let us denote the sensor error with regard 
to noises by Dm(sns). Assuming the matrices áRRñ and MM  
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Dn/s, Dm/s
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Figure 1.  Dependences of the errors Dn/s on the number n of the cor
rector actuators ( 1 ) and Dm/s on the number m of the WF sensor counts 
( 2 – 6 ) obtained in the phase measurements ( 1, 2 ) and WF slopes for 
g = ( 3 ) 0, ( 4 ) 0.05, ( 5 ) 0.2 and ( 6 ) 0.5. The correlation radius c = 0.3, 
the response function half-width w = 2p.
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diagonal, given relations (6) – (8) and (10), it is easy to find the 
estimate for the WF sensor error:

Dm
2(sns) » s2F /(1 + 1/s2ns) + Dm

2(0)/(1 + s2ns),	 (19)

where Dm
2(0) is the error in the absence of noises.

Figure 2 shows the dependence of cmn = Dmn/(0.85 ́
2 2D D+m n ) on m for several values of g. Given relation (17), 

this ratio should lie within the interval 0.82 – 1.18, which is 
fully consistent with the data of Fig. 2.

Based on the results of a computational experiment aimed 
at evaluation of the quantity Kmn as applied to the AOS with 
a HS, the following approximate relation has been obtained: 
Kmn » (DmDn/s2F)4/5. Herewith, the maximum error in the cal-
culation according to formula (16) does not exceed 10 %.

Figure 3 shows the dependence of m(n)/n obtained by 
matching the values of m and n using the condition Dm » Dn. 
This dependence is nonmonotonic. As follows from the 
analysis of Fig. 3, the required number of HS counts turns 
out 1.5 – 5.5 and more times higher than the number of actua-
tors n. If the number of counts is predetermined, the corrector 
quality requirements are reduced with increasing measurement 

error and, consequently, the required number of actuators 
decreases in comparison with the number of counts.

If the phase values Mm = F(qm) are used as counts [curves 
( 1 ) and ( 2 ) in Fig. 1], the required number of actuators, pro-
vided that Dm » Dn (neglecting the noise error of the WF sen-
sor) is approximately equal to the number of counts. Such a 
difference from the case of the measurements employing a HS 
is explained as follows. Suppose we know the exact values of 
the phase F(qm) and the derivative DuF(qm) at some point of 
the aperture of the beam under correction. In a vicinity of that 
point the values of the derivative may deviate significantly 
from the value DuF(qm). This difference is the greater, the 
greater is the distance between the points of counts. 
Accordingly, the phase value at any neighbouring point, 
reconstructed by means of DuF(qm), may differ significantly 
from the exact phase value. This error decreases with increas-
ing number of counts DuF(qm) and is absent if the phase 
values F(qm) are used as the counts. In the latter case the cor-
relation coefficient Kmn » (DmDn/s2F)2/5 in formula (16) is on 
average greater than in the case of measurements by means of 
the HS.

4. Conclusions

We have further developed a statistical model of a phase-
conjugating AOS. In the framework of an integrated mathe-
matical approach, three algorithms are considered, each of 
them intended for minimisation of one of the following indi-
cators: the sensor error I (in the case of an ideal corrector), the 
corrector error II (in the case of ideal measurements) and the 
compensation error III (with regard to discreteness of mea-
surements, sensor noises and incompleteness of the system of 
response functions of the corrector actuators). We have inves-
tigated the functional and statistical relationships between 
these algorithms and found an approximating relation that 
enables calculation, with the accuracy of no worse than 10 %, 
of error III of the WF compensation as a function of errors I 
and II of the WF sensor and corrector. The relation derived 
allows factorisation of the compensation error dependence on 
the number m of the sensor counts and the number n of the 
corrector actuators, and makes it possible to study the WF 
sensor and corrector independently of each other in the AOS 
development. When matching the parameters m and n, it is 
advisable to proceed from equality of the errors of the sensor 
and corrector. Herewith, in the case of using a Hartmann sen-
sor as a sensor, the number of actuators may be ~1.5 and 
more times smaller than the number of counts. When the 
noise component in the measurement error rises, this differ-
ence increases; if the error variance amounts to 10 % of the 
variance of the slope of the WF under correction, at m > 
30 – 50 the value of n turns out 3 – 5 times smaller.
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Appendix 1. Algorithms minimising the  
errors of the WF sensor and corrector  

as well as the compensation error

Problem I. The sensor error, i.e. the WF approximation error 
determined in accordance with the sensor counts in the case of 
an ideal corrector, depends on the values {Mm}, their func-
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Figure 2.  Dependences of the value cmn on the number m of the counts at 
the actuators’ number n = 37, the correlation radius c = 0.3, the response 
function half-width w = 0.7p and g = ( 1 ) 0, ( 2 ) 0.05, ( 3 ) 0.2 and ( 4 ) 0.5.
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tional relationship with F(r), and the measurement noises. 
The reconstructed phase distribution is represented as the sum 

( () )M Qm m
m 1

r rY =

m

=

/ ,	 (A1.1)

where Qm(r) is the deterministic, spatially distributed weight 
coefficient with which the mth count of the WF sensor is 
taken into account in the phase distribution. When mini
mising error (2), variational calculus is used and the form of 
the functions {Qm(r)} constituting the column Q(r) = ||Qm(r)|| 
is optimised. Given the results of Refs [1, 5, 8], we have

Q(r) = ( )MM M1 rF- ,    ( )M rF  = || ( )Mm rF ||.	 (A1.2)

After substituting (A1.2) into (A1.1), we obtain the recon-
struction algorithm description:

Y(r) = ( )M MM M1 rF- .	 (A1.3)

From comparison of (A1.3) and (3), it is clear that H = 
MM 1- , and the functions { ( )Mm rF } are similar to the 
response functions {Rm(r)} and can be conditionally con
sidered as optimal response functions of the WF corrector. 
Thus, in problem I

R(r) = || ( )Mm rF ||,  M = ||Mm||,  H = MM 1- .	 (A1.4)

Problem II. In calculating the WF corrector error, it is 
assumed that the WF measurements are exact, the phase dis-
tribution error being caused by the finiteness of the number n 
of the control channels. The reconstructed phase distribution 
is given by the sum:

( () )C Rn n
n 1

r rY =
n

=

/ . 

The coefficients{Cn} are determined from the condition of 
áD2(r)ñ minimality [1, 4]:

C = áFRñ áRRñ–1,   áFRñ = ||áF(r)Rn(r)ñ||.	 (A1.5)

From comparison of (A1.5) and (3) it follows that H = áRRñ–1, 
and the row matrix áFRñ represents the analogue of a row of 
the counts M.

As a result, in problem II

R(r) = ||Rn(r)||,  M = ||áF(r)Rn(r)ñ||,  

H = áRRñ–1.	
(A1.6)

In this case, MM  = ||ááKF ( r1,  r2) Rn(r1) Rm(r2)ññ||, where 
KF is the correlation function of F(r).

Problem III. When analysing the WF compensation algo-
rithm, the phase distribution Y(r) formed by AOS is speci-
fied as a linear combination of the known response functions 
{Rn(r)} of the corrector actuators, while the control actions 
are defined as a linear combination of the sensor counts {Mm} 
[1, 2, 8]:

( () )C Rn n
n 1

r rY =
n

=

/ ,   .C M Hn m mn
m 1

=

m

=

/

The values {Hmn} are the sought-for ones and constitute the 
matrix H = MM 1- áMFRñ áRRñ–1 in the optimisation accord-
ing to the criterion of minimum of indicator (2). Here, MM  = 
||M Mn m||; áMFRñ = ||á ( )Mm rF Rn(r)ñ|| is the matrix of 
overlapping of the response functions Rn(r) with the func-
tions ( )Mm rF  of joint correlation of the measured phase and 
the sensor counts; and áRRñ = ||Rn(r)Rm(r)||. Thus, in rela-
tions (3) – (6) in the conditions of problem III

R(r) = ||Rn(r)||,  M = ||Mm||, 

H = MM 1- áMFRñ áRRñ–1.	
(A1.7)

Appendix 2. Compensation error estimation

Let us obtain and examine three statistical relationships.
1. Using expression (1), (13) and linearity of the operators, 

we can formulate the following chain of equalities:

Dmn(F) = F – Yn(Ym(F)) = F – [Ym(F) – Dn(Ym(F))] 

	 = Dm(F) + Dn(F – Dm(F)) = Dm(F) + Dn(F) – Dn(Dm(F)),

or

Dn(Dm(F)) = Dm(F) + Dn(F) – Dmn(F). 

After squaring and averaging the last relation with regard to 
(14) and (15), we have

á (( ))2 rD Dn m ñ = D2mn – D2n – D2m + 2 á ( () )r rD Dn m ñ ³ 0.	 (A2.1)

2. The value s 2mn = ( ( ( ([ ) )] [ ) )]r r r rF D F D- -m n . Trans
forming the product by means of formulas (14) and (15), we 
obtain

D2mn = D2m + D2n – á ( () )r rD Dn m ñ ³ 0.	 (A2.2)

3. Calculating the value á ( ([ ) )]2r rD D-m n ñ. Expanding 
the square and performing averaging, we find

D2m + D2n – 2 á ( () )r rD Dn m ñ ³ 0.	 (A2.3)

Considering relations (A2.1) – (A2.3) as a system of equations 
and inequalities, by means of algebraic transformations we 
obtain

á ( () )r rD Dn m ñ = á (( ))2 rD Dn m ñ ³ 0,	 (A2.4)

D2mn = D2m + D2n – á ( () )r rD Dn m ñ ³ 0,	 (A2.5)

0 £ á ( () )r rD Dn m ñ £ (D2m + D2n)/2.	 (A2.6)

Let us estimate the limits within which the value D2mn may 
vary. Substituting (A2.6) into (A2.5), we find

(D2m + D2n)/2 £ D2mn £ D2m + D2n,  

Dmn » 0.85 (1±0.18)
2 2D D+m n .	

(A2.7)
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The lower boundary in (A2.7) is attained when special require-
ments to AOS parameters are fulfilled, for example, Fn(F) = 
Fm(F) or D2m » D2n.
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