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Abstract.  A detailed theory of the method of holographic recording 
of hyperspectral wave fields is developed. New experimentally 
obtained hyperspectral holographic images of microscopic objects 
are presented. The possibilities of the method are demonstrated 
experimentally using the examples of urgent microscopy problems: 
speckle noise suppression, obtaining hyperspectral image of a 
microscopic object, as well as synthesis of a colour image and 
obtaining an optical profile of a phase object.

Keywords: Fourier-microscopy, holographic images, hyperspectral 
wave fields.

1. Introduction

In this paper we consider a new application of a Fourier spec-
trometer, namely the hyperspectral recording of holograms of 
microscopic objects in noncoherent light. Fourier spectros-
copy represents undoubtedly one of the first examples of suc-
cessful application of computers in optics. As is well known 
[1], the spectral composition of radiation carrying informa-
tion about optical properties of a sample is determined by the 
numerical Fourier transform of the interferogram obtained at 
the interferometer output in the process of varying the length 
of one of its arms. Two types of interferograms are distin-
guished: symmetrical and asymmetrical. Symmetrical inter-
ferograms are obtained when a sample is placed in the super-
imposed beams behind a beam splitter. In this case, the 
Fourier transform of the interferogram provides information 
about the energy spectrum of radiation, i.e. modulus of the 
spectral density amplitude of radiation transmitted through 
the sample. Of particular interest is certainly an asymmetric 
interferogram that is obtained when a sample is positioned in 
one of the interferometer arms (in place of a fixed mirror). In 
this case, the Fourier transform of the interferogram yields a 
complex amplitude of the spectrum of radiation reflected 
from the sample, the amplitude containing complete informa-
tion about the spectral properties of the sample, namely, the 

dependences of the complex refractive index of the sample on 
the spectral frequency s = l–1 (l is the wavelength).

Formally, the optical scheme of asymmetric interfero-
gram registration coincides with the scheme of hologram 
recording. Indeed, in both cases an interfering object and ref-
erence light beams are present. However, in the Fourier spec-
trometer, the interferogram is recorded by a point-like detec-
tor, while in the holographic scheme, a digital hologram (or 
an interferogram) is recorded with a digital camera as a two-
dimensional field intensity in some plane.

Now, if a digital camera is installed instead of a point-like 
receiver, and a micro-object is used as a sample, the object 
light beam will illuminate the entire matrix aperture as a result 
of diffraction. The interference of the object light beam with 
the reference beam during the reference mirror motion allows 
writing the interferogram into each matrix pixel. We have 
shown that the Fourier transform of these interferograms 
determines the complex amplitude of the object’s diffracted 
field for each spectral radiation frequency, i.e. the hyperspec-
tral hologram. The following important fact should be noted 
here: the parameters of modern digital matrices allow their 
successful use for recording the diffraction patterns of micro-
objects [2].

By solving the inverse diffraction problem with the use of 
the Fourier or Fresnel transforms, we obtain a complex trans-
mittance function of the micro-object at an arbitrary spectral 
frequency. Thus, the Fourier spectrometer represents not 
only a spectral device, i.e. an instrument capable of determin-
ing the transmittance or absorption spectra of samples with 
very high resolution, but also a device that, as it turns out, can 
do much more: it can record digital hyperspectral holograms 
of the micro-objects under polychromatic radiation. We have 
shown the principal possibility of such a recording in [3 – 5]. 
In [6], we have developed a theory of the proposed method 
and obtained experimentally hyperspectral holograms of the 
samples of some micro-objects. In this paper, we present the 
results of new theoretical and experimental studies on hyper-
spectral Fourier-holography of microscopic objects.

2. Model

Let the object positioned in one of the arms of a Michelson 
interferometer in place of a fixed mirror be illuminated by a 
polychromatic wave. Similar to [1], we represent the complex 
amplitude of the polychromatic field in the form

( ) (2 )exp i du E zps s s=
W
y ,

where z is the coordinate; E(s) is the spectral density function 
of the amplitude, which is assumed known; and W is the value 
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of a spectral window of illuminating radiation, i.e. the spec-
tral region in which the function E(s) is different from zero. 
Without loss of generality, we will consider below the trans-
mitting transparency. Let a(s, x) = |a(s, x)|exp[ij(s, x)] be a 
complex transmittance function of the object-transparency at 
some specific frequency s, where j(s, x) = arctan[ Im a(s, x)/
Re a(s, x)] is the wave field phase, and x is a two-dimensional 
coordinate of the object in the plane z = 0. Consider a single 
spectral component of the plane light wave E(s)exp(2pisz). 
The transparency action on this component is reduced to the 
multiplication by a complex transmittance function, so that, 
after the passage of this spectral component through the 
transparency, the wave field at the object-transparency out-
put, associated with that component, appears as

( ) ( , ) ( ) ( ) ( , ) ( )exp iu a E z a Ex x x2
z 0

ps s s s s= =s =
.

The above considerations can be generalised to the case of 
an arbitrary hyperspectral object. We consider the hyperspec-
tral object as the object-transparency, which affects each 
monochromatic component of the incident field, so that the 
wave field at the transparency output can be represented as

( ) ( , ) ( ) ( )exp i du a E zx x 2
z 0

ps s s s=W
W =y

	 = ( , ) ( )da Exs s s
W
y .	 (1)

The hyperspectral transparency action on polychromatic 
radiation is determined by optical properties of the object-
transparency material, and in particular, by spatial distribu-
tion of the complex refractive index. 

We assume below that the region W = smax – smin coincides 
with the characteristic width of transmittance function’s spec-
tral window of the hyperspectral object-transparency. In the 
general case, the complex wave field a(s, x) of the object is 
associated with the complex amplitude A(s, x) of the diffrac-
tion field in the recording plane by means of the integral 
transformation A(s, x) = Fs(a(s, x)), where x is a two-dimen-
sional coordinate in the recording plane. The form of the inte-
gral transform Fs and, consequently, of the diffraction field 
depends on the geometry of the problem: in particular, the 
integral operator Fs may signify the Fourier transform as in 
our paper [5], and the Fresnel transform in a more general 
case:

( , ) ( ( , )) ( , )
( )

exp i dA a a zx x
x

x
d

2

ps s s sx
x

F= =
-

s ; Ey .	 (2)

Assume that the object size d and the distance z from the 
object to the recording plane obey the Fresnel diffraction con-
ditions. Then, the complex amplitude U(s, x) of the object 
wave on the spectral component s in the matrix plane is 
U(s, x) = exp(2pisz)E(s)A(s, x). (The exponential factor 
exp(2pisz) describes the linear phase incursion when the wave 
propagates from the transparency to the matrix.) The total 
complex amplitude UW(x) of the polychromatic diffraction 
field in the recording plane has the form

( ) ( , ) ( ) ( ) ( , )expd i dU U z E A2ps s s s s sx x x= =W
W W
y y .	 (3)

Only spectral components having the same frequency s 
undergo interference; therefore, the spectral density of the 
interference field intensity is associated with the object wave 

UG(x) and the reference wave E(s)exp[2pis(z + d)] reflected 
from the movable mirror that is shifted by the distance d from 
the position of the zero path difference I(s, x, d) = S(s)|A(s, x) 
+ exp(2pisd)|2, where S(s) = |E(s)|2 is the source power den-
sity at the spectral frequency . Of course, the total intensity 
G(x, d), i.e. the integral of the function I(s, x, d) over all spec-
tral frequencies: G(x, d) = ( , , )dI s d sx

W
y  is recorded in each 

pixel of the matrix. In this integral, of interest is only the 
interference term

( , ) ( ) [ ( , ) ( 2 )exp iG S A pd s s sdx x= -
W
y

	 + ( , ) (2 )]exp i dA* ps sd sx .	 (4)

Expression (4) for G(x, d), as a function of the mirror dis-
placement d, represents a spatial-spectral interferogram of the 
object since it depends both on the spatial coordinate x of the 
object field in the matrix plane and on the spectral properties 
of the object itself, which are characterised by the object 
transmittance function a(s, x). It is assumed that the spectral 
composition S(s) of the light source is known. Note that 
expression (4) coincides with the corresponding formulas in 
Fourier spectrometry for the case when the sample is installed 
in one of the arms of an asymmetric interferometer [1]. The 
derivation of (4) assumes implicitly that the light beam illumi-
nating the object has a high spatial coherence that is virtually 
equal to unity. By performing the Fourier transform of the 
interferogram G(x, d) and taking into account the fact that 
S(– s) = 0 for the negative frequency spectrum, we obtain 
from (4) the expression for the complex amplitude of the dif-
fraction field:

( , )
( )

( , ) (2 )exp i d
A

S

G p
s

s

d sd d
x

x
=
y

.	 (5)

Thus, knowing the spectral composition of the light source, 
i.e. the function S(s) and the interferogram G(x, d) at each 
point x of the matrix, it is possible, using the inverse trans-
form Fs

–1 of the function A(s, x), to obtain a holographic 
image of the object for each spectral frequency s.

Let us now discuss formula (5). Of course, the exact 
Fourier transform of the interferogram G(x, d) according to 
formula (5) is only possible under the condition that integral 
(5) is taken in infinite limits. In reality, the mirror displace-
ment d is limited to the mirror stroke length L, i.e. to the mag-
nitude of the interval –L G d G L.

This circumstance imposes a natural limitation on the 
spectral resolution of the complex amplitude A(s, x) of the 
diffraction field itself. Indeed, suppose for simplicity that 
there is a ‘two-colour’ object-transparency in the plane x, 
whose action on the polychromatic wave field (1) is that it 
only transmits two monochromatic components E(s1) and 
E(s2), while the rest components are either reflected or 
absorbed. Such an object can be formally represented as two 
different objects: a1 = a(s1, x) and a2 = a(s2, x). According to 
formula (2), these objects correspond to two diffraction fields 
A1 = A(s1, x) and A2 = A(s2, x), respectively. Obviously, the 
fields A1 and A2 are spectrally resolvable in each pixel of the 
matrix, and therefore those fields are spatially distinguishable 
provided that the mirror stroke length L H Ds–1 = (s2 – s1)–1. 
Under this condition, by performing the inverse Fresnel 
transform (2), we can reconstruct the objects a1 and a2.

Let us now consider a multispectral object. We divide the 
spectral region of the multispectral object-transparency into 
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M = W/Ds = WL intervals. Then, according to formula (5), 
provided that the mirror stoke length L is given, we can calcu-
late M spatial-spectral components Am = A(sm, x), m = 
1, 2, ..., M, which then give a set of M complex functions am = 
a(sm, x), m = 1, 2, ..., M, representing a set of reconstructed 
holographic images of the object. According to (1), the sum

( ) ( , ) ( ) 1 ( , ) ( )u x a E
L

a Ex x
1 1

m m

M

m m

M

s s s s sD= =W / / 	 (6)

over such a set represents a reconstructed wave field of the 
hyperspectral object.

It is well known (see, for example, [1]) that the advantage 
of a Fourier spectrometer and its high resolving power com-
pared to diffraction instruments actually stem from two main 
components known as Jacquinot’s (throughput) and Felgett’s 
advantage (multiplex). In our case, the advantage in multi-
plexing is conditioned by the fact that during the entire time 
of exposure or recording the interferogram G(x, d), the Fourier 
spectrometer matrix simultaneously records all the spectral 
components Am = A(sm, x) of the object. The number M of 
these components is equal to the multiplex. In comparison 
with recording of hyperspectral holograms using, for exam-
ple, a tunable laser, this implies that in our case we obtain a 
significant advantage in the signal-to-noise ratio. As is known 
from Fourier spectroscopy theory, this advanatge is propor-
tional to M . In our experiments described below, the value 
of M is about 500, and so the signal-to-noise ratio is twenty 
times higher. Another important advantage of Fourier spec-
troscopy, associated with increasing signal-to-noise ratio and, 
as a consequence, with increasing resolution, is the possibility 
of multiple scanning. It leads to averaging of noise in record-
ing of all spectral components Am = A(sm, x) and to lowering 
of the noise average level, which, obviously, enhances the 
spatial-spectral resolution of the reconstructed holographic 
images of microscopic objects.

Consider now the procedure of reconstructing the hyper-
spectral holographic images, based on formula (5).

As noted above, the complex amplitude of the diffraction 
field in the matrix plane and the object field are related by the 
Fresnel transform (2). Let us represent this transform in more 
detail:

( , ) 2exp iA
z2

2

ps sx
x

= c m

	 ´  ( , ) 2 ( 2 )exp expi i da
z

x x x x
2d

2

p ps s sq-c my .	 (7)

The expression

( / ) ( , ) ( 2 / )exp i dA z a zx x xF
D

ps s sx x= -y 	 (8)

is an exact Fourier-image of the object field a(s, x) at the spec-
tral frequency s (D is the matrix size). In order to determine 
the complex amplitude of the object field a(s, x), we multiply 
(7) by the conjugate factor exp(–2pisx2/2z) that stands in 
front of the integral, and then perform the inverse Fourier 
transform. As a result, we obtain

( , ) ( , )exp expi ia
z

F A
z

x x2
2

2
2

2
1

2

p ps s s sx
x

= --c cm m; E,	 (9)

where F –1 is the inverse Fourier transform operator. 
Multiplying (9) by the conjugate factor exp(–2pisx2/2z), we 
finally obtain

( , ) ( , )exp expi ia
z
F A

z
x x2

2
2

2

2
1

2

p ps s s sx
x

= - --c cm m; E.	 (10)

Note that there is a certain difficulty: the distance z 
between the object plane and matrix is only known with a 
certain accuracy Dz << z. To determine a(s, x) from expres-
sion (10), we need to define accurately the value of z, or, figu-
ratively speaking, we need to ‘focus’ accurately enough. Let 
us estimate the focusing accuracy required, i.e. the ratio Dz/z. 
Suppose, an approximate value z + Dz has been used instead 
of the exact value of z in the quadratic factor exp(–2pisx2/2z). 
Obviously, the phase error caused by the focusing inaccuracy 
is determined by the factor exp[pis(x2/z)(Dz/z)]. The focusing 
accuracy can be considered acceptable if this factor is approx-
imately equal to unity, which leads to a chain of inequalities:

z z
z

2

ps
x D  << p, or z

D
z
z2

s D  << 1, or Dz << 
D
z
2

2l  = l/q20,	 (11)

where D is the matrix size and q0 = D/z. Note that the latter 
inequality in (11) coincides with the known expression for the 
depth of field Dz of an objective with the numerical aperture 
q0 = Dob/z, where Dob is the aperture size of the objective with 
the focal length f = z.

3. Experiment

Figure 1a shows a schematic layout of the holographic optical 
Fourier spectrometer. As a polychromatic radiation source 
(1), we used a fibre laser emitting a supercontinuum of 
200 mW in the wavelength range from 0.45 to 2 mm. Radiation 
from source ( 1 ) is split by a beam-splitting cube ( 2 ) and 
prism ( 3 ), and then directed to object ( 4 ) and matrix ( 8 ). The 
prism ( 6 ) mounted on a piezo table ( 7 ) directs the reference 
wave to the matrix through the beam-splitting cube ( 5 ). 
Stepwise displacement of the table (step d = 0.1 mm, stroke 
length L = 100 mm) is synchronised [unit ( 9 )] with interfero-
gram recording on the matrix ( 8 ). The recording rate is 10 
frames per second, the total number of interferograms is 1000 
for a single scanning, and the frame format of the CMOS-
sensor is 1024 ́  1024 pixels, 10 bits per pixel.

The algorithm of digital processing of interferograms and 
forming the micro-object image is shown schematically in 
Fig. 1b. In accordance with (5), we calculated a set of holo-

7

9

Hard disk

2

5

8

4

1

3
a

b

6

d

1D-FFT’s

G(q,d) A(q,s)

2D-FFT Image |a(x)|2

Figure 1.  (a) Principal optical scheme of an optical holographic Fourier 
spectrometer and (b) scheme of digital processing of interferograms and 
imaging of a micro-object; (1D-FFT) one-dimensional and (2D-FFT) 
two-dimensional Fast Fourier transforms. 
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grams of the micro-object diffraction field, which requires 
calculation of a one-dimensional Fourier transform by the 
variable d for each pixel in the array of interferograms. In 
accordance with (10), the inverse Fresnel transform was used 
to determine the object field complex amplitude a(s, x). The 
spatial intensity distribution of square modulus of the object 
field’s complex amplitude |a(s, x)|2 represents an amplitude 
image of the micro-object, while the expression 
arctan[Im a(s, x)/Re a(s, x)] gives a phase image of the micro-
object at a selected spectral frequency s. Below, we call the 
amplitude and phase images at the frequency s the mono-
chromatic images. In accordance with (6), the sum of mono-
chromatic images represents a hyperspectral image of the 
object.

It is important to note that the thus obtained hyperspec-
tral image possesses the property of exact physical colour ren-
dering. This is confirmed by our experiments. Figure 2 illus-
trates a process of synthesising the colour image. A cut of the 
lotus stem illuminated through the frosted glass was used as 
an object.

The spectral range from 0.45 to 0.7 mm comprises 145 
spatial-spectral components, and for each of them we 
obtained a monochromatic image Am in grey gradations. 
After that, each monochromatic image was ‘painted’ in its 
own colour according to the CIE 1931 colour space. Figures 
2a – e represent the coloured monochromatic images for some 
wavelengths. A sum of all 145 coloured monochromatic 
images gives a coloured hyperspectral image of the micro-
object (Fig. 2f). Figures 2 g and 2h show the central areas of 
the object image obtained with a conventional microscope at 
the magnification of ~100´ and with our setup, respectively. 
A good agreement of colour of the synthesised image and 
original image was obtained.

Summation of monochromatic images leads to the 
speckle-noise suppression, which is present in each of the 
monochromatic images if the object possesses the property of 
diffuse light scattering. Random modulation of the phase 
wave in the scattering medium depends not only on the inho-
mogeneity of the medium, but also on the radiation wave-
length. Therefore, the monochromatic images for different 
wavelengths have different speckle-structures, which stipu-
lates the possibility of their averaging in the summation of 

monochromatic images. The effect of speckle-noise suppres-
sion is demonstrated in an experiment with illumination of an 
object (the ant’s head) through frosted glass installed under 
the mask ( 4 ) of 1 mm in size, which ensures diaphragming of 
the object (Fig. 1a). Figure 3a shows a monochromatic image 
for l = 0.5 mm, in which the speckle-structure that is caused 
by diffuse scattering and makes it difficult to observe fine 
details is clearly visible. As in the previous experiment, we 
obtained 145 monochromatic images and synthesised a 
hyperspectral image (Fig. 3b), for which the speckle-structure 
contrast was significantly reduced. It may be noted that unlike 
some approaches that have been proposed to diminish the 
speckle noise [7 – 10], this method does not lead to a decrease 
in spatial resolution. 

Our method of hyperspectral Fourier holographic 
microscopy allows focusing on different planes of a three-
dimensional object. Expressions (11) determine the depth of 
field and focusing accuracy. That possibility is illustrated in 
our experiments on the recording of a two-layer object rep-
resenting two superimposed standard ocular scales illumi-
nated through the frosted glass. The longitudinal distance 
between the scales is 2 mm. The hyperspectral images of 
both scales, calculated at two different focus settings z, are 
shown in Fig. 4. It can be seen that the overlap of images is 
absent.

a b c g

d e f h
Figure 2.  (Colour online) Synthesis of a colour image: (a – e) monochromatic images, (f) total colour image, (h) its fragment and (g) the same frag-
ment observed with an optical microscope.

a b

Figure 3.  Image of the ant’s head reconstructed for (a) a single spectral 
component and (b) a sum of 145 spectral components.
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Hyperspectral holographic Fourier microscopy pro-
vides additional opportunities in observation of phase 
objects. Visualisation of phase objects was first imple-
mented in 1930 by Zernike who proposed the phase-con-
trast method. As is well known, this method allows visuali-
sation of transparent phase objects with small phase varia-
tion. Hyperspectral holographic Fourier microscopy 
allows calculating the phase j(s, x) of the object wave field 
for any spectral frequency. This function provides infor-
mation about the optical thickness (optical profile) of the 
object and in many cases is more informative than a usual 
amplitude image. The opportunity of reconstructing the 
polychromatic wave field allows implementation of a new 
way of representing the information about the object’s 
optical thickness in the form of an integral optical profile. 
We are talking here about the superposition of the phase 
images obtained for different spectral components. 
However, their direct summation is incorrect since the 
phase shift j = 2psnDz depends on the spectral frequency 
s, object thickness Dz and refractive index n. If the light 
dispersion is neglected, the optical thickness nDz = j/2ps of 
the object does not depend on the wavelength, and we call 
this value the optical profile of the object. By averaging the 
optical profiles of all spectral components, we obtain the 
integral optical profile, in which the noises inherent in indi-
vidual components are smoothed. Figure 5 demonstrates 
an example of the integral profile of a cut of the earth-
worm, constructed by means of this approach. 

The similarity of the optical profile image for a single 
spectral component (Fig. 5a) and the phase image obtained 
by the digital holographic microscopy in coherent radiation 
consists in the fact that these images contain a coherent 
speckle-noise typical of a scattering object. Figures 5b and 5c 
clearly demonstrate an increase in quality of the optical pro-

file image with increasing number of spectral components 
involved in calculations.

Figure 6 shows an image of the standard test pattern 
No. 1 for a wavelength of 1 mm and an image fragment for a 
wavelength of 0.45 mm. We can observe a decrease in the con-
trast of strokes with increasing spatial frequency. This occurs 
due to the limited numerical aperture of the record, which in 
our case was about 0.2. The diffraction limit of resolution at 
such an aperture is 6.1 mm for the wavelength l = 1 mm and 
2.75 mm for l = 0.45 mm. The width of the smallest resolvable 
strokes of the 10th square is 5.9 mm, and that of the 21st 
square – 3 mm. Thus, the experimental results are consistent 
with theoretical evaluation of the diffraction limit of reso
lution.

Obviously, the proposed method requires considerable 
processing resources. A single series of interferograms 
involves a memory of 1024 ́  1024 ́  1000 ́  10 bit = 1.25 GB. 
The Fourier transform requires twice as much memory space, 
i.e. 2.5 GB. Due to the fast-Fourier transform symmetry, only 
half of the data is used. Since the interferograms in each pixel 
are processed independently, they can be loaded from the 
hard disk and processed successively. However, this approach 
to the calculation is rather time-consuming.

4. Conclusions

The method of hyperspectral holographic Fourier micros-
copy we have proposed is based on the possibility of record-
ing the holograms in hyperspectral incoherent radiation. In 
our opinion, this opens up a way to urgent and important 
practical applications of this method, for example, in study-

Figure 4.  Digital focusing of two ocular scales on different planes. 

a b c

Figure 5.  Image of the optical profile of the earthworm cut constructed for (a) a single spectral component, as well as the integral profile construct-
ed for (b) 25 and (c) 50 spectral components.

а b

Figure 6.  (a) Image of the standard test pattern No. 1 for l = 1 mm and 
(b) its fragment for l = 0.45 mm.
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ing the objects in the terahertz or X-ray range. Within those 
ranges, we face a lack of sufficiently cheap and available 
sources of coherent radiation. However, the modern level of 
means for radiation recording gives reason to hope that our 
method will be promising for obtaining hyperspectral holo-
grams in these spectral ranges. Since the method is based on 
the principles and techniques of Fourier spectroscopy, it nat-
urally inherits all the advantages of these principles: unprece-
dentedly high signal-to-noise ratio and, consequently, high 
spatial-spectral resolution of the holographic image in com-
parison, for example, with the hyperspectral holograms 
obtained by a tunable laser. Finally, we emphasize the most 
significant advantage of hyperspectral Fourier-holography: 
the method allows one to detect the amplitude, phase and fre-
quency of the field within a single recording process, which 
gives actual grounds to call it holography, i.e. a ‘full record’.
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