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Abstract.  A beam model with a discrete change in the cross-sec-
tional intensity is proposed to describe refraction of laser beams 
formed on the basis of diffractive optical elements. In calculating 
the wave field of the beams of this class under conditions of strong 
refraction, in contrast to the traditional asymptotics of geometric 
optics which assumes a transition to the infinite limits of integration 
and obtaining an analytical solution, it is proposed to calculate the 
integral in the vicinity of stationary points. This approach allows 
the development of a fast algorithm for correct calculation of the 
wave field of the laser beams that are employed in probing and 
diagnostics of extended optically inhomogeneous media. Examples 
of the algorithm application for diagnostics of extended nonstation-
ary objects in liquid are presented.

Keywords: laser beam, optically inhomogeneous medium, refrac-
tion, wave field, laser diagnostics, physical processes in liquid.

1. Introduction

In connection with the use of diffractive optical elements 
(DOEs) in laser technology [1], which possess a variety of 
opportunities for laser radiation conversion, the problem of 
studying the features of the wave fields of the beams formed 
by DOEs under different conditions of wave propagation is 
very urgent. Besides, of practical interest is the use of these 
beams as a probe in the reconstruction of spatial and tempo-
ral characteristics of physical processes resulting in an optical 
inhomogeneity of the medium [2]. Traditionally, the diagnos-
tics of extended nonstationary phase objects employs fast 
angular scanning of laser beams; however, as indicated in [3], 
such a scanning is one of the most difficult problems of the 
control over the laser radiation characteristics. An alternative 
is the use of wide beams to ensure the probing of the entire 
region of interest. In this case, the transverse dimension W of 
the probing beam must be larger than the typical transverse 
dimension a of the gradient dynamic inhomogeneity or 
approximately equal to it.

In Fig. 1a an inhomogeneous layer in a density-stratified 
liquid is probed by a wide defocused laser beam [4], followed 
by a significant refraction, which leads to the formation of a 
caustic and multipath areas [5]. In this case, quantitative diag-
nostics of the inhomogeneity is complicated because of the 

complex nature of the refractive pattern. In such a situation 
the use of the beams formed by DOEs, which are visualised in 
the cross section as a matrix of points, a set of parallel seg-
ments, nested rings, etc. [6] allows using the offset of the beam 
structure elements as an informative parameter (Fig. 1b). This 
enables reconstructing the refraction index of an inhomoge-
neous structure using the methods of solving the inverse prob-
lem of refraction [7, 8]. We have described [7] the methods of 
the reconstruction of phase objects based on the ray represen-
tation of radiation propagation and registration of the offset 
of beam elements.

However, under the conditions of strong refraction, with 
substantial ‘blurring’ of the beam elements and caustic forma-
tion, it is not always clear what should be meant under the 
element offset; therefore, solving the problem on diagnostics 
of medium parameters requires the use of additional informa-
tion about the field intensity calculated on the basis of wave 
methods.

The problem that immediately arises in the wave field cal-
culation is that the direct use of the parabolic equation and 
Kirchhoff integral for a sufficiently large cross-sectional area 
of the probe beam in the presence of strong refraction requires 
very significant computational resources, especially in the 
region of geometric optics, because of the necessity of inte-
grating the rapidly oscillating functions. It should be noted 
that the calculation of the intensity on the basis of the tradi-
tional ray-optics asymptotics that requires a transition to 
the infinite limits of integration is impossible in the field of 
caustics.

In connection with the aforesaid, we propose here a ‘fast’ 
algorithm for calculating the refractive fields, which is valid in 
the field of caustics and allows real-time diagnostics of 
strongly inhomogeneous media.
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Figure 1.  Experimental refractive images of the beam sections with (a) 
continuous and (b) discrete intensity variation.
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To describe the radiation wave field formed by DOEs, it is 
advisable to use a model with a discrete change in beam inten-
sity I over its section, for example, an annular beam model 
(Fig. 1b):
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where r is the distance from the beam centre; j = 0, . . . , J is 
the number of the beam structure element (the ring number 
in the case under consideration); vj and Ij are the character-
istic size (width) and intensity of the ring with the number j; 
and DW is the spacing between the structure elements, 
which, in general, can be variable. The value of W = JDW, 
i.e. the radius of the last ring, is considered as a characteris-
tic size of the beam cross section. We assume that the condi-
tion DW >> vj is fulfilled for all j. Then we can approxi-
mately put the zero intensity everywhere, except the areas 
defined by the relation

 jDW – dj << r << jDW + dj,

or, in other words, within each element with effective width dj, 
which in this case can be considered equal to 2vj.

This model turns out fruitful in the refractive field calcula-
tion, because it enables exclusion from integrating the areas 
with a zero intensity, which reduces the calculation time by 
several orders.

2. Asymptotic representation of the wave field  
in refraction of the beams with a discrete change 
in intensity over the cross section

To describe the coordinate- and time dependent wave field 
A(x, y, z, t) that originally propagates along the z axis and 
passes through the optical inhomogeneity, we use the model 
of a transparent medium with a given refractive index n = 
n(x, y, z, t) and boundaries z = 0 and z = z1. Suppose that 
A0(x, y) is the complex amplitude of the beam at the entrance 
into the inhomogeneity region, l is the laser radiation wave-
length in free space and k = 2p/l is the wave number. Note 
that such a statement of the problem does not initially impose 
any restrictions on the behaviour of the field A0(x, y) across 
the beam, in other words, the field can be both discrete and 
continuous.

Assume that the beam field at the medium exit at z = z1 
may be defined as

A(x, h, z1, t) = A1(x, h, t)exp[ij1(x, h, t)],	 (1)

where the amplitude A1(x, h) and phase j1(x, h) of the wave 
field, depending on the refraction condition, are determined 
by solving the transport or parabolic equations for an inho-
mogeneous medium [9]. If the length of the inhomogeneity 
region is relatively small and the volume effects in the medium 
are not taken into account, in the phase screen approach 

A(x, h, z1, t) = A0(x, h)exp[ikz1n(x, h, t)].	 (2)

The time t is considered as a parameter and taken into 
account only in the final result when substituting the given 
dependences n(x, h, t), where x and h are the coordinates at the 
medium interface in the plane z = z1 . At the observation point 

with coordinates x, y, z, the wave field A(x, y, z) of the beam 
propagating in the free space can be obtained as a solution of 
the parabolic equation
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with the boundary condition defined by (1).
Let us represent the solution of (3) in the form

( , , )
( )

( , )
i

A x y z
z z

A1
W

W

W

W

1
1

2

2

1

1

l
x h=

- --
yy

	 ( , )
( )

( ) ( )
,exp i i d dk

z z
x y

21
1

2 2

j x h
x h

x h# +
-

- + -= G 	 (4)

where W1 and W2 are the effective beam sizes at the medium 
exit in the plane z = z1 along the axes x and h, respectively. 
Usually, in studying nonstationary inhomogeneities, the 
beam size is comparable with the characteristic cross section 
of the inhomogeneity, or exceeds it.

Obviously, if the transverse gradient of the refractive 
index is large enough, the function A1(x, h)exp[ij1(x, h)]   is 
fast-changing and cannot be brought out of the integral, as is 
usually done in the region where the geometrical optics 
approximation is valid. Therefore, direct integration in (4) for 
sufficiently large values of W1 and W2 faces the problems 
associated with the need for substantial computing resources, 
which actually impedes solving the inverse reconstruction 
problem of inhomogeneity parameters. In terms of geometri-
cal optics, this situation is equivalent to a strong deflection of 
rays at the medium exit, formation of caustics and multipath 
areas. Herewith, the deflection angles of rays may be consid-
erably different at the points of the inhomogeneity cross sec-
tion perpendicular to the direction of propagation of probe 
radiation. These phenomena indicate the presence of signifi-
cant refraction which actually violates the beam structure.

Nevertheless, the use of asymptotic methods and vivid 
physical representations can greatly simplify the procedure of 
calculating the field A(x, y, z), with preservation of the infor-
mation content of its wave description (4). Let us find the 
points of the stationary phase by equating to zero the partial 
derivatives with respect to x and h of the exponent in (4):
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The points of the stationary phase with the coordinates 
xm(x, y) and hm(x, y) are the solution of the system of equa-
tions (5) for the given coordinates x and y of the observation 
point. The integer index m £ M, where M is the number of the 
solutions of system (5), which is equal to the number of geo-
metrical optics rays arriving at a given observation point. 
Several such rays may exist in the multipath region. The val-
ues xm(x, y) and hm(x, y) in the plane z = z1 correspond to the 
coordinates of the exit points of these rays from the medium. 
If system (5) has no solution, this means that there are no rays 
arriving at a given observation point.

Returning to representation (4) of the field A(x, y, z), we 
can write it in the form
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where the values Dx and Dh are selected from the condition 
that the phase change of the integrand in the predetermined 
area of integration does not exceed a certain value Dj defined 
by the required accuracy of A(x, y, z) calculation. Thus, 
instead of integrating over the entire beam section, we may 
restrict ourselves to the integration over the region that gives 
the main contribution to the sought-for field and corresponds 
to the first few Fresnel zones in the vicinity of the exit point of 
each beam, i.e. in the vicinity of the stationary points with the 
coordinates xm and hm.

It is known [9] that such a restriction of the integration 
area entails a certain error in the calculation of the field 
A(x, y, z), usually not exceeding a value of ten percent. 
However, in contrast to the traditional asymptotics of geo-
metric optics that assumes transition to the infinite limits of 
integration, the field representations near the caustics and in 
the multipath region, as well as other advantages of wave 
description, preserve their correctness. Thus, expression (6) 
provides a unified representation for the field in the observa-
tion plane, the integration region localisation near the points 
xm, hm being a function of the observation point, which can be 
determined analytically from equation (5) and depends on the 
type of the inhomogeneity rather than on the particular type 
of the beam.

The essential requirement that must be met in finding the 
field (6) is that the integration regions corresponding to dif-
ferent stationary phase points (at various m) should not over-
lap [5], and each time this should be checked directly in the 
calculation of the fields for the beams with a continuously 
changing intensity. In the case of beams with discrete modula-
tion of the cross-sectional intensity, this requirement is virtu-
ally always satisfied, since the regions with a nonzero inten-
sity are sufficiently separated. For such beams, the dimen-
sions Dx and Dh of the integration regions in the vicinity of the 
stationary phase point should be chosen based on the charac-
teristic dimensions dj of the beam’s discrete element, such, as 
for example, the effective width of the ring in Fig. 1a. In this 
case, the field calculation error caused by the integration 
region restriction is significantly reduced, since the original 
field values at the integration region boundary are actually 
equal to zero. Figure 2 compares the dependences of the field 
intensity |A(x)|2 in a vicinity of the caustic that arises in pass-
ing of the radiation through a focusing layer with a refractive 
index n(x) = n0 + Dnexp(–x2/a2), calculated on the basis of the 
exact solution (4) and asymptotic representation (6) with n0 = 
1.33, Dn = 0.002, а = 2 mm.

For a beam element with a discrete structure (Fig. 2a), 
with the effective element size dj = 0.3 mm and integration 
region dimensions Dx = Dh = 0.3 mm, these dependences vir-
tually coincide (Fig. 2b). For a circular Gaussian beam with 
an effective diameter of 2 mm (Fig. 2c illustrates the beam 
focusing in the caustic region), the exact and asymptotic solu-
tions (Fig. 2d) are expectedly different, the restriction of the 
integration domain to several Fresnel zones leading to the 
oscillations of curve ( 2 ). Note that the use of the traditional 
asymptotics of geometric optics that assumes transition to the 
infinite integration limits in (4) causes the appearance of 
peculiarities in the region of extremum in the dependences 

shown in Figs 2c and 2d – the intensity in that region tends to 
infinity.

The above results suggest that the resulting representation 
(6) is optimally adapted to the calculation of the refractive 
wave field of the discrete-modulated beams and, at the same 
time, with a controlled accuracy, can be used to calculate the 
field of the direct-shadow images in the case of beams with a 
continuous change in intensity.

Figure 3 presents the results of calculation of the refrac-
tive images of the cross sections of the beam with a discrete 
change in intensity, based on the wave representation (6) at 
l = 0.6328 mm. The calculations are performed for the typical 
inhomogeneities of the refractive index, arising in a liquid 
medium in the presence of density and temperature stratifica-
tions.

Figure 3a shows a section of the beam with annular struc-
ture at dj = 0.25 mm (Fig. 1a), which has passed through a 
diffusion liquid layer with the characteristic thickness а(x) = 
а = 3 mm, length z1 = 30 mm and refractive index
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where n1 = 1.332 is the refractive index of a less dense (upper) 
liquid; n2 = 1.337 is the refractive index of a more dense 
(lower) liquid; and yc(x) is the position of the layer centre. The 
spacing between the rings is DW = 2.5 mm, the position of the 
layer centre relative to the beam centre is yc = – 8 mm, and the 
observation plane is located at a distance z – z1 = 600 mm. In 
this case, a ‘three-path’ zone exists between two caustic 
branches; this determines the possibility of intersection in a 
small region of three structural beam elements and relevant 
wave field interference. The caustic branches in the cross sec-
tion are visualised as a geometric locus of local extremum 
(turning points) of the beam elements. The calculated image 
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in Fig. 3 is fully consistent with the experimental image in 
Fig. 1, obtained with the layer parameters similar to those 
indicated above.

Figure 3b shows the images of the beam cross sections, the 
structural elements of which at the entrance to the inhomoge-
neity region represent parallel segments. In this case, the wave 
field intensity can be defined as
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and corresponds to a set of elementary beams with elliptical 
cross section (v1 and v2 are the ellipse semi-axes), which at 
v1 << v2 are visualised as segments. The values DW and a 
define, accordingly, the spacing and slope of the structural 
elements. Figure 3b demonstrates the refraction of such a 
beam on a two-dimensional inhomogeneity of the refractive 
index, arising in propagation of a wave perturbation in the 
diffusion layer of a liquid [10, 11]. In this case, the position yс 
of the layer centre and the layer characteristic size a in rela-
tion (7) represent the functions of coordinates and time. 
Figure 3b visualises the ‘three-path’ region restricted by the 
projections of the caustic surface, the distance between which 
is mainly determined by the gradient ∂n(x, y)/∂y, the parame-
ter а(x, t) varies within 2 – 6 mm. The results of experimental 
data relevant to this situation are presented below.

The calculated refraction images relevant to the case of 
cylindrical temperature stratifications, which may be experi-
mentally implemented as the boundary layers near the heated 
and cooled objects in water, are shown in Figs 3c and 3d, 
respectively. The temperature difference at the layer bound-
ary constitutes several tens of degrees, the characteristic 
dimension of the layer is а » 1 mm, and the characteristic size 

of the beam element is dj = 0.2 mm. In the experiment, similar 
images, obtained using the beams with a point-like structure, 
have been observed in the optical studies on temperature gra-
dients arising in the conditions of the Benard – Marangoni 
convection [12, 13].

Thus, analysis of expression (6) indicates that, if the con-
dition dj << a is satisfied, the wave field of the discretely mod-
ulated beams, even in the presence of caustics, has a rather 
simple structure in the localisation region of the beam ele-
ment, which is characterised by the intensity dependence on 
coordinate, similar to that shown in Fig. 2b. This is equiva-
lent to preservation of the character of the image, the infor-
mative parameters of which, as applied to solving the inverse 
problem of refraction, can be the position of caustics and dis-
placements of elements, which depend mainly on the refrac-
tive index gradient. If dj » a, in the case of significant magni-
tudes of the second derivatives, a ‘blurring’ of the image is 
observed (see, as example, Fig. 3c), which requires more 
detailed analysis of the wave field intensity dependence on 
coordinates in the reconstruction of inhomogeneities. 
Quantitative reconstruction of the physical characteristics of 
the fields in the medium under examination can be based on 
the analytical approaches to the solution of the inverse prob-
lem of refraction and also on numerical algorithms in the 
framework of the methods of minimising the objective func-
tion and correlation analysis using the reference images calcu-
lated by means of equation (6).

3. Results of reconstruction of quantitative 
characteristics of phase objects

In the laboratory experiments described below [11], aimed at 
visualisation and quantitative diagnostics of the dynamic 
density inhomogeneities in a liquid (Fig. 4), we used the 
refractive images obtained in the beams with continuous and 
discrete intensity variations.

The object of study represents internal waves in a salt-
stratified liquid, in which a required density distribution is 
obtained by changing the NaCl concentration. In this experi-
ment, a certain difference in the levels of transition layers of 
the liquid is established in the main part of the cuvette and the 
sluice chamber. The initial perturbation is created in the tran-
sition layer (7) between fresh and salt (the density r2 = 1030 
kg m–3) water by pulling out the sluice chamber’s damper 
(Fig. 4a). The transformation nature of this initial perturba-
tion is well-studied for the Korteweg – de Vries equation [14] 
and, as the results obtained in this experiment show, the ‘rect-
angular step’ splits into a group of nonlinear waves moving 
from the sluice chamber along the boundary of liquids in the 
main of part of the cuvette (Fig. 4b). However, as shown in 
[15], a detailed comparison of the experimental data and theo-
retical conclusions relevant to propagation of such perturba-
tions requires measuring the density gradient in the dynamic 
transition layer, which is virtually impossible to implement by 
means of the contact sensors. Using the beams with discrete 
intensity modulation (8) enables studying the changes in the 
effective width of this layer and density gradient immediately 
after the initial perturbation has occurred. Quantitative diag-
nostics is accomplished by means of correlation processing of 
the images obtained using a semiconductor laser module with 
a wavelength of 550 nm and a power of 3 mW. The structure 
of the image of the multipath region in a defocused beam in 
Fig. 4a corresponds to the calculated image in Fig. 3b, which 
allows the use of a parametric model of the layer (7) to deter-
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mine the refractive index gradient (or the liquid density). The 
dependences on the coordinate of the refractive index gradi-
ent in the layer are shown in Fig. 4c for the equilibrium posi-
tion of the layer [curve ( 1 )], in the vicinity of a singularity 
[curve ( 2 )], and at the lower point of the wave perturbation 
[curve ( 3 )].

Figure 5 shows the results of a study on the dynamics of 
the temperature boundary layer [2] that arises near the flat 
bottom of a metal cylinder with a diameter of 34.5 mm, 
immersed in water at the temperature of 20 °C, as a result of 
an abrupt change in the cylinder temperature in the course of 
rapid filling of the cylinder with water having the temperature 
of 90 °C. For probing the layer, a He – Ne laser with a power 
of 1 mW and a wavelength of 0.6328 mm has been used, the 
characteristic size of the beam element in the direction per-
pendicular to the cylinder bottom constitutes 0.4 mm. In the 
experiment, the images of the ‘point-like’ beam elements, sim-
ilar to those shown in Fig. 3c, have been obtained.

The peculiarity of the situation is that during the first few 
seconds after filling the cylinder with hot water the boundary 
layer thickness is comparable with the characteristic size of 
the beam element. In this case, we observe a significant ‘blur-
ring’ of the elements, which does not allow one to study in 
details the area near the body’s boundary surface using the 
geometric parameters of the images. The time dependence of 
the temperature gradient (at the distance y = 0.5 mm from the 
surface) and its derivative in the direction perpendicular to 
the layer are reconstructed on the basis of the analysis of the 
intensity distribution (Fig. 2) over the cross section of the 
beam element. As follows from Fig. 5, during the first few 
seconds after an abrupt change in the boundary conditions on 
the surface, an outrunning increase in the second derivative 

∂ 2T ( y, t)/∂y2 of temperature occurs, and only after that the 
gradient ∂T (y, t)/∂y starts to increase. The absolute maximum 
value of the temperature gradient at the given distance is 
53 °C mm–1. If the distance from the surface grows, the gradi-
ent reaches its maximum somewhat later, and its value 
decreases. This fact indicates the formation of a decaying 
temperature wave in the boundary layer, resulted from an 
abrupt perturbation on its boundary.

Another possible application of relation (6) is the study of 
acoustic fields in liquids by means of laser methods [16], in 
particular, the detection of the spatial domain and the time of 
occurrence of the ultrasound cavitation by analysing the tem-
poral spectrum A(x, y, z1, t) containing certain characteristic 
components of the acoustic field spectrum, which appear in 
the presence of cavitation. In addition, the refractive images 
of the discretely-modulated beams are of interest in studying 
the quantitative characteristics of propagation of ultrasonic 
waves resulted from the pulse action at the interface of immis-
cible liquids [17].

4. Conclusions

Thus, relation (6) obtained to describe the wave fields of dis-
cretely modulated laser beams in their refraction in phase 
objects reflects main features of the fields under consideration 
and allows vivid interpretation of the results of experiments 
conducted for visualising and studying the extended phase 
objects in a liquid and carrying out the quantitative analysis 
of those objects. The wave approach allows the use of com-
plementary information about the intensity distribution and 
location of caustics in the refracted image, which expands 
the capabilities of diagnostics of the dynamic objects. 
Reconstruction of the parameters of the physical processes 
resulting in a change in the refractive index enables detection 
of the effects arising in a liquid in the process of changing its 
characteristics. In particular, the approach outlined in this 
work is adapted for the analysis of nonstationary processes in 
liquids, which occurs as a result of the abrupt perturbation of 
the liquid parameters.
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