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Abstract.  The Jones matrix method is used to study the optimal 
conditions for steady-state generation through intracavity fre-
quency conversion in a solid-state laser under type-II phase match-
ing based on a weakly anisotropic model of an active medium 
(amplitude and phase anisotropy) and a nonlinear element. The 
optimal rotation angles of the nonlinear element are found. 

Keywords: solid-state laser with intracavity frequency doubling, 
phase anisotropy, amplitude anisotropy, polarisation mode, pump-
induced gain anisotropy, Fabry – Perot resonator, Jones matrix method.

From a practical point of view, of particular importance is the 
problem of the stability of the intracavity-doubled multimode 
solid-state laser output. In experiments with multimode 
Nd : YAG lasers with an intracavity-doubling KTP crystal, 
Baer showed [1] that the mode coupling in the process of 
intracavity frequency doubling leads to instability of steady-
state generation (green problem). Analysis of the balanced 
model of such a laser confirmed the existence of dynamic 
instability in a certain range of parameters [1 – 4]. It has been 
shown that this instability is attributed to sum-frequency 
generation, which usually accompanies the process of sec-
ond harmonic generation in intracavity-doubled multimode 
lasers. 

Two types of phase matching of light waves in a nonlinear 
crystal are possible through intracavity frequency doubling: 
in the case of type-I phase matching, laser mode frequencies 
of the same polarisation are summed, and in the case of type-
II phase matching, which we consider in this paper, the pro-
cess of the nonlinear frequency conversion involves waves 
with orthogonal polarisations. When polarisations of the 
laser modes coincide with the directions of the birefringence 
axes of a nonlinear element (NE), sum-frequency generation 
of orthogonally polarised modes occurs, resulting in unsteady-
state generation if the nonlinear conversion efficiency exceeds 
a certain critical value [5]. The discrepancy between the laser 
eigenpolarisations and the directions of the NE axes leads to 
the appearance of frequency-doubling, which enhances the 
stability of the steady-state generation process. The maxi-
mum stability is obtained when the axes are rotated through 
45°, which is achieved by inserting an additional quarter-
wave phase plate into the cavity [6]. 

The present work is devoted to lasers with weakly aniso-
tropic active media, such as yttrium aluminium garnet 
doped with neodymium ions, and a nonlinear element for 
intracavity frequency doubling. The phase anisotropy may 
be due to the small residual birefringence in the crystal of the 
active element, while the amplitude anisotropy of the active 
medium – by the gain anisotropy induced by linearly polar-
ised pump radiation [7]. It is shown that the change in orienta-
tion of the NE axes (rotation in a plane perpendicular to the 
cavity axis through 45° relative to the direction of mode 
polarisations of a bipolarisation laser) without additional 
phase plates can result in optimal conditions for steady-state 
generation. 

A solid-state laser with a weakly anisotropic Fabry – Perot 
cavity and a nonlinear element is schematically shown in 
Fig. 1. The active medium is represented in the form of a 
partial polariser P, which can generally be rotated through 
an angle a in the xy plane (relative to the x axis), and a 
phase-anisotropic element (phase plate) PP1 with a phase 
difference da, oriented by fast and slow axes along x and y. 
The nonlinear element, which provides frequency conver-
sion under type-II phase matching conditions is also repre-
sented in the form of a phase-anisotropic element PP2 with 
a phase difference Dn = 2pm + dn, where m is an integer and 
dn is the additional phase difference, which is assumed to be 
small (dn << 1; this condition is satisfied by an appropriate 
choice of the length of the nonlinear crystal and its slight tilt 
in the xy plane). 

The polarisations of eigenwaves of an anisotropic cavity 
can be found using the Jones matrix method. Its application 
to calculate the eigenstates of the cavity polarisations consists 
in constructing a cavity round-trip matrix M [8] and in find-
ing the eigenvectors u and eigenvalues l of the matrix from 
the equation: 

Mu = lu.	 (1)
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Figure 1.  Schematic of a solid-state laser with a weakly anisotropic 
Fabry – Perot cavity and a nonlinear element. 
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The matrix M of an anisotropic cavity in zone A (at the 
laser output) can be written in the form 

М = R1R2S(j)Fn2 S(–j)FaS(a)P2S(–a)Fa,	 (2) 

where 

P
b

1
0

0
1

=
-

e o

is the Jones matrix of a partial polariser (the value of b < 1 
determines the amplitude anisotropy); 

cos
sin

sin
cos

S
j
j

j
j

=
-
e o

is the rotation matrix through an angle j; 

( / )
( /

,
( / )

( /
exp

exp
exp

exp
i

i
i

i
F F

2
0

0
2

2
0

0
2a

a

a
n

n

n

d
d

d
d

=
-

=
-

e eo o 

are the Jones matrices of the phase plates PP1 and PP2, simu-
lating the active medium and the nonlinear element, respec-
tively; and R1,2 are the reflection coefficients of mirrors M1 
and M2. 

We consider the eigenvector in the form 

Eu
1

x c
= e o.

Here, c = Ey /Ex is a complex-valued polarisation parameter, 
which allows one to determine ellipticity e (the ratio of the 
minor axis to the major axis of a polarisation ellipse) and azi-
muth b (the angle between the semimajor axis of the polarisa-
tion ellipse and the x axis) in the form: 
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where n = 0 for one polarisation mode and n = 1 for the other. 
Equation (1) has a solution in the form of two eigenvec-

tors u1,2 and, consequently, two eigenvalues l1,2. The matrix 
elements Mij make it possible to determine the eigenvalues 
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and complex-valued polarisation parameters 
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where TrM = M11 + M22 and detM = M11M22 – M12M21. 
We studied in detail [9] the mutual influence of phase and 

amplitude anisotropy of the active medium on the orientation 
of the cavity polarisation modes. Introduction of the phase 
anisotropy of a NE, dn, changes the orientation of the polari-
sation modes. We carried out numerical calculations of the 
polarisation states of the eigenwaves in the cavity in zone A 
and considered the effect of NE rotation in the xy plane on 
the orientation of the eigenpolarisations (or rather, the major 

axis of polarisation ellipses of weakly elliptic waves) with 
respect to the ordinary and extraordinary axes of the NE, the 
change in azimuth of eigenpolarisations being significantly 
dependent on the ratio between dn and the values of da and b. 
We denote by y = j – b the angle between the ordinary axis of 
a nonlinear crystal and azimuth b of the eigenpolarisation of 
one of the waves (azimuth of the eigenpolarisation of the 
other polarisation mode differs by up to 90°). 

Figure 2 shows the dependence of y on the NE rotation 
angle j for the case when the active medium lacks phase 
anisotropy (da = 0), but has amplitude anisotropy with a fixed 
orientation along the x axis (a = 0, see Fig. 1); in this case, the 
phase shift is dn = 1° (0.0175 rad). One can see that at a low 
amplitude anisotropy (b < dn), the value of y is less than 45° 
at any j, because eigenpolarisation azimuths of the cavity 
track the NE rotation. At the same time, at strong amplitude 
anisotropy (b > dn), we have y = 45° at jopt = 45° and y = 
– 45° at jopt = 135°. 

Figure 3 shows the calculation results for the case of weak 
(b = 0.015) amplitude anisotropy (the partial polariser is not 
rotated, a = 0 and large [da = 5° (0.0873 rad)] phase anisot-
ropy of the active medium at different dn. For sufficiently 
small dn (dn << da), the angle jopt, at which yopt = ±45°, is 
either more than 45°, or less than 135°, but it is sufficiently 
close to these values; with the growth of dn the value of jopt 
approaches 90° (when the phase shift dn becomes comparable 
with the phase anisotropy da). In the region, where dn > da, 
the value of y is less than the optimal one (± 45°). 

A change in the partial polariser orientation (angle a) 
causes a change in the optimal rotation angle jopt of the NE. 
Figure 4 shows the calculation results for the case when the 
amplitude anisotropy is comparable to the phase anisotropy: 
b = 0.08, da = 5° (0.0873 rad) for different values of dn and 
partial polariser rotation angles a = 0 and 30°. It can be seen 
that there remains a principle possibility to find an NE orien-
tation, which allows one to optimise the process of intracavity 
nonlinear frequency conversion when the phase shift in the 
NE, which is below a certain critical value, is comparable with 
the values of the phase and amplitude anisotropy of the active 
medium. 
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Figure 2.  Dependences of the angle y = j – b on the nonlinear element 
rotation angle j in the case of amplitude anisotropy (a = 0) at dn = 1° 
and different values of b. 
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Thus, the calculations performed allow for the following 
conclusions. Optimal conditions for steady-state second-har-
monic generation in a solid-state laser, which are considered 

on the basis of the polarisation analysis, can be achieved by a 
corresponding rotation of the nonlinear element only if the 
phase shift dn is smaller than the phase anisotropy da or the 
amplitude anisotropy b of the active medium. This can be 
done by selecting properly the thickness of the NE and its 
inclination (with respect to the cavity axis), as noted above. 
The angle, though which it is required to turn the NE, changes 
from 45° to 135° depending on the relationship between the 
above-mentioned parameters of the active medium (such as 
amplitude and phase anisotropies and orientation of a partial 
polariser modelling the amplitude anisotropy) and the NE. 
Eigenpolarisations for the cases presented in this study are, 
in general, elliptical, but because of the smallness of the 
amplitude and phase anisotropy the ellipticity is small enough 
(e < 0.1), we have considered only the problem of the orienta-
tion of the major axis of the polarisation ellipse with respect 
to fast and slow axes of the nonlinear element.
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Figure 3.  Dependences of the angle y on the nonlinear element rotation 
angle j in the case of amplitude (a = 0, b = 0.015) and phase (da = 5°) 
anisotropy at different values of dn. 
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Figure 4.  Dependences of the angle y on the nonlinear element rotation 
angle j in the case of amplitude (b = 0.08) and phase (da = 5°) anisot-
ropy at different values of dn for the partial polariser rotation angles 
a = (a) 0 and (b) 30°.


