
Quantum Electronics  45 (3)  258 – 264  (2015)	 © 2015  Kvantovaya Elektronika and Turpion Ltd

Abstract.  An algorithm is presented for the numerical simulation of 
short-pulse optical radiation propagation in a turbulent atmosphere 
on the basis of the solution to the parabolic wave equation for the 
complex spectral amplitude of the wave field by the split-step 
method. We present examples of the use of this algorithm for simu-
lating the propagation of a pulsed coherent spatially limited beam 
and a plane wave. It is shown that in the regime of strong optical 
turbulence the relative variance of fluctuations of energy density of 
femtosecond radiation becomes much smaller than the relative vari-
ance of the intensity of cw radiation. 

Keywords: short-pulse radiation, complex spectral amplitude, tur-
bulent atmosphere, parabolic wave equation, split-step method.

1. Introduction 

The development of femtosecond optics and the possibility of 
its application in atmospheric problems [1] determine the 
importance of studying short-pulse laser radiation propaga-
tion in a turbulent atmosphere [2 – 4]. In the case of narrow-
band cw or pulsed radiation, the problem of the optical wave 
propagation in a turbulent atmosphere is solved by using the 
equations for the statistical moments of the complex wave-
field amplitude, obtained in the Markov approximation from 
the stationary parabolic wave equation [5 – 8]. A rigorous 
solution of these equations under arbitrary turbulent propa-
gation conditions is possible only for the second-order coher-
ence function, whereas for higher-order statistical moments 
only asymptotic solutions in the regime of weak and strong 
intensity fluctuations are known [7, 8]. Moreover, even the 
equation for the second statistical moment has no exact solu-
tion if it is written for the fields at different frequencies, which 
is required for solving the problems of pulsed radiation prop-
agation in a turbulent atmosphere. The solution of statistical 
problems of optical radiation propagation under arbitrary 
turbulent conditions is possible on the basis of numerical 
methods, in particular the split-step method [9].

In the case of broadband radiation, when the pulse dura-
tion can be equal to several wave periods, investigation of 
laser pulse propagation in a turbulent atmosphere should be 
based on the nonstationary wave equation [10]. From the lat-

ter in the paraxial approximation one can derive an equation 
for the coherence function (statistical moments) of the spec-
tral field amplitudes of the laser beam. However, the solution 
of these equations at arbitrary values of the problem param-
eters is possible only for the second-order coherence function. 
Peculiarities of the diffraction spreading of broadband pulsed 
laser beams in the absence of turbulence are considered in 
[11 – 17]. 

In this paper, the propagation of short-pulse laser radia-
tion in a turbulent atmosphere is studied by using a numerical 
simulation algorithm constructed on the basis of the solution 
of the parabolic wave equation for the complex spectral 
amplitude of the wave field by the split-step method. We 
describe the algorithm and present the examples of modelling. 
By using the proposed algorithm and Monte Carlo method 
we analyse the relative variance of fluctuations of energy den-
sity of radiation for the regimes of a plane wave and a narrow 
laser beam. 

2. Parabolic wave equation 

Let pulsed laser radiation propagate in a turbulent atmo-
sphere along the axis x ³ 0. By E(x,  r, t) we denote the com-
plex electric field strength of the wave at point (x,  r) at time t 
( r = {y, z} is the radius-vector in a plane perpendicular to the 
optical axis). We assume that laser radiation is fully coherent, 
and the strength E(x,  r, t) in the initial plane has the form 
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whereE0 = E(0, 0, 0)  is the amplitude at the axis; a0 and t0 are 
the initial beam radius and pulse duration determined by a 
decrease in |E(0,  r, 0)|2 and |E(0, 0, t)|2, respectively, to the e–1 
level; j = 1- ; f0 is the frequency at the maximum of the 
emission spectrum; and y0 is the wave phase, which is inde-
pendent of r and t. In this case, the pulse duration tp(x), 
determined by a decrease in 
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to the 1/2 level from the right and left of the maximum t = 
tmax, in the plane x = 0 is related to t0 by the equation tp(0) = 
2 ln2 0t .

In the absence of the nonlinear interaction of radiation 
with the medium and if we can neglect the absorption of radi-
ation by air and aerosol particles, the complex spectral ampli-
tude of the wave field 
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is described by the equation [10] 
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with the boundary condition 
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where D=  = ¶2/¶y2 + ¶2/¶z2 is the transverse Laplace operator; 
c is the speed of light in vacuum; n(x, r, f  ) is the refractive 
index of air, which depends on the radiation wavelength l = 
c/f; and sf = (2pt0)–1 is the width of the emission spectrum, 
which is determined by a decrease in   | (0,0, )|E f 2u  from the 
maximum to the e–1 level. 

We assume that the refractive index of air along the prop-
agation path is a statistically homogeneous field. Thus, we 
make use of the model of dry air for it [6] 
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where Pa is the atmospheric pressure in millibars; T (x,  r) is 
the temperature of air in Kelvin; and l0 = c/f0 (in mm). Given 
the fact that the temperature áT  ñ averaged over an ensemble 
of realisations in the atmosphere is much larger than the tur-
bulent fluctuations of temperature T'(x, r) = T (x, r) – áT ñ [6], 
the refractive index can be represented as 

n(x, r, f  ) = án( f  )ñ + n'(x, r, f  ),	 (6) 

where 
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is the average value and 

n'(x, r, f  ) = [1 – án( f  )ñ] T'(x, r )/áT  ñ	 (8) 

are the fluctuations in the refractive index caused by turbulent 
variations of the air temperature. Taking into account the fact 
that |n'(x, r, f  )| << 1 in the atmosphere [5], we will use from 
(3) the approximate equality 

n2(x, r, f  ) = án( f  )ñ2 [1+ 2n'(x, r, f  )/án( f  )ñ].	 (9)

If the effect of turbulent fluctuations of the refractive 
index and radiation diffraction on the spectral amplitude 
of the strength ( , , )E x fru  is negligible (plane wave regime), 
we can neglect in (3) the second term and replace n(x, r, f  ) 
by án( f  )ñ. Then, the solution of equation (3) has the form 
[10] 

( , , ) (0, , ) [2 ( ) / ]expE x f E f jf n f x cG Hpr r=u u .	 (10)

The radiation power is defined as 
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where I (x,  r, t) = |E(x,  r, t)|2 is the intensity (power density) of 
radiation and, in accordance with (2), 
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From (4), (10) and (11) we obtain 
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where án( f  )ñ is described by formula (7). The integral in (12) 
can be calculated analytically if we use the expansion of the 
function W ( f  ) = f án( f  )ñ in the Taylor series in the vicinity of 
point f = f0 and restrict our consideration only to the first 
three terms of the series. [10] As a result, the dependence of 
the pulse duration on the distance x has the form 
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where the dimensionless parameter m is given by the expres-
sion 
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In Eqn (14) Pa, T and l0 are given in the same units as in for-
mula (5). 

According to calculations by formulas (13) and (14) 
at t0 = 3 fs [tp(0) = 5 fs], l0 = 1 mm ( f0 = 300 THz), Pa = 
1013 mbar and áT ñ = 288 K, the pulse duration at a distance 
x =1 km is 2358 times greater than the initial duration of the 
pulse [ctp(x) = 1.5 mm at x = 0 and ctp(x) = 3.5 mm at x = 1 km]. 

Below we will take into account the diffraction of the laser 
beam and its distortions in turbulent inhomogeneities of the 
refractive index. By analogy with (10) we represent the spec-
tral amplitude of the wave field strength in the form 

( , , ) ( , , ) [2 ( ) / ]expE x f U x f jf n f x cG Hpr r=u .	 (15)

After substituting (15) into (3) we obtain the equation for the 
complex spectral amplitude U(x, r, f  ), where we can neglect 
the term ¶2U(x, r, f  )/¶x2. As a result, in replacing án( f  )ñ by 
unity (because the refractive index of air is different from 
unity in the fourth decimal place) and n'(x, r, f  ) by n'(x, r) (in 
a dispersive medium the dependence of turbulent fluctuations 
of the refractive index on the frequency f can be ignored), with 
allowance for (9) we arrive at the parabolic wave equation 
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Because   (0, , ) (0, , )U f E fr r= u , the boundary condition for 
equation (16) is defined by formula (4). 
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3. Split-step method for the numerical solution 
of the parabolic wave equation 

To solve numerically equation (16) we will use the split-step 
method [9], whose essence, as applied to our case, is as fol-
lows. The entire propagation path of length L is divided into 
N layers with a thickness Dx = L/N. The complex spectral 
amplitude U(x, r, f  ) for each frequency f, where xi = iDx (i = 
0, 1, . . . , N), is sequentially calculated by passing from layer to 
layer. Equation (16) at the end of the ith layer (x Î[xi – 1, xi – 1 
+ Dx]) is solved in two stages. 

1. Only the phase distortions produced by a wave at a fre-
quency f when it passes through turbulent inhomogeneities of 
the refractive index inside the layer are taken into account. 
Then, the spectral amplitude of the wave, which is denoted by 
U1(xi,  r,  f  ), is described by equation (16), in which the second 
term is equal to zero and U(xi,  r,  f  ) is replaced by U1(xi,  r,  f  ), 
with the boundary condition 

U1(xi – 1,  r,  f  ) = U(xi – 1,  r,  f  ).	 (17) 

Taking into account (17), the solution of this equation has the 
form 

U1(xi,  r,  f  ) = U(xi – 1,  r,  f  )exp[  jYi ( r,  f  )],	 (18) 

where 
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is a random phase screen.
2. Only the wave diffraction is taken into account. Then, 

the spectral amplitude of the wave field, which is denoted by 
U2(xi,  r,  f ), is described by equation (16), in which the third 
term is equal to zero and U(xi,  r,  f  ) is replaced by U2(xi,  r,  f  ), 
with the boundary condition 

U2(xi – 1,  r,  f  ) = U1(xi ,  r,  f  ).	 (20) 

Applying the direct two-dimensional Fourier transform 
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where  k = {ky, kz} is the vector of spatial frequencies, from 
the equation for U2 we obtain an ordinary differential equa-
tion for U2

u , whose solution with allowance for (20) and (21) 
has the form 
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Finally, the spectral amplitude U(xi,  r,  f  ) = U2(xi ,  r,  f  ) is 
calculated by applying an inverse two-dimensional Fourier 
transform: 
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From the simulated spectral amplitudes U(L, r, f ) we can 
calculate the spectral intensity 

SI (L, r, f )  = |U(L, r, f )|2,	 (25)

the spectral power 
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From (11), (15), (25) and (27) we obtain the relation

( , ) ( , , )dW L fS L fIr r=
3

3

-

+y .	 (28)

It can be shown that if the radiation energy absorption on the 
propagation path of length L is insignificant, SP (L, f ), unlike 
SI (L,  r,  f ), does not depend on L, i.e., SP (L, f ) = SP (0, f ) [10]. 
To take absorption into account, we should multiply the cal-
culated values of U(xi,  r,  f ) by exp[– a( f  )Dx/2] in each layer of 
the propagation path, where a( f ) is the absorption coefficient 
of the radiation energy by atmospheric air and aerosol. 

4. Numerical simulation of random phase screens 

For numerical simulation of random realisations of a phase 
screen, Yi ( r, f ), we need to know its statistical properties. We 
assume that inside the ith layer of the propagation path the 
probability density p(Yi) has the normal distribution. The 
main contribution to the distortion of the laser beam propa-
gating in a turbulent atmosphere is made by the inhomogene-
ities of the refractive index, the structure of which obeys the 
fundamental Kolmogorov – Obukhov law [5]. Therefore, for 
the structure function of the wave phase 

DY  (r, f ) = á[Yi ( r + r, f ) – Yi ( r, f )]2ñ
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we use the model spectrum of phase fluctuations SY (k, f ) in 
the form [5 – 8, 18] 

SY  (k, f ) = 0.382Cn
2Dx( f /c)2 |k | –11/3,	 (30) 

where Cn
2 is structure characteristic of turbulent fluctuations 

of the refractive index of air. 
Using (30) the independent random realisations Yi ( r, f0) 

(áYiYi’ ¹ iñ = 0) are simulated on the M ´ M computational 
grid with a step h by applying a two-dimensional fast Fourier 
transform (FFT) to an array of complex spectral phase ampli-
tudes generated on a computer [9, 18 – 20]. For the realisation 
of the random phase screen at other frequencies f use is made 
of the relation Yi ( r, f ) =( f /f0)Yi ( r, f0). 

After substituting (30) into (29) and calculatign the inte-
gral we obtain the well-known expression [6] 

DY  (r, f ) = 2.92Cn
2Dx(2p f /c)2|r| 5/3.	 (31)
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Due to the fact that h > 0 and Mh < ¥, the structure function 
of the simulated phase screens differs from those obtained by 
calculation using formula (31). Here h and Mh/2 can be con-
sidered analogous of the inner and outer scales of turbulence, 
respectively. For the structure function of the simulated phase 
screen to coincide with the results of calculations by formula 
(31) at h << |r| £ Mh, we can use the method of sub-harmonics 
[19, 20]. 

5. Numerical simulation of random realisations 
and calculation of statistical characteristics  
of radiation energy density 

Calculations of the spectral amplitude U(xi,  r,  f  ) by the split-
step method and algorithm of generation of random phase 
screens are made in each layer of the path for K + 1 beams 
at frequencies f = f0 + (k – K/2)Df (k = 0, 1, . . . , K, Df is the 
frequency step) in uniform grid nodes r = {(my – M/2)h, (mz – 
M/2)h} (my,z = 0, 1, . . . , M – 1). To calculate k = {ky /(Mh), 
kz /(Mh)} (ky,z = 0, 1, . . . , M – 1) and U(xi,  r,  f  ), use is made of 
the direct and inverse two-dimensional FFT, respectively, 
instead of integration, according to formulas (23) and (24). 
The values of K and M determine the dimension of the three-
dimensional arrays (K ´ M ´ M) of the calculated complex 
values and the required RAM capacity. The frequency step Df 
must satisfy the conditions Df << sf and KDf >> sf. In calcu-
lating the random energy density W (L,  r) according to for-
mulas (25) and (28), integration of  |U(L,  r,  f  )|2 in f  is replaced 
by summation over all k. 

Using a sufficiently large number of independent numeri-
cally simulated realisations W (L,  r), we can evaluate various 
statistical characteristics of the radiation energy density, in 
particular, the average value áW (L,  r)ñ and relative variance 
sW
2  : 

sW
2   (L, r) = áW 2 (L, r)ñ/áW (L, r)ñ2 – 1.	 (32) 

6. Results of numerical simulation 

For the numerical simulation of random realisations W (L,  r), 
we set the following parameters: l0 = 1 mm ( f0 = 300 THz), 
tp = 5 fs (t0 = 3 fs, sf  = 53 THz), a0 = 1.26 cm (narrow beam) 
and 5 cm, ¥ (plane wave) and L = 1 km. For such values of l0 
and t0 the emission spectrum is different from zero in the fre-
quency range 100 – 500 THz, which corresponds to a wave-
length range of 0.6 – 3 mm. At each node of the computational 
grid with h = 2 mm and M = 512 the complex spectral ampli-
tude values were calculated for 41 spectral channels having a 
width Df = 10 THz, i.e., in the discrete representation the fre-
quency takes the values f = f1 + kDf at f1 = 100 THz, k = 
0, 1, . . . , K and K = 40. 

In parallel with W (L,  r) we calculated the spectral inten-
sity SI (L,  r,  f0) and normalised intensity IN (L,  r) = SI (L,  r,  f0)/ 
SI (0,  0,  f0) of narrowband (cw) laser radiation. During the 
measurement time Dt, satisfying the condition  fp–1 >> Dt >> 
tp(L) ( fp is the pulse repetition rate) in the case of pulses emis-
sion, the intensity I (L,  r) of cw radiation with the frequency 
f0 does not change. Consequently, after normalisation to 
W (0,  0)|t0 = ¥ the energy density W (L,  r)|t0 = ¥ = DtI (L,  r) mea-
sured during the time Dt is IN (L,  r). Comparison of the nor-
malised energy density WN (L,  r) = W (L,  r)/W(0, 0) of pulsed 
radiation and the intensity IN (L,  r) of cw radiation for the 

same generated array of random phase screens allows one to 
see the qualitative and quantitative difference between these 
characteristics in the same realisation. 

Figures 1 and 2 show examples of random realisations of 
the normalised energy densities IN (L,  r) and WN (L,  r) of a 
beam with a0 = 5 cm at Cn

2 = 10–13  and 10–12 m–2/3, respec-
tively. One can see that the distribution of WN (L,  r) is 
smoother than that of IN (L,  r). This difference is noticeable 
in Fig. 2, which presents the result of simulation in the case of 
strong turbulence. 

6.1. Average energy density 

Figure 3 illustrates the distribution of the normalised average 
energy density áWN (L,  r)ñ with a0 = 5 cm in the absence of 
turbulence [curve ( 1 )] and at Cn

2 = 10–12 m–2/3 [curve ( 2 ) for 
cw radiation and curve ( 3 ) for pulsed radiation with tp(0) = 
5 fs]. At Cn

2 = 0, L = 1 km, l0 = 1 mm and a0 = 5 cm, the dis-
tribution áWN (L,  r)ñ does not depend on t0. The presence 
of turbulence on the path leads to the fact that at Cn

2 = 
10–12 m–2/3 the effective beam radius of pulsed radiation with 
tp(0) = 5 fs is about 4 % less than for narrowband (cw) radia-
tion. The numerical simulation algorithm in question is appli-
cable at sf /f0 << 1, which does not allow the energy density 
distribution to be calculated at sf /f0 > 1, when the effect of 
reducing the diffraction spreading of the beam manifests itself 
most strongly [13 – 17]. 

6.2. Energy density fluctuations 

In the case of a plane wave (when we can put a0 = ¥ in the 
numerical simulation), the same values of l0, t0 and L, 
which were set in the calculations in Figs 1 and 2, and Cn

2 = 
10–12 m–2/3, from the array of simulated random realisations 
IN (xi,  r) (cw radiation) and WN (xi,  r) (pulsed radiation), 
where xi = iDx, i = 0, 1, . . . , N, Dx = 10 m, and N = 100, we 
calculated the relative standard deviations of the radiation 
energy density fluctuations sW (xi) using the data obtained 
from 100 independent statistical tests. Because the statistical 
characteristics do not depend on r in the plane wave regime, 
in averaging we used all the data generated by the computer 
at nodes of the 512 ́  512 computational grid. In this case, the 
calculation error sW  (xi) does not exceed 1 %. 

For cw radiation sW is nothing else than the standard 
deviation of the relative intensity fluctuations. The calcula-
tion results for sW as a function of the parameter 

1.23 (2 / )C x/ /
n i0
2

0
7 6 11 6pb l=

characterising the optical turbulence intensity on the propa-
gation path of length xi [5 – 8] are shown in Fig. 4 in the form 
of curves ( 1 ) and ( 2 ). One can see that the values of sW for cw 
and pulsed radiation at b0 £ 1 differ insignificantly. With 
increasing b0, the standard deviation of the intensity in both 
cases, after reaching a peak in the vicinity of point b0 = 2, 
decreases. In this case, curve ( 2 ) corresponding to the pulsed 
radiation decreases faster than curve ( 1 ) (cw radiation), and, 
starting from   b0 » 3.3, the standard deviation of sW for 
pulsed radiation becomes less than unity. At the same time, 
sW for cw radiation at b0 > 1 is greater than unity, and in the 
limit b0 ® ¥ tends to unity [6 – 8]. 

For a plane wave the average value of the spectral inten-
sity SI (xi,  r,  f  ) is independent of (xi,  r) and determined by the 
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expression áSI (  f   )ñ  = 2| (0, , |E fr )u  at a0 = ¥ [see Formula (4)], 
and the relative variance of the energy density sW

2    (xi,  r) 
depends only on xi. Then from (28) and (32) we have 

( ) ( )x Ei
2

0 0
2 2s p t= -
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3

3

3

3

-

+

-

+y y ,	 (33)

where Ks (xi, f1, f2) = ás(xi,  r,  f1)s(xi,  r,  f2)ñ is the frequency 
correlation of normalised intensity fluctuations s(xi,  r,  f ) = 
SI (xi,  r,  f  )/áSI (  f   )ñ – 1. It follows from the experiment [21] 
that with the growth of b0 in the range from 0 to 1, the ratio 
Ks (xi,  f1,  f2)/ Ks (xi,  f,  f ), where f = ( f1 + f2)/2 and f1 ¹ f2, 
is close to unity and decreases at b0 > 1. Therefore, in 
view of (33) with 2sf /f0 = 0.353 in the region of strong inten-
sity fluctuations when the parameter b0 >> 1, the level of the 
energy density fluctuations is significantly lower in the case of 
a pulse with a duration t0 = 3 fs than for narrowband radia-
tion (t0 ® ¥). 

In the process of numerical simulation of the femtosecond 
pulse propagation in a turbulent atmosphere, one can observe 
on the computer how the shape of the spectrum SI (xi,  r,  f  ) 
changes with increasing i at fixed r. As radiation propagates, 
the characteristic frequency scaling fT of spectrum fluctua-
tions at b0 > 1 decreases, so that after integration over f in 

(28) the fluctuations of the radiation energy density are par-
tially averaged. In the limit when b0 ® ¥, the ratio fT /sf ® 0 
and, therefore, sW ® 0, unlike cw radiation for which sW ® 1. 
The effects of de-correlation of strong intensity fluctuations 
of frequency separated waves and averaging of partially 
coherent cw radiation in a turbulent atmosphere have been 
previously described in [22 – 24]. 

To construct curve ( 2 ) in Fig. 4, we performed numerical 
simulations in 41 frequency channels (K = 40) of width Df = 
10 THz each. However, under certain conditions, the scaling 
fT can be less than Df. We increased twice the number K at a 
constant frequency range KDf, centred with respect to point 
f0, and obtained a result similar to that shown by curve ( 2 ) in 
Fig. 4. Thus, for those b0 at which we plotted the curve, it is 
sufficient to use 41 frequency channels. 

Curves ( 3 ) and ( 4 ) in Fig. 4 show the results of numerical 
simulation for the case of a narrow collimated beam when the 
Fresnel number W = 2pa02/( l0L) = 1. These curves represent 
standard deviations of relative energy density fluctuations of 
cw and pulsed radiation with l0 = 1 mm on the optical axis 
( r = 0). Because in the simulation using 20 layers we set L = 
1 km (N = 20, Dx = 50 m), then for the Fresnel number to be 
equal to unity at the path’s end, we should set a0 = 1.26 cm. In 
this case, we could use for sW ( b0) calculations only IN (xi,  r) 
and WN (xi,  r), generated at the end of the propagation path 
(xi = L). Therefore, to calculate sW at different b0, we changed 
appropriately the value of Cn

2. We used 1000 independent sta-
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Figure 1.  (a, c) Two-dimensional and (b, d) one-dimensional distributions of the normalised energy densities of (a, b) cw and (c, d) pulsed radiation 
at Cn

2 = 10–13 m–2/3. 
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tistical tests. Note that in simulating random phase screens 
for a narrow beam with W = 1, we used the method of sub-
harmonics [19, 20], which was not required for a plane wave. 

According to the results shown in Fig. 4, in the case of a 
narrow collimated beam (and a plane wave), the difference in 
the levels of cw and short-pulsed radiation fluctuations 
increases with increasing b0. Moreover, a marked decrease in 
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Figure 2.  (a, c) Two-dimensional and (b, d) one-dimensional distributions of the normalised energy densities of (a, b) cw and (c, d) pulsed radiation 
at Cn
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sW at tp(0) = 5 fs with respect to cw radiation occurs at b0 > 2. 
One can see that compared to a plane wave, the effect of de-
correlation of intensity fluctuations at different frequencies is 
less pronounced in the case of a narrow beam. The fact is that, 
as the analysis of the simulated data showed, the frequency 
averaging of energy density fluctuations is equivalent to the 
action of a spatial low-frequency filter, and the higher the 
value of b0 in the region of strong intensity fluctuations at a 
wavelength of l0, the less their characteristic scale and hence 
the greater the averaging. In the case of a spatially limited 
beam with W = 1 and not too large b0 (e.g., b0 < 4), an essen-
tial contribution to the energy density (and intensity) fluctua-
tions is made by random lateral displacements of the laser 
beam as a whole, which are virtually not averaged due to fre-
quency de-correlation. 

7. Conclusions 

We have proposed an algorithm of computer simulation of 
short-pulse laser radiation propagation in a turbulent atmo-
sphere on the basis of the solution of the parabolic wave 
equation for the complex spectral amplitude of the wave field 
by the split-step method. The algorithm allows the study of 
statistical characteristics of the energy density of short-pulse 
radiation as a function of diffraction and turbulent condi-
tions on the propagation path. By using the proposed algo-
rithm we have calculated the dependence of the variance sW

2 of 
energy density fluctuations of a femtosecond pulse propagat-
ing in the atmosphere in the plane wave regime on the param-
eter b0 characterising the turbulent propagation conditions. It 
is shown that with increasing optical turbulence (a growth of 
b0), the dependence sW  ( b0) for pulsed radiation becomes sig-
nificantly different from the known dependence of the stan-
dard deviation of the plane wave intensity sI ( b0) for cw radia-
tion. In the limit b0

2 ® ¥, sW  ( b0) ® 0, whereas sI  ( b0) ® 1. 
The algorithm can be generalised to the case of an arbi-

trary spatiotemporal initial amplitude and phase distribution 
of the beam of pulsed radiation. It can also be used for the 
numerical study of the propagation of pulsed radiation on the 
laser detection and ranging [25, 26].
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