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Abstract.  Repetitively pulsed operation of a diode laser with 
delayed feedback has been studied theoretically at varying feed-
back parameters and pump power levels. A new approach has been 
proposed that allows one to reduce the system of Lang – Kobayashi 
equations for a steady-state repetitively pulsed operation mode to a 
first-order nonlinear differential equation. We present partial solu-
tions that allow the pulse shape to be predicted.

Keywords: diode laser subject to delayed feedback, repetitively 
pulsed operation, Lang – Kobayashi equations.

1. Introduction

A diode laser subject to delayed feedback (DFB) has a variety 
of operation modes under continuous pumping, which is 
caused by the interference of the laser field reflected from the 
external mirror with the field circulating in the internal cavity. 
The simplified equations proposed by Lang and Kobayashi 
(LK) [1] for describing the dynamics of diode lasers with an 
external mirror are also applicable for describing the variety 
of dynamic operation modes [2]. Owing to this, they have 
been widely used in later studies concerned with the theory of 
diode lasers subject to DFB [3, 4]. Lasers with DFB are of 
interest because they are the simplest systems modelling the 
dynamics of two optically coupled identical lasers [5]. Note 
that, in all studies, laser operation modes are analysed using 
numerical methods because of the complexity of the equa-
tions involved.

Of particular practical interest is the study of steady-
state repetitively pulsed operation modes. In terms of non-
linear dynamics, the development of these means the exis-
tence of stable limit cycles in the phase space of the system, 
which attract its integral curves for a wide class of initial con-
ditions.

In this paper, we formulate a semi-analytical approach for 
finding strictly periodic steady-state field pulses in a diode 
laser subject to DFB. Comparison of solutions found in this 
approach with numerical calculation results obtained previ-

ously [6] demonstrates quantitative agreement between 
numerical and analytical solutions.

2. Basic equations

The nonlinear dynamics of a semiconductor laser subject to 
DFB due to the reflection of some of the light from an exter-
nal mirror (Fig. 1) can be described by the LK equations [1]

¶
¶ (1 ) ( )i i et
E R NE M E ti

dt= - + -
k ,	

¶
¶ (1 2 ) | |T
t
N P N N E 2

= - - + .	

(1)

The former equation describes the dynamics of the slowly 
varying envelope of the field amplitude, E(t), where R is the 
linewidth enhancement factor, and M and k are the modulus 
and phase of the feedback (FB) coefficient, respectively. The 
time delay td is equal to the external cavity round-trip time. 
Note that the existence of modes in the cavity formed by the 
front facet of the laser chip and the external mirror is left out 
of consideration in the LK model.

The latter equation describes the dynamics of the inverse 
population N(t), proportional to the pump power above 
threshold [7, 8] and normalised by the photon lifetime in the 
internal cavity: ( / ) (ln )n L c r Lcph a

11t a= + -- , where ac is the 
distributed loss; L is the internal cavity length in the diode; r 
is the amplitude reflection coefficient of its facets; c is the 
speed of light in vacuum; and na is the effective refractive 
index of the active layer. For the gain coefficient in the active 
layer, we used a linear approximation near the lasing thresh-
old, with a differential gain coefficient g = ∂G/∂N. The thresh-
old carrier density is determined by the optical losses in the 
bulk and on the facets of the chip: ( / )N N gc nht tr ph a

1t= + - . 
Here Ntr is the carrier density at which the active medium 
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Figure 1.  Schematic of a diode laser subject to DFB: L is the chip 
length; td is the round-trip time in the feedback system; r and rm are the 
amplitude reflection coefficients of the chip front facet and external 
mirror, respectively (the rear facet has high reflectivity).
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becomes transparent. In this approximation, the pump power 
P can be expressed through the carrier injection rate j/(ed) 
(where e is the electron charge; d is the thickness of the active 
layer; and j is the current density) and the carrier lifetime ts in 
the absence of emission: ( / ) [ /( ) ]P gc n j ed N

2
1

ph a thst t= - . 
The dimensionless field amplitude is proportional to the 
physical amplitude E: ( / )E gc n E/s a

1 2
2
1 t= . Time t in (1) is 

normalised to the photon lifetime tph. Note that a typical 
dimensionless inversion relaxation time, T = ts/tph, is of the 
order of 1000. With the above notation, the field intensity can 
be expressed through the flux density of photons of energy hv: 
2E 2/(gts).

In the case of steady-state lasing, we have E = Estexp(ibt), 
where b is the small difference between the laser frequency 
and the eigenfrequency of the cavity formed by the chip 
facets. The parameters b and Est are given by b = M ́

( ( ))sin arctanR R1 d
2 1bt k+ - + - , E2 

st = (P – Nst)/(1 + 2Nst) 
and Nst = Msin(k – btd).

For subsequent analysis, we represent the field in the form 
E = E0exp[ibt + y(t)], where E0 is the  normalisation  factor 
(| |E E2

0
2

= ) and the function y (complex-valued in the general 
case) determines the nonlinear dynamics of the field.

The delay term in (1) makes it impossible to use conven-
tional approaches to solving ordinary differential equations. 
To simplify subsequent calculations, we introduce a function 
proportional to the delayed feedback signal:

( ) ( )
( )

( )
exp it M

E t
E t tdkL =

-  =

	 [ ( ) ( )]exp iM t tdc y t y- + - - ,	 (2)

where c º btd – k is the phase shift in the FB loop in the case 
of steady-state lasing. For regular oscillations, the function 
L(t) is also periodic and describes the DFB effect. The period-
averaged population inversion and frequency detuning can 
then be expressed through the average real and imaginary 
parts of a new function:

,Im Re ImN RbL L L= = - .	 (3)

Here L  is the average of function (2) over one oscillation 
period. With the new notation, Eqns (1) for the functions  y 
and n N N= -  reduce to

¶
¶ (1 ) [ ( ) ]i i
t

R n ty L L= - + - ,

¶
¶ [ (2 ) 1] 1exp Ret
n

T
n

N
n

2 1 2
2r

1

2w y=- - - +
+

c m.	

(4)

In the latter of Eqns (4), we introduce two parameters: wr
2 

= 2( ) /P N T-  and (1 2 )/(1 2 )T T N P1= + + . The former 
parameter (wr) is the relaxation oscillation frequency and the 
latter (T1) is of the same order as the inversion relaxation 
time. Note that, in the case of diode lasers, the condition wrT 
>> 1 is usually satisfied. In our calculations, we took P = 0.8, 
T = 1000 and M = 0.02. The dimensionless frequency was wr 
= 0.04. The average dimensionless inversion N  is close to Nst 
(i.e. of the order of M), the inversion oscillation frequency is 
close to wr, and the amplitude |n| is also of the order of wr. 
Therefore, |n| << 1 2N+ . In subsequent analysis, we use the 
approximation 1 + 2n/(1 + 2N ) » 1, whose validity was veri-
fied by numerical calculations for periodic conditions.

3. An approach to finding repetitive-pulse 
solutions

The interference of a delayed signal entering the active 
medium after being reflected from the external mirror with 
the field circulating within the chip gives rise to coupling 
between the fields emitted at different instants in time. The 
complete evolution of the field, described by the LK equa-
tions [1], can be found uniquely only if the field and popula-
tion inversion are known over the external cavity round-trip 
time, which requires using a continuum data set. Nevertheless, 
among the possible solutions to the LK equations, there is a 
class of solutions asymptotically corresponding to a periodic 
attractor for a variety of initial conditions [6, 9]. Our purpose 
is to find a strictly periodic solution. Under such conditions, 
field and inversion dynamics can be described using a single 
periodic function, F. The existence of strictly periodic stable 
solutions at certain parameters of the system has been demon-
strated by numerical calculations in a number of studies (see 
e.g. Refs [6, 10]).

There are no standard approaches to the general analysis 
of nonlinear differential equations containing delay terms. In 
the case of linear equations containing delay terms, the sought 
function is usually expanded in terms of exponential func-
tions of time [11]. The exponents are then found by solving 
transcendental equations.

The requirement that the sought solution be strictly peri-
odic makes the problem much simpler, which allows us to for-
mulate a semi-analytical approach for analysing it. One sig-
nificant simplification is related to the fact that, in the case of 
periodic conditions, the L(t) term, corresponding to delayed 
feedback, is also periodic. Function (2), which appears in (4), 
can then be represented as a power series in the sought peri-
odic solution. To find the coefficients in the expansion of the 
feedback term into a power series in the sought solution, we 
rely on the following additional considerations: 1. A small 
tangential perturbation of the solution, corresponding to a 
small displacement along the limit cycle, is obviously propor-
tional to the first time derivative of the sought solution. 2. In 
the case of a strictly periodic solution, an arbitrary time origin 
can be chosen. Both considerations are valid provided that 
the repetitively pulsed operation mode is stable. Whether the 
sought solution is stable to small perturbations should be 
found out by numerical calculation and is not the subject of 
the analytical approach.

The former consideration allows us to derive an addi-
tional relationship by finding how the amplitude of a small 
tangential perturbation is related to the sought periodic solu-
tion. Placing the condition that the amplitude of the perturba-
tion is proportional to the derivative of the sought solution, 
we find the desired relationship. The system of linear equa-
tions for arbitrary small perturbations is presented in the 
Appendix section. This is a system of three ordinary differen-
tial equations (ODEs) with coefficients that have a periodic 
time dependence through the sought function. The matrix of 
coupling coefficients, A, has three eigenvalues: l0 = 0 and l1, 2 
= – 2

1T1 ± iwrexp(Rey) [note that exp(Rey) = |E|/E0]. It fol-
lows from general considerations that a tangential perturba-
tion corresponds to a combination of eigenvectors with an 
eigenvalue whose real part is zero. The combination can be 
found in explicit form provided that  wrT1 >> 1, which is usu-
ally fulfilled. The time variation of the tangential perturba-
tion is only determined by exp(Rey) = |E|/E0. Since a small 
perturbation is proportional to the derivative of the sought 



195Theory of repetitively pulsed operation of diode lasers

function F, it can be found to within a constant from dF/dt = 
|E|/E0. The function thus determined has the dimensions of 
time. For subsequent calculations, it is convenient to intro-
duce the dimensionless function Q = wF, where w is a charac-
teristic frequency to be determined, of the same order as the 
relaxation oscillation frequency wr:

t
( ) ( ) [ ( ) ( )] (| |/ )dt t t E E

t
0t w t wQ Q F F- = - = ly .	 (5)

The sought function characterises the rate of the time evo-
lution of the system, and this rate is proportional to the field 
amplitude, rather than to its intensity, in contrast to the rate 
of variation in the population inversion on a laser transition 
[see (1)]. The period of the solution is determined by the 
increase in Q = wF as a function of the upper limit by 2p. 
Since the |E|/E0 ratio is always positive, we have

(| |/ ) 2 /d
d
d dt E E
t
t

/ /

t

t

t

t

0

2 2
p w F

= =
p pW W+ +

l
l

ly y ,

where the pulse repetition rate is expressed through frequency 
as 2p/W. Here we take into account that, in the case of a 
strictly periodic function, an arbitrary time origin can be 
chosen. 

The periodic function L(t), related to the effect of DFB 
[see Eqn (2)], can be represented as a power series in exp(iQ):

( ) ( )
( )

( )
( )exp expi it M

E t
E t t

h kd
k

k

kL L L Q- =
-

- =
3

3

=-

/ ,	 (6)

where k is an integer. The constants hk play the role of the 
DFB spectrum in this representation. Such a series is a natu-
ral generalisation of the Fourier series. The quantity kQ will 
be referred to as the kth harmonic. The condition that small 
tangential perturbations are proportional to the derivatives of 
the corresponding nonlinear functions ( ?dy yo , ?dF Fo  
and Re lny F= o ) allows us to derive a key nonlinear equa-
tion for the function F (see Appendix):

/ ( )Re expd d it s s k2 k
k

0
1

wF F= +
3

=

/ ,	 (7)

where the coefficients of the series can be expressed through 
the coefficients hk in (6):

s h h
k
k s

2

*
*

r
k

k k
k0 2 2 2w w

w
=

-

-
=!

-
- .	 (8)

It is worth pointing out that Eqn (7) can be interpreted as 
the first integral of the equation of motion for a classic non-
linear pendulum. To find s0, we use the exact (by definition) 
relation | |E E2

0
2

=  (here and in what follows, an overbar 
denotes averaging over the pulsation period), which allows an 
additional relation to be derived from Eqn (7):

( )expd is s k s
2
1 1

k
k0

2

0
0

1
0p Q Q

F
+ = =

!

p -

o; E/y .	 (9)

The parameter s0 determines the deviation of the characteris-
tic frequency w from the pulse repetition rate: w = Ws0.

The coefficients sk of the series in (7) are determined in 
explicit form by (8) through the coefficients hk in the expan-
sion of the function ( )tL L- .

Both series in (6) and (7) are expansions in terms of the 
functions Pk = exp[ikwF(t)]. The system of these functions is 
complete as a power series, but they are nonorthogonal over 
the oscillation period 2p/W. In this case, the coefficients in the 
expansion of some function in terms of a nonorthogonal basis 
depend as well on the overlap integrals of the basis functions. 
As a consequence, to find the coefficients of series (6) and (7) 
it is necessary to know the entire matrix P of the overlap inte-
grals of the basis functions: |P Pmk m kP =  (here the angle 
brackets denote the average of the product of the basis func-
tions Pm

* and Pk over the oscillation period):

( /2 ) [ ( ) ( )]expd if t k m t f *
/

/

mk k m m kp wW F= = - =
p

p

W

W

- -
-

P y .	(10)

It is seen from (10) that the matrix elements Pmk = fk – m 
depend on the index difference, i.e. this is a Toeplitz matrix 
and its inverse matrix can be found in explicit form [12]. The 
inverse matrix is also a Toeplitz matrix: (P–1)nm = bn – m. The 
inverse matrix elements can be expressed through the coeffi-
cients sk in the expansion of the function dF/dt as follows: 
multiplying both sides of (7) by the function P– n and averag-
ing over the oscillation period, we obtain the equation

( / ) s fk k n
k

n0w dW =
3

3

-

=-

/ ,	 (11)

from which it follows that  bn – m = (w/W)sn – m  [dmn in (11) is the 
identity matrix].

According to definition (6), the numbers hk are the coef-
ficients in the expansion of the periodic function ( )tL L-  in 
terms of the basis chosen. Since the basis functions are nonor-
thogonal, the following system of equations should be solved 
[13]:

( ( ) )P t h P P hm k m k
k

mk k
k

PL L- = =
3

3

3

3

=- =-

/ / ,

where the overlap integrals determine the matrix Pmk =
|P Pm k . The solution to this system for the coefficients hn can 

be found using the inverse matrix P–1:

( ) | ( ( ) )h P tn nm
m

m
1P L L= -

3

3
-

=-

/ .

The sum over m in this solution can be reduced to a simple 
expression:

( ) ( / ) ( )exp iP s mnm
m

m n m
m

1 w wP W F= -
3

3

3

3
-

=-

-

=-

/ /  =

	 ( )exp inw w
W

F F-o .

As a result, the coefficients hn are determined by the integral 
over the oscillation period 2p/W:

( ( ) )|h P tn n
w
W

F L L= -o  =

	 ( ) ( ( ) )expd in t
2 /

/

p
w t wF F L L- -

p

p

W

W

-

oy .	 (12)

The function Fo  in the integrand is, by definition, related to 
the field amplitude: dF/dt = |E|/E0 = exp(Rey). According to 
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(2), the FB function is also related to E(t) values at two differ-
ent instants in time: L(t) = Mexp(ik)E(t – td)/E(t). Thus, the 
functions F, y and L are related to each other. Using 
Eqn  (A3) (see Appendix), the following expression for the 
function y can be derived:

( ) (1 )d it t Ry
F
F

= -o

p
'y

	 +  ( ( ) ) ( ( ) )Imi Re t R tL L L L- - -6 @ 3.	 (13)

Further transformations of Eqns (3) and (13) allow us to 
obtain the following integrofunctional equation:

( ( )) (1 )
( )

( )
ln ln lni iM R dt k

t

t t
L

F

F
= + + -

-

o
o

	 + 
t t-

{ ( ) ( )}Imi d Ret t R t
d

L L-
t
y .	 (14)

This equation contains the phase of the FB coefficient, k, 
indicating that it has a significant effect on the shape of peri-
odic field oscillations. Jointly solving Eqns (7) and (14) allows 
us to determine the pulse shape at particular physical param-
eters of the laser. The functions Fo (w, h; t) and L(w, h; t) can 
be calculated explicitly through the characteristic frequency w 
and the coefficients hk (h is the vector made up of these coef-
ficients). In numerically solving Eqn (14), substitution of the 
functions Fo (w, h; t) and L(w, h; t) gives a system of transcen-
dental algebraic equations in unknown w and h on a discrete 
time mesh with a preset step ti – ti – 1 over one pulse period. 
The time delay and FB coefficient are physical parameters. 
The described formulation of the problem offers the possibil-
ity of examining multistability conditions, whereas in the 
approach based on direct integration of the LK equations the 
problem of finding such conditions remains open.

4. Solutions in the form of a single pulse per 
period

As pointed out earlier [2], a key parameter determining stabil-
ity loss in a steady state is the combination of parameters f = 
Mtd 1 R2

+ , where f is referred to as the effective feedback 
strength. Numerical calculations demonstrate that instability 
arises when f is of the order of unity. Note that the feedback 
phase and pump power also influence the stability of steady-
state operation.

It is of interest to analyse the simplest case, where the 
right-hand side of Eqn (7) comprises only two terms: the con-
stant s0 and the fundamental (k = 1) harmonic. Field dynam-
ics are then characterised by three constants: w, s0 and E0. To 
relate these constants to physical parameters (pump power, 
phase and modulus of the FB coefficient and signal delay 
time), it is necessary to solve the integral equation (14). This 
was beyond the purpose of our work at this stage. Instead, we 
compared numerical and analytical solutions, adjusting con-
stants in the latter by fitting to the numerical solution. 
Equation (7) then has the form

( )cosS s0wF F- =o .	 (15)

The function cos(wF) can be found in explicit form:

( )
( / ) ( )
( ) /

cos
cos

cos
S s t
t S s

1 0

0wF
W

W
=

-

-  .	 (16)

The pulse repetition rate can also be represented explicitly: W 
= w s S20

2
- . On the other hand, as shown above we have W 

= w/s0. Therefore, s0 and S/s0 are related by

1 ( / )s S s0
4

0
2

= -- .

As seen from (16), it is s0 that determines the pulse shape.
It is easy to show that a change in the sign of the coeffi-

cient S corresponds to a displacement of the curve by half-
period. The modulus of the field amplitude [function f4(t) in 
Table 1] is

| ( )|
( / )S

E t E
s

E

1
0

0
24

0F= =
-

o

´  ( / )
( / ) [ ( / ) ]

[ ( / ) ] /

cos

cos

S

S
S s

S s s t

s t S s
1

1 1

1
0

0 0
24

0
24

0

w

w
+

- -

- -) 3.	 (17)

The field maximum to minimum ratio is (1 + S/s0)/(1 – S/s0). A 
change in FB phase leads to slight changes in the characteris-
tic frequency w = (1.11 – 1.23)wr and characteristic amplitude 
E0 = (0.96 – 0.99) P . The two parameters w » wr = 
( ) /P N T2 -  and ( ) /( )E P N N1 20 = - +  are determined 

primarily by the normalised pump power relative to the 
threshold P. They are weak, implicit functions of parameter 
S/s0. At the same time, S/s0 strongly influences the oscillation 
frequency (through the factor 1 ( / )s S s0

1
0
24

= -- ) and pulse 
amplitude. For |S/s0| ® 1, both the oscillation amplitude and 
period increase. Physically, this means that, for oscillations to 
have a high peak, it is necessary to accumulate more pump 
energy, which will lead to an increase in oscillation period at 
a given normalised pump power relative to the threshold.

To find out whether the partial solutions found here are 
applicable for describing steady-state oscillations in the LK 
model, we numerically integrated the LK equations for para
meters of the system corresponding to a transition through a 
bifurcation point with hard oscillation excitation [14].

The solid lines in Fig. 2 represent three types of numerical 
solutions to the system of equations (1) for steady-state peri-
odic radiation pulses, including the case where the FB phase 
is k = 180°. At this FB phase, the oscillations acquire the 
nature of periodic solitons [15]. In our calculations, we used 
the following parameters of the laser system: P = 0.8, M = 

k = 60°
k = 90°
k = 180°

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|E|

3p 4p 5p 6p 7p 8p 9p 10p wrt

Figure 2.  Steady-state wave field oscillations. The solid lines represent 
numerical calculation results for an effective FB strength f = 0.63 at 
phases k = 60°, 90° and 180°. The dashed line shows the analytical solu-
tion at k = 90°. 
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0.02, T = 1000, td = 10 and R = 3. The effective FB strength 
parameter was f = 0.63. Generally, the phase k is determined 
by the position of the external mirror and the output fre-
quency. In our calculations, we took k = 60°, 90° and 180°. At 
the parameters chosen, near k = 60° there is bifurcation with 
hard excitation of a repetitively pulsed operation mode. The 
oscillation shape at this k differs markedly from a harmonic 
one, and the oscillation amplitude is not small. As k increases 
to 90° and above, the pulse becomes sharper. The dashed line 
shows the analytical solution to Eqn (15) at k = 90°. As seen 
in Fig. 2, the numerical and analytical solutions differ only 
slightly.

Since the relation between the parameters E0, w and s0 of 
the analytical solution and the physical parameters of the 
laser cannot be represented in explicit form, the former 
parameters were evaluated by fitting the analytical solution to 
the numerical solution found by directly integrating the LK 
equations. For each combination of physical parameters, 
there is a corresponding combination of constants in Eqn (15). 
These constants can be found when in numerical calculation 
a repetitively pulsed operation mode sets in. For a steady 
state, the parameters E0, w and S/s0 and the time origin are 
determined by nonlinear fitting. The procedure converges 
when the error (rms deviation) in calculation results over the 
period of function (17) reaches a minimum. The residual is 
the minimum mean square deviation c2red obtained by the fit-
ting.

The fitting results are presented in Table 1 [formula (17) 
corresponds to the function f4(t)]. We considered three FB 
phases (k = 60°, 90° and 180°): the oscillation amplitude was 
found to rapidly increase with k. Nevertheless, the pulse shape 
is similar to that described by function (17) in all instances. 
The goodness of fit can be quantified by the mean square 
deviation of the fitting function from the exact value: c2red = (n 
– p)–1 ́   [ ( )]y f xi i

n 2
1 -/ . Because there is a limited number of 

data points, n, in the data set, we use the test referred to as 
‘reduced chi squared’ [16]. In this test, division by n is replaced 
by the reduced divisor n – p, where p is the number of fitting 
parameters (p = 4 in our case). The parameter c2red is presented 
in the third column of Table 1. The integrated relative error 
can be written as / yred

2 2c , where y n yi
n2 1 2
1= - / . At k = 90°, 

the relative error does not exceed 6% (p = 4). It is seen that 
there is very good fit quality.

One more analytical solution can be found when the terms 
of the series in (7) form an infinite power series in cosk(wF), 
with coefficients decreasing as zk, where z is a constant less 
than unity. Remarkably, in this case the solution retains its 
structure:

( ) 1 ( / )
( )

( )
cos

cos
f t E s S s

V t
t V

15 0 0 0 W
W

= +
+

+; E .	 (18)

In contrast to (17), here the rational expression contains an 
additional parameter, V, instead of S/s0.

The coefficients of the analytical solution represented as 
f5(t) are intricate functions of the physical parameters of the 
system, such as the FB phase, but they can be extracted 
directly from the numerical solution if (18) does correspond 
to the solution. These coefficients at different k values and 
other parameters maintained constant are listed in Table 1. 
The use of the function f5(t) allows one to more accurately 
determine the pulse shape as a function of time, which con-
firms that the analytical solution converges to the numerical 
one as the number of higher harmonics increases.

Varying the FB phase in the range 60° < k < 220° leads to 
drastic changes in the pulse amplitude and repetition rate, 
which can be well described analytically throughout the k 
range corresponding to repetitively pulsed operation. Figure 3 
shows an enlarged portion of Fig. 2, which demonstrates the 
pulse shape at k = 90°. It is well seen that the curves obtained 
numerically and analytically agree well. The slight discrepan-
cies are caused by symmetry breaking in the case of the calcu-
lated curve because of the finite inversion relaxation time. 
The analytical pulse shape (Fig. 2, dashed line) is symmetric 
with respect to the maximum and minimum of the function. 
The phase k = 90° corresponds to oscillations with a large 
amplitude and a markedly sharper pulse shape. Note that the 
standard small perturbation theory is only applicable near an 
Andronov – Hopf bifurcation for small-amplitude harmonic 
oscillations. Our approach allows one to analyse as well pro-
cesses with pulse sharpening and a large oscillation ampli-
tude.

5. Conclusions

Based on the standard Lang – Kobayashi model for a semi-
conductor laser subject to DFB, we have proposed a method 
for a theoretical analysis of steady-state repetitively pulsed 
operation of such a laser. The dynamics of the laser subject to 
DFB is characterised by a great diversity of operation modes, 
among which modes with regular periodic pulsations are of 
practical interest. The proposed approach allows the descrip-

Table  1.  Coefficients of the analytical formulas (17) and (18) extracted 
from calculation results at k = 60°, 90° and 180° (oscillation frequency 
wr = 0.04,  pump power P = 0.8).

k / yred
2 2c c2red /A s E P0 0= –S/s0 V W/wr

f4(t); V = – S/s0, p = 4

60° 1.1 % 5.6 E – 5 1 0.375 1.075

90° 6 % 1.85 E – 3 1.33 0.84 0.90

180° 12.8 % 8.14 E – 3 1.91 0.963 0.64

f5(t); V ¹ – S/s0, p = 5

60° 1.0 % 5.2 E – 5 1 0.376 0.356 1.075

90° 3.4 % 5.7 E – 4 1.26 0.887 0.80 0.90

180° 8.6 % 3.7 E – 3 1.84 1 0.958 0.65

|E|
f5(t)
f4(t)

0

0.5

1.0

1.5

2.0

|E|

3p 4p0p 1p 2p wrt

Figure 3.  Theoretical (  f5, f4) and calculated (dotted line) pulse shapes 
at k = 90° [  f5 is function (18) for five-parameter fitting; the fitting func-
tion f4 is given by (17)].
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tion of periodic operation of a laser subject to DFB to be 
reduced to analysis of a first-order nonlinear differential 
equation containing an infinite power series of the expansion 
in terms of the sought periodic functions. We have found an 
analytical solution for the case where the infinite series can be 
reduced to the sum of the first terms of the expansion. For 
comparison with numerical results, we have chosen parame-
ters of the laser near a bifurcation point differing from 
Andronov – Hopf bifurcation in that hard excitation of 
anharmonic oscillations occurs at this point. Moving farther 
away from the bifurcation point leads to an even sharper 
pulse shape. Despite the pulse narrowing, the analytical solu-
tion agrees well with numerical calculation results. The ana-
lytical solution provides a relation between the characteristics 
of the pulse: the pulsation period and amplitude in a wide 
range of parameters.

Thus, we have developed analytical theory for a laser sub-
ject to delayed feedback and found convenient expressions 
describing periodic laser operation modes and predicting the 
pulse shape. The proposed approach is applicable for examin-
ing steady-state repetitively pulsed laser operation modes cor-
responding to motion along limit cycles in phase space.

Appendix. Deduction of formula (7)

The system of linear equations for perturbations can be found 
by substituting y ® y + dy and n ® n + dn (where dy and dn 
are small perturbations) in (4). In the case of periodic oscilla-
tions, small perturbations along a limit cycle correspond to 
further motion along the limit cycle. The coefficients in the 
system of linear differential equations for perturbations are 
purely periodic functions, including the DFB term. The sys-
tem of equations for small perturbations can be represented 
in matrix form:

d
d A

t
v v bd= + , where 

( )
( )
( )n

v */

d
d
d

y t
y t

t
f p .	 (A1)

The matrix A and vector b can be written as

( / ) ( / ) /e e

i
iA
R
R
T

0
0
2

0
0
2

1
1
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Re

r
Re2 2 2w w

=

- -

-

+

-
y y

f p ,

( ( ) )
( ( ) )
i
i

t
tb
0

*
L L
L L=

-

- -f p .	 (A2)

The components of the vector b can be expressed through the 
function L(t) (6). The variation in dL(t), written as the Fourier 
expansion (6) in terms of harmonics, is proportional to the 
perturbation of the phase dF. 

The matrix A has three eigenvectors, v0, v1 and v2,

,
i
i

i
i
R
Rv v

0

1
1,

,

0 1 2

1 2l
= - =

-

+f fp p,

with eigenvalues l0 = 0 and l1, 2 = – 2
1T1 ± iwrexp(Rey). The 

roots l1, 2 correspond to underdamped oscillations. Steady-
state oscillations are determined as a partial solution to (A1) 
by varying the constants of the solution for a uniform system 
with the matrix A:

t
( ) { ( , ) ( )}dt K t tv bdt t= y .

Here K(t, t) = U(t)U –1(t) is the Cauchy matrix, where the 
matrix U is the resolvent of A:

t t t
( ) ( ) ( ) ( ) ...d d dA A AU t E t t t t t t

t t t0 0 0

= + + +y y y  .

The convolution in t is performed in the e vicinity of point t 
with vector db. As a result of the damping of relaxation oscil-
lations, the oscillating solutions are time-independent at the 
lower limit, corresponding to an instant in the distant past. In 
effect, the dynamics of steady-state oscillations are indepen-
dent of the prior history. All is determined by a small vicinity 
of point t, where the vector db can be expanded in terms of the 
eigenvectors of the matrix A and the action of the kernel in 
the t ® t limit satisfies the rule

t
( , ) exp dK t tv vi i

t
it l= c my .

A combination of the vectors v0 and v1 + v2 for  wrT1 >> 1 
makes it possible to exclude one equation [for the dn(t) inver-
sion] [10], and oscillating functions for the dy(t) and dy*(t) 
variations are the solution to the equations

t( )
( )

dt* d
dy t
dy t

F=e o y

´  ( )
1

( ( ) ( )) ( )cos
i
i

i
i

q t
R
R

t q t
1

r rw t wF F
-

+
- +

+

-
+ -e eo o= G ,	 (A3)
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-
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+

+ - +  .

Summing the equations for dy(t) and dy*(t) (A3) leads to an 
equation for the function dRey(t). Using the relation dRey = 
lnd Fo , the left-hand side of the equation can be reduced to the 
function Fo . The tangential perturbations are proportional to 
the derivatives of the functions:   ?dy yo  and ?dF Fo . The 
dF ® dF substitution in the integral in (A3) allows the inte-
gral to be calculated analytically. After rather simple trans-
formations, Eqn (A3) for linear perturbations converts into a 
nonlinear differential equation for the function F  itself:

( )
( )

2
( )exp

i
i

k
k h h k 0

*

rk

k k
2 2

2

w w
w

w
F
F F+

-

-
=-

o

p / .	 (A4)

Integrating (A4), we obtain (7).
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