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Abstract.  The magnetic field distribution and electric-field amplifi-
cation factor are found in the gap between periodically arranged 
parallel metal cylinders scattering an evanescent wave. Such a wave 
appears if an original plane wave is incident from the dielectric sub-
strate onto the interface at an angle of total internal reflection. A 
substantial restructuring of the near-field distribution, which results 
from a small change in the angle of incidence, is revealed. 
Estimations of the angular dependence of the local field, explaining 
the shift and broadening of the plasmon resonance at a shorter 
wavelength, are presented.

Keywords: surface plasmon, array of nanowires, total internal 
reflection.

1. Introduction

Nanophotonics investigates the interaction of radiation 
with the objects whose dimensions are much smaller than 
the wavelength of light. In this case, spatial frequency of 
the field inhomogeneity (e.g., of a scattered field near a 
small particle) exceeds the wavenumber in vacuum k0 = 
w/c, and, as is known, such a perturbation cannot propa-
gate in the form of a travelling wave. Therefore, evanescent 
waves, whose amplitude decreases exponentially along the 
wave vector, play a key role in nanophotonics. Thus, the 
optical processes turn out essentially localised in the area, 
the size of which is smaller than or of the order of the 
wavelength of light, i.e. in the near zone relative to the 
object under study.

The optical processes localised near metal objects are of 
particular interest. Localisation of excitation in one dimen-
sion takes place even in the simplest case of a planar interface 
between a metal and a dielectric: such waves, propagating 

along the interface, are called surface plasmons. At the same 
time, additional localisation occurs in the case of metal objects 
of small dimensions (significantly smaller than the wavelength 
of incident light) [1].

Plasmonic nanostructures have a variety of applications. 
In particular, a substantial local field amplification near 
roughened metal surfaces increases the sensitivity of the 
Raman spectroscopy [2, 3], whilst the concomitant large field 
gradients are used in optical micromanipulation [4 – 6]. Strong 
dispersion of the optical response of metal nanoparticles in 
the region of the plasmon resonance allows one to control the 
refractive index of composite materials over a wide range, and 
in particular, to create negative-index metamaterials [7, 8]. 
The critical dependence of the Fresnel coefficients on the fre-
quency under conditions of total internal reflection at the 
metal – dielectric interface is widely used in plasmon ellipsom-
etry [9, 10]. Novotny and van Hulst [11] discuss the concept of 
an optical nanoantenna that improves the detection efficiency 
of light emitted (or scattered) by the small objects, such as 
quantum dots or organelles of cells. Among the important 
applications of plasmonic structures, one can distinguish the 
local-field amplification near the surface to increase the effi-
ciency of solar batteries [12, 13] or accelerate nonrelativistic 
particles [14].

Even in the simplest cases, the possibilities of analytical 
methods in consideration of plasmonic nanostructures are 
very limited (for example, scattering by metal objects on a 
dielectric substrate), which makes the development of effi-
cient numerical methods rather urgent. Belai et al. [15] pro-
pose a modification of the boundary element method, which 
takes into account the presence of a dielectric half-space by 
means of a special-type Green function satisfying a boundary 
condition at the interface of the half-spaces. This allows 
reducing the problem in question to the problem of scattering 
by a body located in the homogeneous space. This approach 
has been subsequently generalised to the case of a periodic 
array of bodies located near the interface between two media 
[16], which allows scattering of an evanescent wave by an infi-
nite grating. 

The purpose of this work is to calculate a local field distri-
bution in the gap between adjacent parallel cylinders of a 
periodic grating for different angles of the wave incidence 
from the dielectric. The tuning characteristics of a subwave-
length grating are compared with those for a simplified model 
in which the grating is replaced by a metal layer. The results 
of numerical calculation of the local field amplification factor 
are given in Section 2. The estimates of light transmittance 
through a three-layer dielectric – metal – dielectric structure 
are presented in Section 3.
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2. Local field amplification

We consider the problem of interaction of an evanescent wave 
with a periodic system of parallel cylinders. An evanescent 
wave in medium 2 is generated by a plane wave from a sub-
strate (medium 1) and is incident on the interface at an angle 
q (Fig. 1). If the angle of incidence exceeds the angle of total 
internal reflection q0, only an evanescent wave exists in 
medium 2. Such a wave decays exponentially along the y axis 
and does not carry away the energy into infinity. In the pres-
ence of scatterers, such as thin metal cylinders, each of them 

generates a diverging cylindrical wave. The energy flow at y ® 
+¥ appears, and the total internal reflection is violated. 
Below we present the solution to the scattering problem by 
means of the modified boundary element method that reduces 
the problem dimension and turns it into a one-dimensional 
problem because only the boundary integral equations are 
employed.

We seek the Green function G(x, y; x', y' ) satisfying the 
inhomogeneous Helmholtz equation

( ) ( )G k G x x y y,1 2
23 d d+ = - -l l ,	 (1)

where k1,2 = w 1,2e /c; w is the frequency of light; and e1,2 are 
the dielectric constants of respective media. The function G 
only depends on the difference x – x' due to translational sym-
metry of equation (1). The boundary condition at y = 0 for 
the case of a p-polarised wave appears as
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where the square brackets denote the jump of the function at 
y = 0. 

According to Floquet theorem [17], the magnetic field Hz 
= H(x, y) as a function of coordinates in the grating having a 
period d represents the product of the periodic function and 
exponent:

Figure 1.  Statement of the problem: a is the cylinder radius; e is its di-
electric constant; d is the grating period; e1 is the dielectric constant of 
the substrate; e2 is the dielectric constant of medium 2; q is the angle of 
incidence.
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Figure 2.  Distribution of the amplification factor of the local magnetic field in a p-polarized wave at l = 652.6 nm, a = 50 nm and the gap size of 
5  nm for q = (a) 42°, (b) 43°, (c) 44° and (d) 45°.
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( , ) ( , ) ( ), 0, 1, 2,exp iH x md y H x y k md mx ! !+ = =  ... .	 (3)

Here, kx = w 1e sin q/c is the tangential component of the 
wave vector in dielectric 1, which is conserved at the interface 
between media 1 and 2. Using equation (3), we can find the 
effective Green function, which takes into account the pres-
ence of a substrate, in the form of a series:
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where kd = 2p/d is the reciprocal grating vector of a periodic 
array of cylinders; and
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The first term in curly brackets describes the diverging 
cylindrical wave from the source at point (x', y' ), whilst the 
second term corresponds to the image located at point (x', –y'). 
The use of the efficient Green function (4) allows the problem 
for an infinite structure to be reduced to the calculation of a 
single elementary cell containing one cylinder only. In partic-
ular, it is possible to find a solution for an arbitrary ratio of 
the tangential component of the wave vector kx to the recipro-
cal grating vector kd. In other words, it is possible to study a 
general non-periodic case, when the field period is not a mul-
tiple of the grating period. In [16], this method was tested on 
the well-known asymmetric resonances in the far field (the 
Rayleigh – Wood anomalies).

We solve the problem of a wave with the amplitude E0, 
incident onto the interface at an arbitrary angle q. The distri-
bution of the magnetic field amplification factor g = |H/H0|2 
in the near field for three adjacent cylinders is shown in Fig. 2. 
The calculation is performed for a gold cylinder at the wave-
length l = 652.6 nm and e1 = 2.25, e2 = 1, e = –9.9 + 1.05i [18]. 
It can be seen that the field in metal reaches its maximum near 
the lateral surface of the cylinder at points where the distance 
to the adjacent cylinder is small. The field minimum is located 
inside the cylinder near a point close to the substrate. A small 
change in the angle of incidence near the angle of total reflec-
tion q0 leads to radical restructuring of the near-field pattern. 
Consequently, in this range of angles the peculiarities of the 
local field amplification factor should be looked for.

The results of calculation of the electric field amplification 
factor for gold cylinders of radius a = 50 nm are shown in 
Fig. 3. The field was calculated at the centre of a gap 7.5 nm 
and 10 nm in width, depending on the angle of incidence. The 
dielectric constants e2 = 1 for air and e1 = 2.25 for a glass sub-
strate were used; relevant data for gold (at different frequen-
cies) were taken from the handbook [18]. A drastic field 
change can be seen near the angle of total internal reflection q » 
q0 = 42°. In the long-wavelength case, for radiation with l = 
700 – 900 nm, the field changes especially dramatically. This 
feature makes promising the use of this resonance in tunable 
plasmonics devices. In the short-wavelength case, the reso-
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Figure 3.  Local electric field amplification factor g = |E/E0|2  at the centre of the gap between gold cylinders as a function of the angle of incidence 
q at l = ( 1 ) 885.6, ( 2 ) 729.3, ( 3 ) 652.6, ( 4 ) 563.6 and ( 5 ) 539.1 nm. The gap size is (a) 7.5 nm and (b) 10 nm.
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Figure 4.  Local electric field amplification factor g = |E/E0|2 at the cen-
tre of the gap between silver cylinders as a function of the angle of inci-
dence q at l = ( 1 ) 826.6, ( 2 ) 688.8, ( 3 ) 590.4, ( 4 ) 495.9 and ( 5 ) 
476.9 nm. The gap size is (a) 7.5 nm and (b) 10 nm.
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nance is shifted to higher angles and considerably broadened. 
Figure 3 also demonstrates that the local field almost doubles 
when the gap between cylinders decreases by 25 %. A similar 
plasmon resonance manifests itself in the gap between silver 
cylinders (Fig. 4). As in the case of gold cylinders, the ampli-
fication factor considerably increases with decreasing gap.

The next section represents estimates of the plasmon reso-
nance position and width, which allow qualitative interpreta-
tion of the dependences obtained. From the viewpoint of the 
general theory of diffraction gratings [19], the problem under 
consideration refers to the long-wavelength type if the dimen-
sionless parameter Z = d/l is small (Z << 1). A grating without 
a substrate has been previously investigated in this limiting case 
in the electrostatic approximation when the two-dimensional 
Laplace equation can be solved by means of conformal map-
pings [20].

3. Plasmon excitation

Consider the simplest model, in which the grating of cylinders 
is replaced by a homogeneous metal layer. Since the distance 
between the cylinders is much smaller than the wavelength, 
the model should provide similar results. At the same time, 
the resonances in this model can be described by a simple for-
mula and do not require numerical simulation. Let us verify 
whether this model gives the resonances in the angular depen-
dence, which have been revealed in the preceding section by 
means of numerical simulation. Consider a metal layer with a 
dielectric constant e located between dielectrics 1 and 2. Let 
us find the angular dependence of the coefficient of wave 
transmittance through the layer and compare the shape, 
width and position of relevant resonances with those found in 
the previous section. Generally speaking, if the layer is thin, 
the processes at the metal – air and dielectric – metal interfaces 
cannot be considered independently. In such a three-layer 
medium, the coefficients of reflection and transmittance can 
be found for an arbitrary polarisation of the incident wave. If 
the polarisation vector lies in the plane of incidence, the trans-
mittance is given by the formula [21] 
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h is the metal thickness; and e2 = 1. Plasmon interaction on 
the upper and lower boundaries of metal is determined by the 
parameter t = exp(–kh) and has been studied in [22]. In this 
case, we have |t| K 0.1, so that plasmons can be treated inde-
pendently in the estimates. 

A plasmon can propagate along the metal – air interface 
(e2 = 1) if e2 e < 0 and e2 + e < 0. In this case, the wave ampli-
tude decays exponentially into the interior of metal and air, 
whilst the frequency w and the wavenumber k are related by [23]
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Let us take into account the dependence of the dielectric 
constant e on the frequency w in the Drude model
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where e¥ is the limiting dielectric constant at high frequencies;  
wp = (4 / )ne m /

e
2 1 2p  is the plasma frequency; n is the concentra-

tion of free electrons; and mе and e are the effective electron 
mass and charge. If we neglect the damping g, relation (6) is 
reduced to a biquadratic equation, from which the dispersion 
law is obtained:
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where q = kc/wp is dimensionless wavenumber of the surface 
wave. The dispersion law is presented in Fig. 5. The lower branch 
corresponds to surface plasmon. The data taken from the litera-
ture were used in calculations: e¥ = 9.84, 'wp = 9.1 eV [24, 25].

It is seen from Figure 5 that the phase velocity of the exciting 
wave must not exceed a certain threshold value. That threshold 
can be found from formula (8) in the limit q ® 0: w2 = (kc/ 2e )
(1 – q2/2) + O(q4). Hence, at e2 = 1 we obtain w2/k G c; therefore, 
only a wave incident from an optically denser medium, e1 > e2, 
can excite a surface plasmon. This scheme is called the Krechman 
excitation scheme [22]. The surface wave frequency coincides 
with the frequency of exciting light, while the wavenumber is 
determined by projection of the wave vector onto the boundary 
interface w 1e sin q/c. Equation (6) gives the excitation angle:
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e e
e

=
-

 .	 (9)

The excitation angle q1 is always greater than the total 
internal reflection angle, for which sin2 q0 = 1/e1 (in the 
absence of a metal layer). Since for metal |e| >> 1, the excita-
tion angle q1 slightly exceeds the total internal reflection angle 
q0. In particular, at e1 = 2.25 we obtain q0 = 42°. Herewith, the 
excitation angle for Re e = –25 (in the case of a gold layer at 
l= 840 nm) amounts to 43°.

Figure 6a shows the dependence of the transmittance in 
terms of intensity through a layer of gold on the incidence 
angle. Figure 6b demonstrates the angular dependence for the 
layer of silver. The layer thickness for the estimation is 
selected in accordance with the ‘mass’, i.e. from the condition 
of an equal amount of metal in the layer and array of cylin-
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Figure 5.  Dispersion law for plasma waves at the metal – air interface: 
volumetric (upper branch) and surface (lower branch) plasmons.
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ders. We have obtained resonances in the angular depen-
dence; herewith, their location, amplitude and width are 
dependent on the wavelength. Drastic behaviour of the coeffi
cient of reflection from a metal film on a dielectric substrate 
and the field amplification factor as functions of the angle and 
wavelength, which is conditioned by excitation of the surface 
plasmon, has been experimentally studied in [22]. Goldina 
[26] proposes the use of a narrow resonance in the angular 
dependence of the coefficient of reflection from a film or a 
multilayer structure near the angle of total internal reflection to 
measure the refractive index of medium 2 with high sensitivity.

Figure 6 also shows that the plasmon resonance shifts to 
larger angles with decreasing wavelength. The same shift can 
be seen from formula (9). The dielectric constant of metal is 
reduced in absolute value at higher frequencies. In this case, 
in accordance with formula (9), the resonant excitation angle 
q1 increases. The effects of narrowing and shifting of reso-
nances in a 70-nm-thick silver layer on a glass substrate have 
been experimentally tested at l = 514, 633 and 670 nm using a 
scanning tunnelling optical microscope [27]. 

However, the resonance position for the metal layer is 
shifted relative to that for the subwavelength grating by a few 
degrees toward the region of larger angles of incidence. The 
comparison of Fig. 6 with Figs 3 and 4 shows that the shift 
constitutes 2° in case of a narrow long-wavelength resonance, 
whilst it amounts to 6° for wide short-wavelength resonances. 
The lesser value of the critical angle of plasmon mode excita-
tion in the grating is apparently explained by the change in the 
dispersion law for surface plasmons in the periodic structure. 

Thus, the metal layer model also reveals resonances in the 
angular dependence of the amplification factor. The model 

explains qualitatively the angular shift of resonances with the 
change in the radiation wavelength. However, there is no 
quantitative agreement with numerical calculations because 
the dispersion law for a periodic chain differs from the disper-
sion law for a metal layer.

4. Conclusions

Thus, we have considered the problem of scattering of an eva-
nescent wave by a system of parallel metal cylinders. 
Numerical simulations reveal a radical restructuring of the 
near-field as a result of a small change in the angle of inci-
dence near the angle of total internal reflection. In particular, 
a drastic change in the local electric field in the gap between 
adjacent cylinders as a function of the angle of the wave inci-
dence from dielectric is observed. Estimates of the shift and 
width of the resonance arising from excitation of the surface 
plasmon at the metal – air interface are presented.
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Figure 6.  Transmittances |t|2 through the (a) gold and (b) silver layers 
having the thickness h = 72 nm, calculated according to formula (5) as 
functions of the angle q. The numbers of curves for gold are the same as 
in Fig. 3, whilst those for silver are the same as in Fig. 4.


