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Abstract.  Assuming that the number of emitters (atoms) near a 
spherical metal nanoparticle is large (more than a few hundred), so 
that their interaction with each other is strong and sufficient for the 
emergence of their collective states (Dicke states), it is shown that 
the nanoparticle accelerates the superradiance of the emitters in a 
similar way as it accelerates the spontaneous emission of a single 
emitter. In this case, part of the energy stored by the emitters is 
absorbed by a nanoparticle, and the rest of the energy is radiated as 
a superradiance pulse. For the parameters selected in this paper, the 
energy absorbed by the nanoparticle is approximately equal to the 
emitted energy. We have found the collective states of the emitters 
and nanoparticle and have derived expressions for the time depen-
dence of the superradiance pulse power, pulse duration and time 
delay with respect to the moment of excitation of the emitters. 

Keywords: metal nanosphere, localised plasmon resonance, collec-
tive spontaneous emission. 

1. Introduction 

It is known that the rate of spontaneous emission of a reso-
nant emitter – an atom, molecule or quantum dot – can sig-
nificantly increase near a metal nanoparticle [1]. Known also 
is the effect of collective spontaneous emission or superradi-
ance [2, 3], when spontaneous emission of dipole – dipole 
interacting emitters located in a volume whose size is less than 
or on the order of the wavelength of their resonance emission 
appears in the form of a short pulse with some delay relative 
to the moment of excitation of the emitters. There arises a 
question whether the rate of collective spontaneous emission 
of emitters near a metal nanoparticle can increase as the rate 
of spontaneous emission of a single emitter? It is known from 
the theory of Dicke superradiance for resonant emitters in the 
absence of a nanoparticle that superradiance occurs when 
symmetric collective states (Dicke states) of the emitters are 

formed: a permutation of emitters does not change these 
states. Can Dicke states or states close to them be formed for 
emitters near a nanoparticle? It can be assumed that for such 
conditions to appear, it is necessary that the interaction 
between the emitters be stronger than the interaction of each 
emitter and a nanoparticle. 

Systems of emitters near metal nanoparticles in a volume 
that is less than or on the order of the wavelength were stud-
ied in a number of experiments on the generation of coherent 
radiation. For example, Noginov et al. [4] used the experi-
mental conditions that are similar to those needed to observe 
superradiance: in paper [4] several thousand emitters, reso-
nantly emitting in the visible spectral range, are located in a 
small volume – the shell of a spherical metal nanoparticles at 
a distance on the order of ten nanometres from its surface; the 
resonant frequency of the emitters and the localised plasmon 
resonance (LPR) frequency of the nanoparticle coincide, the 
emitters are rapidly (compared with the time of radiation) 
excited by an external field pulse, their density in the nanopar-
ticle’s shell is high and they interact strongly with one another. 
The experiments were used to measure the pulse characteris-
tics (centre frequency, duration and energy) of the response 
field of the emitters on their incoherent excitation by an exter-
nal field pulse with a frequency different from the LPR fre-
quency. 

In [5] we formulated a theory of superradiance for a single 
emitter near a metal nanoparticles on the basis of papers 
[6, 7], taking into account the delay in the interaction of the 
emitter and the nanoparticle, as well as the absorption of 
radiation in the nanoparticle and the interaction of the emit-
ter with higher multipole modes of oscillations of its polarisa-
tion. Investigation of superradiance near metal nanoparticles 
is closely connected with the research on plasmonic nanolas-
ers [8] – the only generators of the coherent electromagnetic 
field, the maximum size of which (several tens of nanometres) 
is much smaller than the wavelength of visible or near-IR 
light. Such nanolasers help solve an important problem of 
creating nanoscale optoelectronic interfaces that are compat-
ible with microelectronic chips [9]. Phased arrays of nanolas-
ers, studied theoretically [10] and experimentally [11], can be 
used to generate high-power and focused (single-mode) coher-
ent radiation. 

Superradiance near metal nanoparticles in connection 
with the development of nanoscale lasers is being successfully 
studied (see, for example, [12] and references therein). 
However, the authors of a number of papers, for example 
Pustovit and Shahbazyan [13], predicted on the basis of 
numerical calculations that although a superradiance pulse of 
the emitters near a metal nanoparticle is possible, it contains 
very little energy that does not exceed the energies of three 
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excited emitters, regardless of their total number near the 
nanoparticle. This result is of interest, because it means very 
effective absorption of the emitters’ radiation by the nanopar-
ticle, which may be particularly useful for increasing the effi-
ciency of photoemission from metal nanoparticles [14] in such 
applications as plasmon photovoltaics [15]. On the other 
hand, based on the results of [13], we can conclude that the 
superradiance energy of a large number of emitters is almost 
always completely absorbed by the metal nanoparticle, and it 
is bad for the applications of superradiance effects in plas-
monic nanolasers. One of the goals of this paper is to show 
that under certain conditions the superradiance pulse near a 
metal nanoparticle can have the energy much greater than the 
energy of only three excited emitters, the pulse duration being 
much smaller than in the case of the same system of emitters 
without a nanoparticle.

A detailed numerical analysis of superradiance near a 
metal nanoparticle can be, in principle, performed by using 
the equations given in [5] or [13]. Technically, it is possible, 
probably, for no more than several tens of emitters, which 
was done in [13]. However, as will be shown below, to observe 
a superradiance pulse with the energy on the order of that 
stored in the emitters, the number of the latter should exceed 
500 – 1000 (which was the case in the experiment [4]). For such 
a large number of emitters it is difficult to solve the problem 
numerically, which is why using the Dicke model we justify 
and use an approximate analytic approach to the analysis of 
superradiance near a metal nanoparticle. For simplicity, we 
consider the case of a spherical nanoparticle and assume that 
the emitters are located sufficiently close (but not too close, 
see below) to it – at a distance from 10 nm to several tens of 
nanometres from its surface, so that in describing their inter-
action with a nanoparticle one can use the quasi-static 
approximation. 

Known is the expression for the superradiance pulse 
power of N identical atoms in a volume whose size is much 
smaller than the radiation wavelength [3]. Below we obtain a 
similar expression for the superradiance pulse power of atoms 
(emitters) in the vicinity of a metal nanoparticle. First, in 
Section 2 we reproduce known results: we describe collective 
spontaneous emission of two and then N atoms. Although 
this approach to the description of superradiance is well 
known (for example, it was given in [7]), it seems appropriate 
to present it again – firstly, as a reference material for the 
reader’s convenience, and secondly, for the discussion of the 
approximations and some interesting issues concerning super-
radiance, in particular, the emergence of nonlinearity and the 
role of quantum fluctuations. Besides, the notations and 
results for superradiance of an ensemble of atoms will be used 
in Section 3 for one and then for N atoms (emitters) near a 
spherical metal nanoparticle, as well as for derivation of an 
expression for the time dependence of the superradiance pulse 
power. For typical parameters of the emitters and nanoparti-
cle in Section 4 we estimate the power and energy of the 
superradiance pulse. In conclusion, we discuss the results. 

2. Superradiance of several atoms (Dicke model) 

2.1. Collective spontaneous emission of two atoms 

Suppose that there are two identical atoms, each having a 
single valence electron and a frequency w of this electron tran-
sition from the first excited state to the ground state. At the 

initial time instant t = 0, the valence electrons of the atoms 
quickly – in a time much shorter than the time of radiation of 
the atoms – are excited by, for example, the external field 
pulse with a certain polarisation into the states with a transi-
tion dipole moment (hereinafter, the dipole moment), which 
is perpendicular to the straight line connecting the atoms 
(Fig. 1). After excitation there occurs spontaneous emission 
of the atoms, and they interact with each other by exchanging 
photons. For reasons of symmetry, it is obvious that the 
directions of the dipole moments of the atoms remain the 
same even in the case of spontaneous emission of atoms after 
their excitation; therefore, the other two modes of polarisa-
tion of the atoms, whose directions of the dipole moments are 
shown by dashed arrows in Fig. 1a, will not be excited and are 
neglected in this study. Let us determine the rate of spontane-
ous emission of such atoms (Fig. 1). The interaction between 
the atoms through the exchange of the photons becomes pos-
sible after one of them emits a photon (Fig. 2a). An atom, 
which remains excited, emits a photon and the unexcited 
atom can absorb it (Fig. 2b). After some time, the atoms emit 
a second photon in free space, and then they will be in the 
ground state. The interaction between the atoms through the 
exchange of the photons is a dipole – dipole interaction 
[16,  17]. If the atoms are close enough to each other – at a 
distance r, which is smaller than the wavelength l of the emit-
ted photons or equal to it, then the rate (the probability per 
unit time) W of their dipole – dipole interaction is large: it 
exceeds the rate of spontaneous emission gr of a single iso-
lated atom, and thus at r G l the atomic interaction signifi-
cantly affects their emission. If r >> l, then W << gr, the inter-
action between the atoms can be neglected (because of its 
delay) and every atom emits independently.

Following [2], we describe spontaneous emission of atoms 
with allowance for their interactions, for which purpose we 
consider the states of the atoms. We assume that the interac-
tion between the atoms is strong enough: W >> gr, and hence 
in determining their states we can neglect spontaneous emis-
sion. We denote the states of the excited and unexcited atoms 
by 1 and 0, respectively. Then, the state of the two atoms in 
Fig. 1b will be |11H, in Fig. 2a – |01H and in Fig. 2b – |10H, 
whereas the state |00H corresponds to both atoms in the 

t = 0

а b

Figure 1.  (a) Formulation of the problem for two emitters and (b) their 
excited states. Solid arrows show the directions of the transition dipole 
moments of the emitters during their excitation and spontaneous emis-
sion. Dashed arrows show the directions of the dipole moments of the 
transitions that are not excited. 

ћw

ћw

а b

Figure 2.  Scheme of the process in question: (a) one of the emitters in 
Fig. 1 emits a photon and (b) the emitters begin to interact, emitting and 
absorbing photons. 
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ground state. The states of the two non-interacting atoms are 
shown in Fig. 3a. Due to the dipole – dipole interaction, 
instead of states |01H и |10H there appear their superpositions. 
If the atoms are at a small (r << l) distance from each other, 
then these superpositions, 

| (1/ ) (| | )2 10 01! != ,	 (1)

will have the energy ћ(w ± d). If the atoms are at a distance 
r H l, then they have other states with different statistical 
weights included in the superposition of the terms. To obtain 
such states, it is necessary to take into account the delay in the 
interaction of the atoms [17, 7]. The value of the shift ћd of the 
energy levels of the atoms in Fig. 3b with respect to the levels 
used in Fig. 3a depends on the interaction energy, which 
increases with decreasing distance between the atoms. We 
assume that the atoms are close enough to each other so that 
their state is described by superposition (1), but not too close, 
so that the condition 

d << w	 (2)

is fulfilled. It can be shown [7] that there is a range of dis-
tances between the atoms for which expressions (1) and (2) 
are valid. When condition (2) is fulfilled, in calculating the 
rate of emission of two atoms we can neglect the change in the 
energy of the states |±H relative to the energies of the states 
|01H and |10H of the non-interacting atoms. 

The sign of the symmetric state |+H is not changed by rear-
ranging the atoms. The components of the operators of the 
dipole moments of the transitions of the left and right atoms 
in Figs 1 – 3 are denoted by d1t  and   d2t , respectively, and the 
corresponding matrix elements are denoted by d d d1 2 /=t t . 
Since the directions of the dipole moments in the emission of 
the photons by the atoms do not change, we consider only the 
components d1t  and d2t  of the vector operators of the dipole 
moments. The dipole moment operator of a system of two 
atoms is d d d( )2

1 2= +t t t , and the rate of spontaneous emission 
of atoms is | |d,

( ) ( )2 2 2
\g a ba b

t^ h , where Ga| ... | bH means averag-
ing for the transition from the state | bH to the state Ga|, and 
a, b denote 10, 01, +, –, etc. The matrix elements have the 
form 

| | | |d d d11 00 2( ) ( )2 2
+ = + =t t ,

| | | | 0d d11 00( ) ( )2 2
- = - =t t ,	

(3)

i.e. in spontaneous emission of two closely spaced (when the 
delay in the interaction is negligible) atoms from the state 
|11H, only their symmetric state is excited. The nonsymmetric 
state |–H is not excited and hence does not radiate: it is ‘dark’. 

Note that some delay in the interaction is always present; 
therefore, the state |–H is never completely dark, and it is 
excited and emits with some probability. The rates of sponta-
neous transitions are expressed as 

2( ) ( )
r11

2
00
2g g g= =+ + .	 (4)

Thus, the spontaneous emission of two closely spaced atoms 
takes place according to the scheme in Fig. 4, where W11 and 
W+ are the populations of the corresponding states of the 
atoms. This figure corresponds to the system of balance equa-
tions for W11 and W+: 

2 , 2 2W W W W Wr r r11 11 11g g g=- = -+ +
o o ,

the solution of which under the initial conditions W11(0) = 1, 
W+(0) = 0 has the form 

( ) ( 2 ), ( ) 2 ( 2 )exp expW t t W t t tr r r11 g g g= - = -+ .	 (5)

The rate P2 of emission of two atoms is equal to the negative 
sum of the rates of spontaneous emission from each state in 
Fig. 4: 

2 2 2 ( 2 )(1 2 )expP W W t tr r r r r2 11/ g g g g g+ = - ++ .	 (6)

If the atoms are far from each other and their interaction is 
negligible, then the rate of their emission 

2 ( )expP tr r20 g g= - 	 (7)

ћw

ћw

ћd –ћd

ћw

a b

|11ñ |11ñ

|10ñ |01ñ

|00ñ |00ñ

|–ñ

|+ñ

Figure 3.  Energy states of two emitters: (a) without the interaction with 
each other and (b) with the interaction with each other through the ex-
change of a photon. 
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Figure 4.  Transitions in the spontaneous emission of two closely spaced 
emitters. 
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Figure 5.  Rates of spontaneous emission of two interacting (P2) and 
two non-interacting (P20) emitters. 
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is the doubled rate of emission of a single atom. Note that 
expression (7) cannot be obtained directly from (6). For the 
transition from (6) to (7) we should take into account a delay 
in the interaction of atoms and make use of atomic states 
when condition (2) is not met [7, 17]. 

The dependences Р2(t) and Р20(t) are shown in Fig. 5. The 
dependence Р2(t) has a maximum 2gr at t = 0, coinciding with 
the maximum Р20(t); however, spontaneous emission of two 
interacting atoms at the initial stage is slightly faster than that 
of the non-interacting atoms. 

2.2. Superradiance of N atoms 

In the framework of the Dicke model, the symmetric states 
originating in the approximation of an instantaneous interac-
tion between the atoms will result in spontaneous emission of 
an arbitrary number of interacting atoms. Nonsymmetric 
states are not excited in this case and are not considered 
below. Let us denote the symmetric states of N atoms, from 
which we have n G N excited ones (let us call them ‘states with 
n excitations’), by |N, nH. To determine the rate of emission, we 
find the square of the matrix element of the dipole moment of 
the transition between symmetric states |N, nH and |N, n – 1H. 
The state |N, nH is the sum of CN

n terms, each of which corre-
sponds to the non-interacting atoms: n excitations are distrib-
uted over N H n atoms. For example, the state |3,  2H =
(1/ ) (| | | )3 110 110 101+ + . The states from the superposi-
tion |N, nH undergo a transition, in the spontaneous radiative 
decay, into lower-energy states from the superposition 
|N, n – 1H. For example, the term |110H of the state |3,  2H 
changes into the term |100H or |010H of the state |3,  1H = 
(1/ )(| | | )3 100 010 001+ + . Thus, if d d( )N

ii 1=
=

Nt t/  is the 
operator of the dipole moment of N atoms with the matrix 
elements dit  = d, then the matrix elements are 

, 1 | | ,N n d N n
C C

nC d1 1( )N

N
n

N
n N

n
1

- =
-

t ,

( 1)d
C
C n d N n nd( )N

N
n
N
n2

1
2 2 2

= = - +
-

t .	

(8)

Accordingly, the rate of spontaneous emission in the transi-
tion from the state |N, nH into |N, n – 1H is 

( 1)N n n( )
rn

Ng g= - + .	 (9)

To determine the rate PN(t) of spontaneous emission of a sys-
tem of N interacting atoms, it is necessary to solve a system of 
rate equations for the populations Wn

(N) of the states |N, nH (n 
= N, ..., 1): 

W W( ) ( ) ( )
N
N

N
N

N
Ng=-o ,

. ...........................

W W W( ) ( ) ( ) ( ) ( )
N
N

n
N

n
N

n
N

n
N

1 1g g= -+ +
o ,	 (10)

............................

W W W( ) ( ) ( ) ( ) ( )N N N N N
1 2 2 1 1g g= -o ,

and then the found Wn
(N) are substituted into the expression 

( 1)P W N n nW( ) ( ) ( )
rN n

N
n
N

n

N

n
N

n

N

1 1

g g= = - +
= =

/ / .	 (11)

System (10) can in principle be solved analytically: the 
solution is found sequentially for the first, second, and other 
equations. However, at N, n >> 1, the approximate expression 
for PN  can be obtained without solving system (10). Indeed, 
the rate PN  of spontaneous emission is the velocity of change 
in the average number of the excited atoms 
ánñ º : /d dnW P n t( )

n
N

n N1 =
=

N/ . This can be seen directly 
from the simple example of three atoms. Thus, 

( ) ( 1)
d
d
t
n

N n nW N n n1 ( )
r rn

N

n

N

1

2/g g= - + + -
=

6 @/ ,	 (12)

where n n W ( )
n
N

n
2 2

1/
=

N/ . In the general case, equation (12) 
cannot be solved without preliminary solving system (10); 
however, at N, n >> 1 we can use in (12) the approximation  
Gn2H » GnH2, and then, instead of (12) and (10) we derive one, 
though nonlinear, equation for GnH: 

( )
d
d
t
n

N n n1r
2g= + -6 @.	 (13)

The approximation Gn2H » GnH2 neglects the quantum fluctua-
tions of the number of the excited atoms. The passage from 
expression (12) to (13) or, equivalently, by a system of linear 
equations (10) to a single, but nonlinear equation (13) is an 
interesting example of how by neglecting the fluctuations in 
the linear quantum system there appears nonlinearity and the 
number of dynamic variables describing the system is signifi-
cantly reduced. 

Known is the analytical solution of (13) with initial condi-
tions GnH(0) = N (when all the atoms at t = 0 are excited): 

( ) 1 ( 1)tanh lnn t N N t N
2
1

2
1

2rg= - + + -c m; E.

Differentiating this solution with respect to time, we obtain 
the superradiance rate in the Dicke model 

( ) 1 sec lnhP t N N t
N
N

2 2
1

1

2

r rN
2g g= + + -

+
` cj m; E.	 (14)

Equation (14) determines the superradiance pulse duration 
2/[gr(N + 1)] and time (N + 1)/(grlnN) of its delay relative to the 
moment of excitation of the atoms. The approximation Gn2H 
» GnH2 does not violate the law of conservation of energy 

3

( )P t NN
0

=y ,	 (15)

i.e., the number N of emitted photons corresponds to the 
number of excited atoms. 

Let us formulate again the simplifying assumptions used 
in the Dicke model: 

1. The identity of the interaction of each atom with all 
others. The denial of this assumption leads to the fact that 
‘bright’ symmetric states of the atoms will become nonsym-
metric. In varying degrees, ‘dark’, nonsymmetric states of the 
atoms will also be excited and radiate. 

2. The absence of the influence of spontaneous emission 
on the state of the system, with the states, which correspond 
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to condition (2), or similar states of many atoms being 
obtained by neglecting their emission. This is a good approxi-
mation provided that the interaction between the atoms is 
strong enough: the spontaneous emission rate of an isolated 
atom with respect to the rate of the interaction of this atom 
with the others is small. 

3. Neglect of the delay in the interaction between the 
atoms. 

4. The frequencies of the transitions between the states of 
the interacting atoms are assumed to be the same, but in fact 
they are different from the transition frequencies of the non-
interacting atoms by ~dEint/ћ, where dEint is the fluctuation 
of the interaction energy between the atoms. This difference 
will lead to an inhomogeneous broadening of the transitions 
in an ensemble of atoms [16] and should be taken into account 
in a more detailed analysis, especially at high densities of 
atoms. 

3. Superradiance of several atoms near 
a spherical metal nanoparticle 

Let us assume now that several atoms reside near a spherical 
metal nanoparticle, and the frequency w of the transitions of 
the atoms in free space and the localised plasmon resonance 
(LPR) frequency of the nanoparticles coincide. We consider 
the nanoparticle as a quantum harmonic oscillator with the 
states |npH (np = 0, 1, ... is the number of vibrational quanta) 
and the matrix element of the dipole moment transition oper-
ator dpt  between the neighbouring states Gnp|dpt |np + 1H = dp
n 1p+ . We consider that the delay in the interaction 

between the atoms and a nanoparticle can be ignored, which 
corresponds to the quasi-static approximation. Unlike super-
radiance of atoms without a nanoparticle the case under con-
sideration has the following features: 

– the harmonic oscillator takes part in the interaction, 
which can be excited, in principle, to any high state; 

– the dipole moment dp of the oscillator differs from the 
dipole moment d of the atom; 

– the nanoparticle-oscillator has nonradiative losses; and
– the atom (emitter) also exhibits nonradiative losses due 

to its interaction with a weakly emitting multipole modes of 
the nanoparticle, whose entire energy of fluctuations is virtu-
ally absorbed by the nanoparticle. 

We denote the basic states of the system without taking 
into account the interaction of the atoms and nanoparticle as 
|N, n – npH|npH, where |N, n – npH is the state of N atoms, among 
which there are n – np excited atoms, the total number of the 
excitations in this system state being equal to n. Let us con-
sider first the case of a single atom near a nanoparticle, and 
then the case of several atoms. 

3.1. Radiance of a single atom near a spherical nanoparticle 

Let us assume that no more than one plasmon – a quantum of 
LPR oscillations of the electron density of the nanoparticles – 
can exist in the system: the latter is thus considered as a two-
level system. This approximation is justified, because the plas-
mon exhibits greater losses and is more difficult to excite than 
even several atoms near the nanoparticle. 

For simplicity we assume that at the initial moment the 
atom (emitter), located near the spherical nanoparticle at a 
distance r from its centre, is transferred to the excited state by 
the pulse of the external field, whose polarisation is either par-
allel to the straight line connecting the emitter and the 

nanoparticle centre, or perpendicular to it. In this case, the 
directions of the dipole moments of the nanoparticle and the 
emitter during emission remain parallel to each other: the 
same spatial polarisation mode of the nanoparticles and the 
emitter, which was excited, emits. Other polarisation modes 
are not excited, and we do not consider them. 

Assume that the states |1, 0H|1H and |1, 1H|0H of the 
nanoparticle and atom, without allowance for their interac-
tion, have the same energy ћw. If the atom and nanoparticle 
are close to each other, then it is necessary to take into account 
their resonant interaction via an electromagnetic field, due to 
which the system will be in a superposition of the states 
|1, 0H|1H and |1, 1H|0H:

| , | | , |A A1 1 0 1 0 1( , ) ( , )
0
1 1

1
1 1

+ .	 (16)

The coefficients ( , )n1Anp  vary slowly compared with the factor 
exp(–iwt), omitted in (16), and are determined from the sys-
tem of equations 

( /2) iA A A( , ) ( , ) ( ) ( , )
dd0

1 1
0
1 1 1

1
1 1g W=- -o ,

G( /2) iA A A( , ) ( , ) ( ) ( , )
dd1

1 1
1
1 1 1

0
1 1W=- -o ,	

(17)

which follow from the Schrödinger equation that describes 
the interaction of the nanoparticle with the atoms in view of 
the relaxation of their excited states [14]. The terms –(g/2)
A0
(1,1) and –(G /2)A1

(1,1) correspond to the relaxation processes 
in (17), where G = Gr + Gnr is the relaxation rate (line width) of 
the LPR, taking into account the contributions of the radia-
tive (Gr) and nonradiative (Gnr) relaxations; and ћWdd

(1)  is the 
matrix element of the energy operator of the dipole – dipole 
interaction of the nanoparticle and atom. Under conditions 
of the quasi-static approximation 

r
n dd
2

( )
dd p
1

3
0'

xW =- ,	 (18)

where d and dp are the matrix elements of the dipole moments 
of the atom and nanoparticle, which are assumed real; n0 is 
the refractive index of a transparent medium, into which the 
atom and nanoparticle are placed; and the factor x = 2, if the 
directions of the transition dipole moments are parallel to the 
straight line connecting the centres of the nanoparticle and 
atom, and x = –1, if the the directions are perpendicular to 
this straight line. Expression (18) was obtained in the 
Appendix. In the first of equations (17), g = gr + gnr, where gnr 
is the emission rate of the emitter into all the higher multipole 
modes, an explicit expression for which is found in [18]. 
Higher multipole modes of the nanoparticle virtually do not 
emit, so that all their energy heats the nanoparticle, and there-
fore gnr is the rate of nonradiative losses of the emitter near 
the nanoparticle. 

Introducing the dimensionless time t = (G/2)t we rewrite 
(17) in the form 

( / ) iA A A( , ) ( , ) ( , )
0
1 1

0
1 1

11 1
1 1g G W=- -o ,

iA A A( , ) ( , ) ( , )
1
1 1

1
1 1

11 0
1 1W=- -o ,	

(19)

where W11 = 2Wdd
(1) /G. 

Having solved system (19), we can find the wave functions 
of the system states with a single excitation. However, if for 
two atoms without a nanoparticle the interaction leads to the 
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emergence of new, |±ñ, mutually orthogonal, á+|–ñ = 0, basic 
states of both atoms, similar mutually orthogonal states of 
the atom and nanoparticle are, strictly speaking, impossible 
to construct, since there is dissipation in the system: nonradi-
ative and radiative energy losses of the atom and nanoparti-
cle. Recall that in determining the states of the interacting 
atoms in the Dicke model the energy dissipation due to the 
spontaneous emission was neglected, because the rate of the 
interaction between the atoms was assumed much greater 
than the rate of spontaneous emission of a single atom. In the 
case of a nanoparticle the rate G is high: G >> g. Indeed, in our 
case G ~ Gr and is about a few terahertz (see estimates in 
Section 3.2), while for optical transitions in atoms g ~ gr » 
0.1 GHz. Thus, the loss in the nanoparticle greatly affects its 
interaction with the atoms and must be taken into account 
when determining the collective states. For symmetry and 
convenience in the first of equations (19) we leave the term 
describing the radiative and nonradiative losses of the atom, 
although it is small compared with the second one. 

In the general case, instead of (19) one should use the sys-
tem of equations for the density matrix elements – binary 
combinations of the coefficients Ai

(1,1) (i = 0, 1), i.e., popula-
tions |Ai

(1,1)|2 of the states |1, 0H|1H and |1, 1H|0H, and for the 
off-diagonal elements – products A0

(1,1)A1
(1,1) *. However, we 

consider the case of a weak interaction of the atom and 
nanoparticle when W11 << 1. For the ordinary parameters of 
the emitter and the nanoparticle the last relation holds if the 
emitter is at a distance greater than 15 – 20 nm from the centre 
of the nanoparticle; this distance is used in calculations below. 
Indeed, according to (18) and the well-known formula for the 
rate of spontaneous emission of a dipole in free space [3] 

2 /( )
dd11
1W W G=  ~ 2 /[ ( ) ]krr r

3g G G  ~ ( ) /kr r r
3 g G- ,

where k = 2pn0/lLPR, and lLPR is the LPR wavelength in vac-
uum. Assuming that gr ~ 108 Hz, Gr ~ 1012 Hz, such that 

/r rg G  << 1, as well as lLPR = 520 nm and n0 = 1.5 (for a gold 
nanoparticle in a polymeric shell), we obtain 2Wdd

(1) /G < 0.3 
<< 1 at r > 18 nm. In the general case, energy (18) of the inter-
action of the nanoparticle and the emitter includes a term 
proportional to (kr)–3 and corresponding to the quasi-static 
approximation, as well as the terms proportional to (kr)–2 and 
(kr)–1. The term corresponding to the quasi-static approxima-
tion is at least three times larger than the other terms if (kr)3 
< 0.1 << 1, which is satisfied for r < 26 nm. Thus, the assump-
tions of the weak interaction and the quasi-static approxima-
tion are met in a not very large but finite interval 18 < r < 
26 nm, which is sufficient for the estimates in the first approx-
imation, although for more accurate estimates and a wider 
interval of r, we should abandon the quasi-static approxima-
tion. 

Under the conditions W11 << 1 и g/G ~ gr/Gr << 1 in (19) 
we can eliminate adiabatically A1

(1,1), by setting A ( , )
1
1 1o  = 0. 

Then, A1
(1,1) = –iW11A0

(1,1), and this expression is substituted 
into the first equation ( 19), after which it is reduced to the 
relation A ( , )

0
1 1o  = –(g/G + W 2

11)A0
(1,1). Thus, it turns out that the 

state of the system with a single excitation (either the atoms or 
the nanoparticle is excited) is the only one and can be approx-
imately, up to terms proportional to W 2

11, described by the 
wave function 

| (| , | | , | )ia 1 1 0 1 0 1( , )
11 0

1 1
11Y W= - ,	 (20)

where  а0
(1,1) = 1/ 1 11

2W+  » 1 is determined from the nor-
malisation condition GY11|Y11H = 1. Since the state with this 
energy is the only one, the issue of its orthogonality to any 
other state does not arise. The population W11 of state (20) 
decreases exponentially due to the radiative and nonradiative 
transitions to the state |1, 0H|0H with the rate g + GW 2

11 and 
increases because the same transitions with the rate G from 
the state |1, 1H|1H. Note that for the weak interaction (W11 << 1), 
the increment of the attenuation of state (20) is purely real, 
i.e., a change in the radiation frequency of the emitter and 
nanoparticle, compared to the radiation frequency of the 
emitter in free space, can be neglected up to terms propor-
tional to W 2

11. 
We can write the system of equations of the population 

balance: 

W W12 12G=-o ,

( )W W W11 12 11
2

11gG GW= - +o ,	 (21)

( )W W10 11
2

11g GW= +o ,

where W12 and W10 are the populations of the states |1, 1H|1H 
and |1, 0H|0H, respectively; and the time is the dimensional 
value. 

To determine the rate of emission of the atom – nanopar-
ticle system, it is necessary in (21) to divide the rates of radia-
tive and nonradiative relaxations. It is obvious that for the 
transition |1, 1H|1H ® |Y11H, for which G = Gr + Gnr, the term 
proportional to Gr is the rate of the radiative relaxation, and 
proportional to Gnr is that of the nonradiative relaxation. To 
find out which part of the relaxation rate (proportional to g + 
GW 2

11) of the state |Y11H corresponds to the radiative relax-
ation, and which – to the nonradiative one, we calculate the 
matrix elements of the dipole moment operator dt  + dpt  of the 
atom and the nanoparticle for the transition |Y11H ® |1, 0H|0H. 
The rate of the radiative relaxation is determined by the 
square of the matrix element dt  + dpt . With accuracy up to 
small corrections, proportional to W 2

11, and using the condi-
tion dp >> d, which follows from the relations Gr/gr = d2p/d2 
and Gr/gr >> 1, we find 

1,0 | | |d d0 p 11Y+t t

=  , | | ( ) (| , | | , | )i id d d d1 0 0 1 1 0 1 0 1p p11 11W W+ - = -t t .

The rate of the radiative relaxation for the transition |Y11H ® 
|1, 0H|0H is proportional to |d – iW11dp|2; therefore it is equal to 
gr + GrW

2
11. Accordingly, the rate of the nonradiative relax-

ation of this transition g + GW 2
11 – (gr + GrW

2
11) = gnr + GnrW

2
11.

We have found that because of the interaction of the atom 
with the nanoparticle, the rate of its emission in free space 
increases by GrW

2
11 with respect to the rate gr of spontaneous 

emission of the atom without a nanoparticle. When the atom 
interacts with the nanoparticle, apart from emission there 
also arises nonradiative relaxation of its excited state due to 
the absorption of part of radiation of the atom by the 
nanoparticle, including the excitation of virtually nonradia-
tive multipole modes of vibrations of its electron density. The 
nonradiative relaxation of the atom occurs at a rate gnr + 
GnrW

2
11. Assume that the emitter is not too close to the surface 

of the nanoparticle (i.e., at a distance of greater than 5 nm 

* Basic mutually orthogonal states must include in the general case the 
states of the thermostat – electromagnetic field modes, where radiation 
is emitted and through which the emitters and nanoparticle interact.
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[18]), so that gnr G gr. Because Gr, Gnr >> gr, gnr, then GrW
2
11 >> gr  

and GnrW
2
11 >> gnr even for W

2
11 << 1 (weak interaction of the 

atom and nanoparticle). 

3.2. Superradiance of N atoms near a spherical nanoparticle

Consider a spherical nanoparticle in a dielectric shell of radius 
r, the surface of which contains a large number (N >> 1) of 
atoms (emitters). At the initial instant of time, due to the 
action of the coherent pulse of the external field they undergo 
a transition into the excited state, the dipole moments of the 
transitions from which to the ground state have the same 
direction. For the reasons of symmetry, for N >> 1 one can 
assume that the dipole moment of the nanoparticle, excited 
during the exchange of photons between the nanoparticle and 
the emitters after their excitation, will have the same direc-
tion. Let us make certain of it. Note that in the quasi-static 
approximation a point dipole-emitter near a spherical 
nanoparticle interacts with it as if the dipole moment of the 
nanoparticle were concentrated in its centre. The polarisation 
direction of an emitter near a nanoparticle generally does not 
coincide with the direction of the dipole moment of the 
nanoparticle because the electric dipole radiation of the emit-
ter has both a component parallel to its dipole moment and a 
component directed along the straight line connecting the 
centres of the nanoparticle and the emitter (see Fig.  6a). 
However, if the number N of the emitters in the nanoparticle 
shell is sufficiently large (N >> 1) and at the initial instant of 
time they are equally polarised with the excitation pulse, then 

the system has a symmetry axis – the direction of the initial 
polarisation of the emitters. We assume that the emitters are 
on the surface of the nanoparticle shell, i.e., at the same dis-
tance from its centre. Then, the field components of the emit-
ters, parallel to the symmetry axis, are coherently (in phase) 
summed in the centre of the nanoparticle. The field compo-
nents of the emitters, perpendicular to the symmetry axis, are 
mutually eliminated with good accuracy: for each dipole d, 
the direction to which from the nanoparticle centre makes an 
angle q with the vertical – the direction of the vector d, we can 
find another almost axially symmetric dipole the direction to 
which makes an angle with the vertical close to – q (Fig. 6b). 
Of course, the arrangement of the dipoles lacks the total axial 
symmetry because the distribution of the emitters on the shell 
is random. However, if the dipole on the shell is shifted with 
respect to its middle, axially symmetric position, then this 
shift is on the order of 2r(p/N)1/2, which is the characteristic 
size of part of the shell surface per dipole. Accordingly, for 
N >> 1 the fluctuations dq with respect to the angle corre-
sponding to the middle, axially symmetric positions of the 
emitters are small: dq ~ /Np  << 1. With the same accuracy 
the field components of the emitters, perpendicular to the 
symmetry axis, are mutually eliminated and we can assume 
that the direction of the dipole moment of the nanoparticle 
coincides with the direction of the dipole moments of the 
emitters. 

We estimate when the energy of the dipole – dipole inter-
action of the atom with the nanoparticle is small compared to 
the average energy of the interaction between this atom and 
other N – 1 » N atoms on the surface of the shell of the par-
ticle: 

r

n ddp
3

0
 << Nn d

r
1

0
2

3
,	 (22)

where G1/r3H denotes averaging over all the atoms. One can 
estimate that the G1/r3H G 1/r3. Taking into account the last 
inequality and expressing condition (22) through the rates Gr µ 
dp2 and gr µ of spontaneous emission of the emitter and the 
nanoparticle, we obtainthat (22) is satisfied if 

Gr/gr << N2.	 (23)

For a spherical nanoparticle of radius a we can obtain an 
expression [5] 

( )n

n a

c1 2

2
r

0
2 2

0
3 3

3

4wG =
+

,

where w is the LPR frequency, and c is speed of light in vac-
uum. For a = 10 nm the rate Gr = 7 THz for gold or silver 
nanoparticles. Assuming gr » 0.1 GHz for the dipole allowed 
transitions of the emitter, we obtain that condition (23) is met 
for N >> 260, i.e., the surface of the nanoparticle shell should 
contain at least 500 – 1000 emitting atoms. 

We assume that the number of emitters is large enough 
and condition (23) holds. Then, we can assume that the col-
lective states (Dike states) of the emitters are formed and 
these states will interact with the nanoparticle. The operator 
of the dipole – dipole interaction of the nanoparticle and col-
lective states of the emitters 

( /2) ( 1 3 )/ . .cos c cV n d d rdd p i
i

N

i i0
1

2 3q=- - + ++

=

t t t= G/  ,

dp

dp

d
1

2

di
dj

q
–q

dq

2

1

a

b

Figure 6.  Formulation of the problem (a) with a single emitter on shell 
1 of a spherical metal nanoparticle 2 (the direction of the dipole moment 
of the nanoparticle induced by radiation of the emitter does not coin-
cide in the general case with the direction of the dipole moment of the 
emitter) and (b) with N >> 1 emitters residing on the shell of a spherical 
metal nanoparticle and having the same direction of the dipole mo-
ments. 
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where qi is the angle between the direction of the dipole 
moment of the ith atom and the segment of length ri, connect-
ing the centres of the ith nanoparticle and atom (Fig. 6b). Due 
to the fact that the quantity (–1 + 3сos2 qi)/ri

3 varies from atom 
to atom, the matrix elements Vddt  will be different from zero 
not only for the transitions between symmetric states of the 
emitters, which is quite important, if the number of the emit-
ters is on the order of about 1. However, for a large number 
of emitters such transitions can be neglected. Indeed, in 
describing the nanoparticle we use its ‘macroscopic’ field, 
which is proportional to the total dipole moment  dpt , associ-
ated with oscillations of a large number of conduction elec-
trons, rather than its ‘microscopic’ field, which is the sum of 
fields from each electron separately. Similarly, we can use a 
macroscopic field of the shell containing a large number of 
emitters, which is proportional to the total dipole moment of 
the shell, dii 1=

N t/ . Therefore, the expression for the operator 
Vddt  of the dipole – dipole interaction between the nanoparticle 
and collective states of a large number of emitters can be writ-
ten with high accuracy in the form 

. . cosc cV
r
n d d
2

1 3dd p i
i

N

3
0

1

2q=- + - ++

=

t t te ^o h/

	 =  . .c c
r
n d d
4

p i
i

N

3
0

1

- ++

=

t te o/ ,	 (24)

where the angle brackets denote averaging over all the atoms. 
The matrix element Vddt , given by (24), is nonzero if the matrix 
element dii 1=

N t/  is different from zero, which only takes place 
for the transitions between the symmetric states of the atoms. 
The matrix elements of transition (24) between the states  
|N, ne – 1H|np + 1H and |N, neH|npH with the same energy are 

| , | | , |n N n V N n n1 1p e dd e p- +t

	 =  | , | | , |n N n V N n n1 1p e dd e p+ - t

	 =  ( ) ( )N n n n1 1 /
dd e e p

1 2'W - + +6 @ ,

where ne = n – np;

r

n
dd

4
dd p3

0'W =- .	 (25)

We assume that the interaction of the emitters and the 
nanoparticle is weak; therefore, no more than one plasmon is 
excited in it, i.e., np = 0, 1, and the system has no more than N 
+ 1 excitations. The system states with the same energy, simi-
lar to (16), are 

| , | | , |A N n A N n0 1 1( , ) ( , )N n N n
0 1+ - , n = 1, ..., N;	 (26)

the coefficients A0
(N, n), A1

(N, n) are determined from the equa-
tions 

( / ) iA A A( , ) ( ) ( , ) ( , )N n
n
N N n

Nn
N n

0 0 1g G W=- -o ,

iA A A( , ) ( , ) ( , )N n N n
Nn

N n
1 1 0W=- -o ,	

(27)

and A A( , ) ( , 1)N N N N
1

1
1=-

+ +o . In equations (27), gn
(N) is the rate of 

emission of N atoms, some of which have n excited atoms, 
determined by (9); 

2( / ) ( )N n n1 /
ddNn

1 2W W G= - +6 @ ;	 (28)

use is made of the dimensionless time t = Gt/2. We assume 
that, as in the case of an atom and a nanoparticle, the interac-
tion is weak (WNn << 1) and the plasmon relaxation is rapid 
(gn
(N)/G << 1). Then, adiabatically excluding A1

(N, n) from (27) 
and assuming there 0A ( , )N n

1 =o , we find 

iA A( , ) ( , )N n
Nn

N n
1 0W=- ,

( / )A A( , ) ( ) ( , )N n
n
N

Nn
N n

0
2

0g G W=- +o 	
(29)

and the wave function of the state of the ‘emitters – nanopar-
ticle with n excitations’ system 

| (1 ) (| , | | , 1 | )iN n N n0 1/
Nn Nn Nn

2 1 2Y W W= + - -- .	 (30)

Solving (29) and using (9) and (28) we obtain that the popula-
tion WNn = |A0

(N, n)|2 the state with the wave function (30) 
decreases due to radiative and nonradiative relaxations with 
the rate 

( 1) [ 4( / )]N n n ddNn
2gG W G= - + + .	 (31)

The system thus relaxes into the state |YN n – 1H, but the value 
WNn increases with the rate GN n + 1 due to the transition 
|YN n + 1H ® |YNnH. Calculating the matrix elements of the oper-
ator 

d d dtot p i
i

N

1

= +
=

t t t/

of the total dipole moment of the nanoparticle and atoms for 
the transition  |YNnH ® |YN n – 1H, we find an expression 

( , | | , | |)iN n N n1 0 2 1NnW- + -

	 ´  (| , | | , | )id d N n N n0 1 1p i
i

N

Nn
1

W+ - - =
=

t te o/

	 =  , 1| | , iN n d N n dp
i

N

i Nn
1

W- -
=

t/

with the accuracy up to terms of order of W 2
Nn << 1. Calculating 

the squares of the moduli of the matrix elements dtott , we 
determine the rates 

( 1) [ 4 ( / ) ]N n n r r ddNn
2g g G W G= - + +

of the radiative relaxation at the transitions |YNnH ® |YN n – 1H. 
Neglecting the fast process – plasmon relaxation from the 
excited state, we obtain a system of rate equations for the 
populations WNn of the states |WNn ñ:

W WNN NN NNG=-o ,

.............................

W W WNn Nn Nn Nn Nn1 1G G= -+ +
o ,	 (32)

.............................

W W0 1 1N N NG=o .
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Thus, under conditions of a strong interaction between the 
emitters when there exist their symmetric states, the nanopar-
ticle changes the process of superradiance of atoms so that 
due to an increase in the rate of spontaneous emission of a 
single atom the rate of superradiance increases. Due to the 
absorption of radiation of atoms by a nanoparticle, there 
occurs a nonradiative relaxation of the populations of the 
excited states of atoms, which, as the rate of superradiance, 
increase because of the interaction of atoms. 

4. Characteristics of superradiance near a metal 
nanoparticle 

4.1. Time dependence of the superradiance pulse power 

As for superradiance of several atoms, in this case, we can 
find the exact solution of the system of balance equations (32) 
by solving it from the first equation, and then determine the 
rate of superradiance. For the latter, we can obtain an ana-
lytic expression similar to (14) if we neglect the fluctuations in 
the number of excited atoms. The radiance power of N atoms 
near the nanoparticle is 

( ) ( / ) ( )
d

d
t

t

n
N n n4 1p

nr nr ddN
2g G W G= - + - +P 7 A ,	 (33)

where the second term on the right-hand side is the average 
rate of nonradiactive decay of populations of states of the 
atoms; and 

( ) ( 1)N n n W N n n1 Nn
n

N

1

- + = - +
=

/ .	 (34)

The expression for dGnH/dt will be the same as expression (14) 
obtained in the Dicke model for atoms without a nanoparti-
cle, but instead of gr one must substitute 

4 /p dd
2g g W G= +

i.e., the total rate of decay of the population of a single atom 
near the nanoparticle. Considering that at the initial instant 
of time all the atoms are excited and neglecting quantum fluc-
tuations, i.e., making the substitution Gn2H » GnH2, by analogy 
with (14) we obtain

( 1)
d

d

t

n
N n np/ g - +

	 = sec lnhN N t
N
N

2
1

2
1

1p p

2
2g g+ +

-
+

c cm m; E.	 (35)

Form (33) – (35) we find the superradiance power of the 
atoms in the presence of a nanoparticle: 

( ) sec lnht N N t
N
N

2
1

2
1

1
p

pr pN

2
2g g=

+ +
-

+
P c cm m; E ,	 (36)

where 4 ( / )2pr r r ddg g G W G= +  is the rate of spontaneous emis-
sion of an atom near a nanoparticle, averaged over the posi-
tions of the atoms. Result (36) is quite understandable. In the 
case of weak interactions between atoms and a nanoparticle 
(Wdd/G << 1), the latter accelerates the superradiance in the 
same degree as the radiation of a single atom. In this case, the 

nanoparticle absorbs part of the energy that the atoms had 
at the initial instant time, the rate of energy absorption also 
increasing as the rate of emission of a single atom near the 
nanoparticle. Only part (gpr/gp) of the energy stored by the 
atoms at the initial instant of time is radiated with a delay 
(N + 1) ́  (gplnN)–1 in the form of a superradiance pulse with 
a duration {[(N + 1)/2]gp}–1. 

4.2. Estimate of the superradiance power and energy 

The superradiance power Pp
N can be expressed through the 

parameters of the nanoparticle. To this end, let us represent 
Pp

N in (36) in gr units and in the dependence on the dimension-
less time t = grt: 

( ) sec lnhF N N F
N
N

2
1

2
1

1r
p

r pN
1

2
2t t=

+ +
-

+
- Pg c cm m; E,	 (37)

where 1 / 4 /( )Fp nr r dd r
2g g gW G= + +  is the factor that describes 

an emitter-averaged increase, with respect to gr, in the rates of 
radiative and nonradiative relaxations, and Fr = 1 + 
( / )4 /( )r dd r

2 gG G W G  is the factor that describes an increase in 
the radiative relaxation of the excited state of an atom near a 
nanoparticle. Guzatov and Klimov [18] derived expressions 
for gnr, 

( / )
,

r a2

3

1
1

2
||

||

nr
r

r nr
nr

nr

3
g

g
g

g

G

G
=

-
=

= ,

for the cases, when the dipole moments of emitter transitions 
are directed, respectively, along and perpendicular to the axis 
connecting the centres of the nanoparticle and the emitter. 
However, under these conditions considered here the dipole 
moment of the emitter makes an angle q to the mentioned axis 
(Fig. 6b). We can assume that the initial pulse excites the 
emitter to a state with a transition dipole moment that is par-
allel to the emitter axis – the centre of the nanoparticles, with 
a probability cos2q. Averaging over the emitters on the sur-
face of a spherical shell gives an average probability of excita-
tion in the direction parallel to the axis cos2q = 1/2 (and the 
same – in the perpendicular direction); therefore, 

( )
( / 1)r a2

1
4

9 1||

r

nr

r
nr nr

r

nr

3g
g

g
g g

G

G
= + =

-

= .	 (38)

Taking into account relation (25), the expression for the rate 
of spontaneous emission of an emitter is gr = 4n0w3d2/(3ћc3). 
We can also derive the same expression for the Gr, but with the 
substitution of d by dp and the relation for G = Gr + Gnr, 

64( ) /kr

4 9
1

1
r

dd

nr r

2

6g G
W

G G
=

+
,	 (39)

where k = w/c is the LPR wavenumber. Substituting (38) and 
(39) into the expressions for Fp and Fr, we find 

1
( / 1) 64( ) /

F
r a kr4

9 1 9
1

1
p

r

nr

nr r
3 6G

G
G G

= +
-

+
+

,

1
64( ) (1 / )

F
kr
9 1

r
nr r

6 2G G
= +

+
.	

(40)

For a spherical nanoparticle of radius a 
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''

( )

( )

ka n2r

nr

3
0
5

e w
G
G

= ,	 (41)

where e''(w) is the absolute value of the imaginary part of the 
dielectric constant of the nanoparticle at the LPR frequency. 
Relation (41) follows from the well-known dispersion equa-
tion for the dipole mode of the nanoparticle [19]. The expres-
sion for the polarisability ap of a spherical nanoparticle of 
radius a has the form [20] 

( ) /(2 )a n np
3

0
2

0
2a e e= - + ,	 (42)

where e(w) = e'(w) + ie''(w) is the dielectric constant of the 
metal of the nanoparticle. The LPR frequency of the nanopar-
ticle is determined from the condition for the vanishing real 
part of the denominator in (42): 

'( ) 2n0
2e w =- .	 (43)

The dielectric constant of the metal of the nanoparticle is 
described by the Drude formula 

( ) 1 /( )ip nr
2 2e w w w wG= - + ,	 (44)

where wp is the plasma frequency. For silver, we use the same 
parameters as in [21]: ћGnr = 0.067 eV, ћwp = 8.04 eV. For 
gold, according to [22], ћGnr = 0.045 eV, ћwp = 8.45 eV. The 
emitters are arranged on the surface of the dielectric shell of 
the metal nanoparticle, the refractive index of the shell is n0 = 
1.5 and the particles themselves are in a transparent medium 
(e.g., water) with approximately the same refractive index. 
Using the above data and ignoring in (44) the term Gnrw as 
compared with w2, from (43) and (44) we determine the LPR 
frequency w and e''(w) at this frequency: 
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From these expression, for the LPR of a silver (gold) nanopar-
ticle we obtain an estimate ћw = 3.43 (3.6) eV, which corre-
sponds to the LPR wavenumber in vacuum k = 0.017 
(0.018) nm–1 and e''(w) = 0.107 (0.069). 

Figure 7 shows the time dependences of the superradiance 
pulse power for N = 500 atoms on the surface of a dielectric 
shell of radius 25 nm of a spherical silver or gold nanoparticle 
of radius 10 nm. Curves ( 1 ) and ( 2 ) were calculated accord-

ing to formula (37). For comparison, Fig. 7 shows curve ( 3 ) 
– superradiance pulse of 500 atoms on the surface of a dielec-
tric nanoparticle, obtained with the help of (14). Superradiance 
pulses ( 1 ) and ( 2 ) in the presence of a nanoparticle contain 
part (Fr /Fp) of the stored energy: pulse ( 1 ) – 44 %, and pulse 
(2) – 59 %. The superradiance pulse ( 3 ) in the absence of a 
nanoparticle contains all the initial energy of the atoms. 

5. Conclusions 

Assuming that the number of emitters near a metal nanopar-
ticle is large (more than several hundred), so that the inter-
action between the emitters is much stronger than the inter-
action of each emitter and a nanoparticle, and that there 
exist symmetrical Dicke states of the emitters, the rate of 
superradiance near a nanoparticle increases, compared to 
the rate of superradiance of the emitters in the absence of a 
nanoparticle, in the same manner as the rate of spontaneous 
emission of an emitter near a nanoparticle. At the same 
time, due to the absorption by the nanoparticle, only part, 
Fr /Fp, of the energy stored by the emitters radiates, where Fr 
and Fp are given by (40). For a gold or silver nanoparticle of 
10 nm in radius, the radiated energy, as follows from Fig. 7 
and our estimates, is approximately 50 % of the stored 
energy. We have derived an analytical expression for the 
time dependence of the superradiance pulse power in the 
Dicke model approximations, in particular by neglecting the 
quantum fluctuations in the number of the excited emitters 
and inhomogeneous broadening of the emitter transitions. 
The superradiance pulse near a metal nanoparticle proves 
sufficiently shorter, and its delay is much less than in the 
absence of the nanoparticle. 

Sufficiently high superradiance energy is what differs 
our results from the numerical calculation [13], where the 
energy of no more than three emitters of the total number 
(several dozens) was transferred into the superradiance 
pulse. The reason for the difference consists in our assump-
tion about the existence of symmetric states of the emitters 
near a nanoparticle. The substantiation for this assumption 
is as follows: at a sufficiently large number of the emitters in 
the shell of a nanoparticle, the interaction of the emitter 
with all the other emitters becomes stronger than its interac-
tion with the nanoparticle. In this case, we can assume that 
the collective states (Dicke states) are formed in the system 
emitters and these states interact with the nanoparticle. 
Collective spontaneous emission of the emitters is acceler-
ated by the nanoparticle, where part of radiation is absorbed 
therein. 

Note that the same large number of the emitters is 
required to observe the nonlinear effects in a dipole (plas-
mon) nanolaser [23]: the generation threshold and narrow-
ing of its line. It is possible that a large (at least several hun-
dred) number of the emitters in low-Q plasmonic nanoscale 
systems are a common condition for observation of nonlin-
ear effects in them, an example of which is the superradi-
ance. If the number of the emitters is relatively small – a few 
dozen or less (with a radius of the nanoparticle and its shell 
of about tens of nanometres), the result of [13], or close to it, 
can be valid for superradiance. Pustovit and Shahbazyan 
[13] assumed that the emitters are incoherently excited: their 
excited states at the initial instant of time corresponded to 
arbitrary directions of the dipole moments of the transitions 
to the ground state. We considered a simpler case of coher-
ent excitation of the emitters to the state with the same direc-
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Figure 7.  Superradiance pulse powers of 500 emitters on the surface of 
a spherical shell of radius 25 nm of ( 1 ) silver and ( 2 ) gold spherical 
nanoparticles of radius 10 nm and ( 3 ) on the surface of a dielectric 
spherical nanoparticle of radius 25 nm.
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tion of the transition dipole moment. Obviously, the initial 
coherent excitation increases the efficiency of the interaction 
of the emitters with each other. This is another reason for the 
fact that in our case the energy of a superradiance pulse is 
much higher than in [13]. 

The assumption that, even in the absence of a nanopar-
ticle, only collective, totally symmetric Dicke states are 
excited requires a more rigorous study and determination 
of the range of parameters for which it is well fulfilled. In 
similar systems without a metal nanoparticle, this assump-
tion is no longer valid because of the difference in the inter-
action of each of the emitters with other emitters and the 
corresponding inhomogeneous broadening (self-broaden-
ing) [16]. As a result, during emission excited are not only 
bright, totally symmetric states of the emitters, but also 
dark, nonsymmetric states. If the dark states are excited 
quite effectively (in fact, cease to be dark), then there arises 
a superradiance pulse: partially dark state will, sooner or 
later, radiate, which will lead to the destruction of a super-
radiance pulse. In the case of a nanoparticle, as pointed out 
in [13], the dark states can also interact effectively with 
higher multipole modes of the nanoparticle, which may not 
only lead to the pulse broadening, but also to a further 
reduction of its energy. On the other hand, it follows from 
Fig. 7 that if there exist the Dicke states of the emitters, 
superradiance occurs very rapidly, during a time of ~10 ps. 
Efficient excitation of the dark modes of the emitters and 
higher multipole modes of the nanoparticle in such a short 
time may not be possible. Furthermore, if the emitters are 
arranged at a distance of more than 5 – 10  nm from the 
nanoparticle surface, their interaction with higher multi-
pole modes of the nanoparticle is unlikely to significantly 
affect the superradiance, because the effective interaction 
of the emitter with these modes occurs when the distance 
from the emitter to the nanoparticle surface is less than 
5 nm [18]. 

Self-broadening of the state of the emitters near a 
nanoparticle requires a separate study. It is determined by 
fluctuations of the energy of the interaction of the emitters 
with each other: the more uniformly the emitters are distrib-
uted in the shell, the less the fluctuations of their interaction 
energy and self-broadening. In addition, in the case of a metal 
nanoparticle the superradiance pulse is much shorter than 
without it, and self-broadening of the emitters’ transitions is 
same in both cases. It gives hope for the observation of a 
superradiance pulse of the emitters near the metal nanoparti-
cle, which may have occurred in [4]. It is likely that suitable 
will be elongated ellipsoid or cylindrical nanoparticles, or 
nanowires rather than spherical nanoparticles. Note that in 
experiments superradiance in the absence of a nanoparticle 
was observed in elongated, extended systems [16]. 

The above estimates show that under certain conditions 
it is possible to obtain a superradiance pulse in a system of 
emitters in the vicinity of a metal nanoparticle with the 
energy which forms a significant part (tens of percent) of the 
energy stored by the emitters. These results will be useful in 
developing a plasmon nanolaser based on superradiance, in 
analogy with ‘superradiant’ lasers experimentally investi-
gated in [24]. Such nanolasers can be used to produce nar-
row optical beams in the same manner as phased antenna 
arrays are used in the radio frequency range. It is possible 
that the effect of acceleration of superradiance of the emit-
ters near a metal nanoparticle will be useful for generation 
of short pulses. 

Appendix. Energy of the dipole – dipole 
interaction of a nanoparticle and an atom

The operator of the dipole moment of the atom dt exp(–iwt) + 
d+t exp(iwt) has matrix elements dexp(–iwt) and d*exp(iwt) of 
the ransitions, respectively, from the excited to the ground 
state of the atom and vice versa. The matrix elements can be 
considered real: d * = d . The electric field [Ep

t exp(–iwt) + Ep
+t

exp(iwt)]/2 from the nanoparticle at the place of the position 
of the atom is also the operator, because it depends on the 
amplitudes dpt  and dp+t  of the operator dpt exp(–iwt) + dp+t

exp(iwt) of the dipole moment of the nanoparticle. For small 
distances r between the atom and the nanoparticle such that 
the kr << 1 (k = 2pn0c/w, n0 is the refractive index of the trans-
parent medium in which the atom and nanoparticle are 
placed), Ep

t  = xn0dp/r3, where x = 2 if the directions of the 
transition dipole moments are parallel to the straight line con-
necting the centres of the nanoparticle and the atom, and x = 
–1 if the directions are perpendicular to this line. Thus, the 
operator of the energy of the dipole – dipole interaction of the 
nanoparticle and the atom 
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