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Abstract.  By solving self-consistently Schrödinger – Poisson equa-
tions for a carrier in the conduction band of an InGaN/GaN quan-
tum dot, a four-level quantum system is described. It is found that 
in the presence of terahertz signal radiation, the medium becomes 
phase dependent, which ensures the phase control of the group 
velocity of a weak probe pulse from slow to fast light. 

Keywords: group velocity, relative phase, quantum dot nanostruc-
ture.

1. Introduction 

In the past few decades, much attention has been given to 
quantum optical phenomena based on quantum coherence 
and interference, such as electromagnetically induced trans-
parency (EIT) [1, 2], lasing without inversion (LWI) [3], four-
wave mixing [4, 5], optical solitons [6, 7] and others interesting 
phenomena [8 – 15]. In this case, controlling of the group 
velocity of light leads to both ultraslow and superluminal 
propagation of light in various systems. Superluminal light 
propagation is a phenomenon in which the group velocity of 
an optical pulse in a dispersive medium is greater than of light 
in vacuum. It has been previously demonstrated that superlu-
minal light propagation originates from the interference of 
different frequency components of the light pulse. Thus, the 
coherence of such components plays an important role in 
superluminal light propagation. On the other hand, atomic 
coherence due to the coherent laser field has generally been 
used for controlling the group velocity. It has been shown 
that in a Raman gain medium with anomalous dispersion, 
superluminal light propagation is possible via a bi-chromatic 
driving beam in the regime of electromagnetically induced 
transparency [16]. In another model proposed by Agarwal et 
al. [17], it is noted that the group velocity can be controlled by 
changing the laser field intensity. 

Similar phenomena based on the quantum interference 
and coherence in semiconductor quantum wells (SQWs) and 
quantum dots (QDs) have also been extensively studied in 
recent years [18 – 27], such as gain without population inver-
sion [18], EIT [19], optical bistability/multistability [20 – 22], 
Kerr nonlinearity [23], four-wave mixing [24], and others 

[25 – 27]. The reason for this is mainly that the phenomena in 
SQWs and SQDs have many potentially important applica-
tions in optoelectronics and solid-state quantum information 
science. In other words, devices based on intersubband transi-
tions in the SQWs have many inherent advantages over 
atomic system: electric dipole moments due to the small effec-
tive electron mass, great flexibilities in devices’ design by 
choosing the materials and structure dimensions, and high 
nonlinear optical coefficients. The transition energies and the 
dipoles as well as the symmetries can also be engineered as 
desired [25]. 

In this paper, we propose a novel model for investigating 
the optical properties of a four-level spherical InGaN QD 
with a GaN barrier shell which is designed numerically by 
solving self-consistently Schrödinger and Poisson equations. 
By controlling the quantum dot size and external voltage, one 
can design a four level quantum dot with appropriate energy 
levels which are suitable for interaction with THz signal radi-
ation. In the presence of a THz signal, the medium becomes 
phase dependent; therefore, we exploit the fact that control-
ling the relative phase between applied fields can modify the 
absorption and the dispersion properties of the medium. In 
this case, the group velocity of the light pulse can be con-
trolled from subluminal to superluminal light values. 

2. Model and equations

By solving self-consistently Schrödinger – Poisson equations 
for a carrier in the conduction band of an InGaN/GaN quan-
tum dot, a four-level quantum system was obtained [27]. The 
parameters of the problem, such as QD radius and external 
voltage on it are changed to realise a multilevel nanocrystal. 
We consider a QD of spherical shape; we start by the follow-
ing Schrödinger equation and use the method of separation of 
variables: 

¶
¶

¶
¶

¶
¶

¶
¶

sin
sin

m r r
r

r r2
1 1

*

2

2
2

2
'

q q
q

q+` cj m;

	
¶
¶ ( )

sinr
V r1

2 2 2

2

q j
+ +G .	 (1)

Here, V(r) is the overall potential energy (including a charge-
induced potential obtained by solving the Poisson equation, 
external voltage and conduction band discontinuity for elec-
trons) which depends on r, q and j; and m*

i is the effective 
mass of the electron [the superscript i refers to a barrier 
(i = 1) or a dot (i = 0)]. Based on spherical symmetry, we can 
assume that V(r) has spherical symmetry. 
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Thus, the overall potential depends only on the radius r. 
The total wave function U can be separated into two func-
tions:

U(R) = Y(r)Y(q, j).	 (2) 

If we substitute U into the Schrödinger equation (1) and intro-
duce the separation constant l = l(l + 1), two equations are 
obtained:
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We will consider the radial differential part of Schrödinger 
and Poisson equations; thus, the radial part of the Schrödinger 
equation is written as:
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Here, l and Y(r) are the angular momentum quantum num-
ber and the slowly varying envelop, respectively. In order to 
increase the detection efficiency, the QD is doped and the 
presence of charge carriers modifies the overlap potential 
[V(r)]. Thus, the energy levels and wave functions can be 
determined precisely by solving the Schrödinger and Poisson 
equations.

The Poisson equation is written in the form:
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After some simplifications, for the radial part of the Poisson 
equation we obtain: 
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where Nd and Na are the distributions of ionised donors and 
acceptors, respectively; n(r) and p(r) are the distributions of 
electrons and holes, respectively; and ie*, F (r) and e are the 
permittivity of the medium, electrostatic potential and elec-
tron charge, respectively. Since we consider intersublevel 
transitions in the conduction band, we can assume that Na = 
p(r) = 0. We choose the typical value of Nd to be equal to 1021 
and 1024 m–3 inside and outside the dot, respectively.

As mentioned above, the overall potential will be modi-
fied as follows:

 Vi (r) = Eci – eFi(r),	 (8)

where Eci is the conduction band discontinuity obtained by 
material composition. The externally applied electric field 
contributes to the overall potential semi-classically as:

Vi (r) = Eci – eFi – eVext.	 (9)

It is necessary to calculate F in the Poisson equation. 
Thus, we should calculate n(r) with allowed wave functions Y 
and Fermi level EF: 
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where kВ is the Boltzmann constant. Summation over j refers 
to all allowed wave functions.

In the latter equation, the Fermi level is unknown and can 
be calculated from the equilibrium condition as:
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The self-consistent solution of equations (5), (7), (10) 
yields eigenstates. We repeat this cycle by inserting F in the 
overall potential and calculate the new eigenstates and their 
corresponding eigenvalues. The Fermi energy level in two 
successive steps may be chosen as the convergence indicator 
of this cycle.

In order to evaluate the considerable electric dipole 
moment elements between QD levels, we should calculate the 
dipole transition matrix elements:

dij = áFi|r|Fjñ.	 (12)

The normalised wave function with related energy eigenval-
ues are shown in Fig. 1 (Fig. 10 in Ref [27]). Below (Table 3 
from [27]), we also present the parameters for calculating 
wave functions and intrinsic energies in an InGaN/GaN QD. 

Thus, a four-level cascade-type medium coupled by two 
laser fields and a terahertz driving field is obtained (Fig. 2). 

Corresponding to eigenvalues, the wavelengths of the 
transitions |1ñ « |4ñ, |4ñ « |2ñ, |3ñ « |2ñ and |4ñ « |3ñ are equal 
to 0.95, 1.995, 2.097 and 41.2 mm, respectively. A weak tun-
able probe field with frequency np and Rabi frequency Wp = 
Ep Ã41/'  couples the ground state |1ñ to the exited state |4ñ. 
Two control fields with frequencies n1 and n2 and Rabi fre-
quencies W1 = E1 Ã42 /'  and W2 = E2 Ã32 /'  couple levels |4ñ 
with |2ñ and |2ñ with |3ñ, while the THz field with frequency n3 
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Figure 1.  Wave functions of a four-level nanocrystal [the radius of the 
quantum dot is 35 Å, and the thickness of the shell (barrier) is 30 Å].
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and Rabi frequency W3 = E2 Ã43 /'  couples levels |3ñ and |4ñ, 
where Ãkl = Ãkl el is the intersubband dipole moment for the 
electron transition between the levels |kñ and |lñ. The total 
decay rates from levels |3ñ and |4ñ to the ground level |1ñ are 
denoted by g1 = G1 + g1

dph and g2 = G2 + g2
dph, where gi

dph is the 
dephasing decay rate of the quantum coherence of the transi-
tion |iñ « | jñ, respectively. 

The density matrix equations of motion for the system in 
the rotating frame and under the rotating wave approxima-
tion are given by:
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Here, D = w41 – np is the frequency detuning of the probe field; 
w41 is the frequency deference between levels |4ñ and |1ñ; and 
np is the frequency of the probe field. We consider the reso-
nance condition, when the frequency detuning of the other 
laser fields are set to be zero, i.e., D1 = D2 = D3 = 0. Note that 
the three driving fields form a closed loop, so that the phase 
can be inserted into any one of them. In other words, if all the 
fields were phase dependent, only the collective phase would 
be important and no individual phase-dependent term would 
play any role. The collective phase is here defined as f = j3 + 
j2 – j1. Therefore, without the loss of generality, W1 and W2 
can be considered real, while W3 carries the phase, i.e., W3 = 
| W3 |e –if. 

Now, we continue to treat the numerical results in order 
to obtain the steady state behavior of the probe field absorp-
tion and dispersion as well as the group velocity when the 
driving fields are switched on. It is assumed that the system is 
initially in the ground state, so that  r11(0) = 1, rij (0) = 0 (i, j = 
1, 2, 3, 4). Furthermore, we assume that the intensity of the 
probe field is sufficiently weaker than the driving fields, such 
that all the atoms remain in the ground state. Therefore, the 
system of equations (13) can be written in the form 

R MR C=- +o ,	 (14) 

where R and C are the column vectors and M is a matrix as 
given bellow:

R T
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The formal solution of this equation has the form:
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We use equation (18) to obtain the solution for r41: 
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Figure 2.  Diagram of a four-level InGaN/GaN quantum dot nano-
structure interacting with a terahertz signal and two control fields. 
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Note now that the susceptibility can be written as:
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where N is the atom number density in the medium. Separating 
the real and imaginary parts c = c' + ic'', we obtain
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where Z = YY'. It is imperative to point out that the phase 
enters the susceptibility expression only through quantities A 
and Y. Moreover, the phase dependence of Y is expressed 
only through A. Thus, this phase factor could very well have 
emerged from either of the three driving fields. Moreover, if 
all the fields had phase dependence, only the collective phase 
would be important and no individual phase-dependent terms 
would occur. From equations (22) and (23) we can find that 
under the resonance condition for the probe field, the param-
eter W2 is important for calculating absorption, dispersion 
and group velocity in such a system. If W2 = 0, the absorption 

and dispersion will vanish. Thus, the existence of W2 is a nec-
essary condition to control the optical behavior of the group 
velocity, while the existence of W3 (terahertz signal) is a neces-
sary condition to make the system phase dependent. 
Therefore, for W3 = 0, the phase dependence of the medium 
will disappear. 

3. Results and discussion 

In terms of this model, we can also determine the group veloc-
ity of light according to [28]
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It is found that from Eqn (25), when Re c(w) is zero and the 
dispersion is positive and strongly depends on the frequency
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Figure 3.  Linear susceptibility of the probe pulse [hereinafter, curve ( 1 ) shows absorption and curve ( 2 ) – dispersion] and group velocity vs. probe 
field detuning in the absence of a terahertz signal field at W1 = W2 = 10, W3 = 0 and g1 = g2 = 2g in the case of f = (a) 0 and (b) p. 
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It means that the group velocity shows continuous tunability 
over a wide range of values ranging from subluminal to super-
luminal with changing the phase of one of the control fields, 

other parameters being kept constant. Figure 3 shows the 
dependence of the susceptibility and ratio of the velocities of 
light in vacuum and medium for a weak probe light field in 
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Figure 4.  Linear susceptibility of the probe pulse and group velocity vs. probe field detuning in the presence of a terahertz signal field at W1 = W2 = 
W3 = 5, and g1 = g2 = 2g in the case of f = (a) 0, (b) p/2 and (c) p. 
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the absence of the terahertz field on the detuning of the probe 
field from the resonance at different relative phases of the 
control fields. One can see that in the absence of a terahertz 
signal field the medium is not phase dependent. Therefore, 
the sign of the slope of the dispersion does not change with 
the relative phase. In this case, the group velocity of the probe 
pulse cannot switch from subluminal to superluminal. 

However, in the presence of a terahertz signal field 
(Fig. 4), this dependence appears and we observe a change in 

the sign of the slope of the dispersion with the phase giving 
rise to ‘switching’ of the group velocity of the probe pulse 
from superluminal to subluminal. The dependences of the 
susceptibility and the ratio of the velocities of light in vacuum 
and a medium for a weak probe light pulse on the relative 
phase of control fields are shown in Fig. 5. It can be seen that 
the absorption, dispersion and group velocity of the probe 
pulse can be changed continuously by varying the relative 
phase. Therefore, superluminal and subluminal light propa-
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Figure 6.  Intensity tuning of susceptibility variation vs. (a, b) W1 and (c, d) W3. Other parameters are the same as in Fig. 5. 
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gation is possible when changing the relative phase of the 
applied fields. In this case, the superluminal light propagation 
is accompanied by reduced absorption which means that the 
pulse is not attenuated considerably as it passes through the 
medium. Therefore, our model shows the phase control of the 
group velocity is possible. 

Figure 6 shows the dependences of absorption and disper-
sion properties of weak probe light on W1 and W3 at f = 0 and 
p. One can see that a wide range of tunability and switching 
from subluminal to superluminal group velocities can be pro-
vided.

4. Conclusions 

Thus, we have discussed the effect of the phase and amplitude 
of the driving fields on absorption, dispersion and propaga-
tion properties of a probe field applied to an InGaN/GaN 
quantum dot nanostructure. We have calculated the quantum 
dot nanostructure numerically by solving self-consistently 
Schrödinger and Poisson equations. By controlling the size of 
the quantum dot and the external voltage, we have obtained a 
four level quantum dot with appropriate energy levels which 
can be suitable for controlling the superluminal and sublumi-
nal light propagation by a terahertz signal field. We have 
shown that in the presence of a terahertz signal field, the 
medium becomes phase dependent and therefore the group 
velocity of the probe field can be tuned in a wide range by 
changing the phase of the terahertz field. The group velocity 
can also be switched from subluminal to superluminal 
through a continuous change of the phase.
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