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Abstract.  We report some specific features of transient radiation 
from a periodic spatially modulated one-dimensional medium with 
a resonant response upon excitation by an ultrashort pulse. The 
case of ring geometry (with particle density distributed along the 
ring according to the harmonic law) is considered. It is shown that 
the spectrum of scattered radiation contains (under both linear and 
nonlinear interaction), along with the frequency of intrinsic reso-
nance of the medium, a new frequency, which depends on the pulse 
velocity and the spatial modulation period. The case of superlumi-
nal motion of excitation, when the Cherenkov effect manifests 
itself, is also analysed.

Keywords: Cherenkov radiation, ultrashort pulse, superluminal 
motions, optical Bloch equations. 

1. Introduction 

In studying radiation from a straight-line system of harmonic 
oscillators with spatially modulated density, excited by a 
moving point source, we have revealed some nontrivial spec-
tral features related to transient processes [1, 2]: along with 
radiation at the eigenfrequency of oscillators, which is typical 
for resonant systems, spectral components characterising the 
spatial distribution of oscillator density are also excited. In 
particular, in the case of periodic density modulation, the 
spectrum contains new quasi-monochromatic components, 
whose frequency depends on the modulation period and the 
obervation direction. Propagation of the excitation with a 
rate exceeding the speed of light in vacuum c is accompanied 
by emission of Cherenkov radiation.

The motion of a physical object with a velocity exceeding 
the speed of light in vacuum, at which a signal (information) 
is transferred, is forbidden by the theory of relativity. 
However, there are many situations in physics and, in particu-
lar, optics, where superluminal motion of a localised physical 

perturbation occurs without signal transfer. Heaviside and 
Sommerfeld [3 – 5] were interested in these superluminal 
motions and related radiation even at the turn of the 19th and 
20th centuries, before the theory of relativity was developed. 
The problem of possibility of superluminal motion has been 
repeatedly raised throughout the 20th century and nowadays 
[1 – 6]. In particular, the existence of superluminal particles – 
tachyons – was considered in the 1960s – 1970s [6].

In the 1930s, a study of the motion of an electric charge in 
a medium with a velocity exceeding the phase speed of light in 
this medium led to discovery of Cherenkov radiation [7 – 12]. 
This radiation is related to the displacement of local polarisa-
tion of the medium [9] characterised by instantaneous 
response to external perturbations. Radiations from different 
sources moving with superluminal velocity were considered in 
[13 – 16]. Radiation of superluminal charges was studied in 
[17]. The possibility of manifestation of effects due to superlu-
minal motions in different fields of physics was also investi-
gated in [4]. Many recent studies reported the generation of 
Cherenkov radiation in the form of the second harmonic with 
respect to the incident light wave frequency in media with 
both random [18] and periodic [19] distributions of suscepti-
bility. Radiation generated during motion of charged parti-
cles along a periodic structure (known as the Purcell – Smith 
radiation) was also considered in [20] and experimentally 
demonstrated for the first time in [21].

Examples of superluminal objects are widely known in 
optics. In the 1960s – 1970s, after the development of lasers, 
the possibility of propagation of high-power ultrashort light 
pulses (USLPs) in a nonlinear medium with a velocity 
exceeding the speed of light was shown in [22 – 26]. We con-
sidered the displacement of the region of intersection of a 
flat USLP with a straight line or a plane in [1, 2, 27]. In par-
ticular, the scattering of a flat superluminal USLP propagat-
ing over a flat surface with a spatially modulated density of 
scattering centres, positioned along a straight line or a plane, 
was investigated in [27]. Only the case of instantaneous relax-
ation of scattering centres was analysed. The obtained time 
dependence of scattered-radiation amplitude reflects the law 
of change in the scattering-centre density; note that the time 
scale of the corresponding signal depends on the observation 
angle.

However, the most popular example is the situation con-
sidered in [13 – 15]: motion of a light spot from a projector (or 
even a pulsar), rotating with a constant angular velocity, on a 
distant screen. Modern methods for controlling circular scan 
of light or electron beams provide readily their rotation with 
frequencies as high as ~1010 Hz or even higher. 
Correspondingly, the linear velocity of rotation of the exci-
tation region formed at the point of intersection of a pencil-
like rotating beam from a point emitter with a plane orthog-
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onal to the cone axis can be controlled in very wide limits 
(from subluminal to superluminal) by simple displacement of 
the plane along the cone axis. 

In all above cases, the radiation source in the medium is its 
dynamic polarisation induced by an incident photon or elec-
tron beam. In [1, 2], we emphasised an interesting feature of 
radiation from a linear medium. This is generation of coher-
ent Cherenkov-type radiation at a frequency that may differ 
from the resonant frequency of the medium. It is assumed 
that the distribution of oscillator density in space obeys a har-
monic law. The occurrence of a mode with a new frequency in 
the emission spectrum of the medium is related to the fact that 
the scattered wave arriving at the observation point is a tran-
sient process arising due to the finite time delay of the waves 
emitted by different regions of the medium and the ones ariv-
ing at the observation point. Such a delay is characteristic of 
both superluminal and subluminal propagation of excitation. 
Frequency W1 of radiation generated upon scattering is inde-
pendent of the resonant frequency of oscillators but depends 
on observation angle a, spatial period Lz of the oscillator 
arrangement along the z axis, and velocity V of an excitation 
USLP [1, 2]:

2
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V
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1 p
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W L
=

-
.	 (1) 

Note that relation (1) corresponds to the case where the 
oscillators of the medium are arranged along a straight line 
and nonlinear effects are disregarded. 

Here, we consider a circular arrangement of oscillators. In 
our opinion, the analysis of the results of interaction between 
a USLP and a resonant medium under conditions where the 
region of the USLP effect on the medium moves in the latter 
with a velocity exceeding the speed of light in vacuum is of 
particular methodical (and, possibly, practical) interest. The 
optical response of the medium can be used to detect such 
motions; it may have interesting properties, differing from the 
typical ones of the Cherenkov radiation [1, 2],.

In this study, we consider (both disregarding nonlinear 
effects and taking into account the nonlinearity of the 
medium) the cases where oscillators of the medium are located 
along a circle and the density of particle distribution changes 
according to the harmonic law. The lifetime of Cherenkov 
radiation excited in the system by a short superluminal pulse 
corresponds to the time during which the beam describes the 
circle; this radiation is resonant. That is why we use the term 
‘transient’ in the title of the paper. It is shown that the fre-
quency of generated radiation differs from the resonant fre-
quency of the medium. Possible application of this effect is 
discussed.

2. Analytical theory of the phenomenon in the 
case of circular motion of excitation, and 	
radiation detection at the centre of the system.  
The case of low excitation power (linear 	
response of the medium)

Let us consider a scattering medium having a one-dimen-
sional ring geometry (Fig. 1). Let oscillators be located along 
a circle of radius R and the oscillator distribution density 
depend harmonically on the polar angle j and be determined 
by the expression

( ) ( )cosN 12
1j kj= +j ,	 (2)

where k = 2p/Lj is the dimensionless angular spatial fre-
quency of oscillator distribution and Lj is the angular period 
of this distribution. The angle j is counted counterclockwise 
from the y axis, as in a polar coordinate system. The medium 
is excited by some physical object (e.g., light, electron beam, 
USLP, etc.) propagating along a circle and running this circle 
one time with a constant linear velocity V. We assume also (as 
in [2]) that the interaction time of the excitation beam with the 
excitation region is shorter than the oscillation period of the 
oscillators of the medium (or is comparable with it); corre-
spondingly, the spectrum of the interaction pulse contains not 
only the resonant frequency of oscillators, but is also rather 
wide and flat. Optical pulses with these characteristics can 
be obtained, in particular, in the THz range upon excitation 
of a gas medium (see reviews [28 – 31]). Examples of oscilla-
tors are nanoantennas [32, 33], two-level atoms, or quantum 
dots [34, 35].

We analyse two cases below. In the first case, an observer 
detects radiation, being located at the centre of the circle 
along which the medium is distributed. In the second case, an 
observer is located directly on the circle and detects radiation 
propagating along the circle and arriving at the observation 
point (see Fig. 1).

Under an USLP, oscillators begin to emit at their eigen-
frequency. The radiation field of an oscillator located on the 
circle at the point corresponding to polar angle j is deter-
mined (accurate to a constant factor) by the expression

( , ) expE t t V
R

2
j

g
j= - -` j8 B

	 cos t V
R t V

R
0# w j jQ- -` `j j8 B .	 (3)

Here, w0 is the resonant frequency of the oscillators of the 
medium; g is the field damping rate; and Q (t – Rj/V ) is the 
Heaviside step function, which takes into account the fact 
that an oscillator located at point j begins to emit at the 
instant Rj/V (when excitation arrives at the point with coor-
dinate j).

y

x

V

R

Light spot
Resonant 
medium

O y

j

Figure 1.  Ring geometry of a resonant medium excited by a light spot 
propagating along it with velocity V. The oscillators of the medium are 
characterised by periodic density distribution along the circumference. 
Radiation is detected either at the centre of the circle or at the point 
with angular coordinate y. 
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The total field at the centre of the circle is expressed in 
terms of the integral of (3) over the circumference, with allow-
ance for the spatial oscillator distribution density (1) and the 
radiation propagation time from a point on the circumference 
to the centre of the circle R/c:

( ) ( )expE t N t V
R

c
R

2
2

0
j

g
j= - - -

p
j ` j8 By

	 cos dt V
R

c
R t V

R
c
R

0# w j j jQ- - - -` `j j8 B .	 (4) 

Calculation of integral (4) shows that the spectrum of the 
transient process contains, along with the fundamental fre-
quency of the medium (w0), a new frequency [2] [see also 
expression (A1) in the Appendix]:

2
/
R

V
R
V

2 p kW
L

= =
j ,	 (5)

which depends on the angular period Lj of oscillator distri-
bution, circle radius R, and excitation propagation velocity. 
Relation (5) can be rewritten in the form

W2 = kWexc,	 (5a) 

where Wexc = V/R is the angular velocity of excitation. In this 
notation, the value W2 has a physical meaning of the excita-
tion rate of a system of periodically arranged oscillators (for 
example, lines of a curvilinear spatial diffraction grating 
located along a circle) by an excitation pulse. This process will 
have an apparent frequency W2 for an observer detecting radi-
ation at the centre of the circle.

Obviously, when the resonance condition 

RLj /l0 = V/c	 (5b)

is satisfied, it follows from formulas (5) and (5a) that w0 = W2; 
i.e., the new frequency coincides with the fundamental fre-
quency, and the observer located at the centre of the circle 
detects radiation only at the resonant frequency of the 
medium.

Note that the above-considered situation coincides in gen-
eral features with the case of a medium having a linear geom-
etry, where radiation is detected in a direction perpendicular 
to the medium [1, 2]. Indeed, formulas (1) and (5) for the new 
frequency in this and previous studies coincide at R = 1 and 
j = p/2.

Below we consider some numerical examples. Let the 
excitation point describe a circumstance one time and the 
following conditions be satisfied: V/c = 3.75, RLj /l0 = 2, and 
w0 /g = 22.22; then, w0 /W2 = 0.53. The result of calculating 
integral (4) and the electric-field spectrum are shown in 
Figs 2a and 2b, respectively.

An analysis of the solution (Fig. 2a) demonstrates that 
emission from point O begins at the instant when the field 
emitted by the first excited oscillator of the medium arrives 
(corresponds to R/c = 1 at these parameters). Then radiation 
from other oscillators of the medium arrives at point O. As 
a result, a complex transient process develops to yield a 
new frequency in the emission spectrum of the medium (see 
Fig. 2b). After the end of the transient process, the observer 
located at point O observes conventional damping oscilla-
tions of the medium.

The above consideration also holds true for the case where 
excitation propagates with speed of light c or with a velocity 
smaller than c. The spectrum of radiation detected at the cen-
tre of the circle also contains a new frequency (5) in this case.

3. Case of high-power excitation pulse. 
Nonlinear dynamics

The above-described situation corresponds to the conditions 
under which the pump pulse has low power and the nonlinear 
effects due to the interaction of this short pulse with a reso-
nant medium can be disregarded. However, if the pump pulse 
has sufficiently high power, the response of the system 
becomes nonlinear.

To calculate the dynamics of the population difference, 
N(t, j) = N0 v(t, j), and the polarisation of the medium, 
P(t, j) = d12N0[u(t, j)coswt + v(t, j)sinwt], under a high-power 
pulse field, we used optical Bloch equations for two-level 
atoms [36]:

( , ) ( , ) ( , )
d
d
t
u t v t T u t

1
2

j w j jD=- - ,	 (6)

( , ) ( , ) ( , ) ( , ) ( , )
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2

j w j j j v jD W= - + ,	 (7)
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d
t

t T t v t1 1 R
1

v j v j jW=- + - .	 (8)

Here, N0 is the particle concentration in the medium; u(t, j) 
and v(t, j) are, respectively, the in-phase and quadrature 
(with respect to the external field) components of polarisation 
of the medium per atom; v(t, j) is the difference in the level 
populations in a single atom; Dw is the frequency mismatch 
between the field frequency and transition frequency w0 for 
two-level particles; d12 is the transition dipole moment; T1 is 
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Figure 2.  (a) Behaviour of electric field E(t) at the centre of the circle in 
the linear case and (b) the spectrum of E(t). 
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the relaxation time of the population difference; T2 is the 
polarisation relaxation time; and d12 e(t)/'  is the Rabi fre-
quency of the pump field. Let the pump pulse envelope be 
Gaussian: e(t) = E0exp(–t2/t2).

In a particular case, where frequency mismatch Dw = 0 
and relaxation is absent (T1 = T2 = ¥), system of equations 
(6) – (8) is solved analytically by introducing the local pulse 
area [23, 36]

,( , ) ( )dt d t t
t

12

'
/j e jF

3-

l ly .	 (9) 

A solution of this system of equations yields an expression 
for the population difference per unit volume, N(t, x), and the 
polarisation of the medium, P(t, x), which are determined as 
[23, 36]

P(t, j) = d12N0 sin[F (t, j)]sinw0t,	 (10)

N(t, j) = N0 cos[F (t, j)].	 (11)

Note that the system of equations (6) – (8) has a simple 
physical interpretation [23, 36]. A change in N and P can be 
presented as a rotation of a unit Bloch vector in the xy plane. 
In this case, the x and y components of the vector correspond, 
respectively, to N/N0 and – P/d12N0. Then function F is the 
rotation angle of this Bloch vector. The total pulse area F  = p 
(p pulse) corresponds to the complete transition of particles 
from the lower level to the upper level, while F  = 2p corre-
sponds to the transition from the lower level to the upper and 
complete return to the lower level (2p pulse).

With allowance for (4) and (10), the electric field at the 
centre of the circle in the nonlinear case can be written as 

( ) ( )E t N P t V
R

c
R

0

2
- j j- -

p
j ` jy .	 (12)

An example of nonlinear dynamics of the field and its spec-
trum are presented in Fig. 3 (V/c = 2.3, RLj /l0 = 2, w0 /g = 
22.22, t = 2T0, where T0 = 2p/w0 is the period of natural oscil-
lations of the oscillator, WR = 0.07w0, and the total pulse 
area F¥ = p/2). With these parameters, W2 /w0 = 1.15.

The spectrum of the observed oscillation is presented in 
Fig. 3b, where the excitation-pulse spectrum is shown by a 
dashed line. It can clearly be seen that, along with the funda-
mental frequency, there is a new frequency in the emission 
spectrum of the medium.

A dependence of the emission spectrum on the total 
pulse area is shown in Fig. 4. When solving the problem, the 
pulse area changed due to the change in the Rabi frequency 
(pulse amplitude) at a constant pulse duration t = 2T0. The 
other parameters are the same as in the previous example. 
As can be seen in Fig. 4, the spectrum of the oscillation 
excited by a high-power pulse contains a branch correspond-
ing to the resonance frequency of the medium, w0, and a 
branch corresponding to the frequency shift W2. The small 
shift of the maximum of the fundamental oscillation of reso-
nators from w0 is due to the oscillator damping; it is inde-
pendent of the external field magnitude and the shift of the 
resonant oscillation frequency and is observed for all excita-
tion pulse areas. Note the absence of radiation at the resonant 

frequency if the pulse area is multiple of 2p. These points cor-
respond simultaneously to maxima of the shifted-frequency 
amplitude.

The new frequency, excited under an external effect, coin-
cides with the result of calculation within the weak-field 
approximation only at a small pulse area. An increase in field 
leads to an approximately linear increase in the shift; this 
process has a periodic saw-tooth character. It can be seen in 
Fig. 4 that, in the strongly nonlinear regime, when the pulse 
has a large area, the emission intensity at the new frequency 
W2 exceeds the emission intensity at the fundamental fre-
quency w0. The spectrum of the response of a two-level system 
to an external field is known to contain a spectral component 
at frequency w+ = w0 + WR. In this example, w+ » W2; the 
larger the pump field amplitude, the more accurate the 
approximate equality. An increase in the pump field ampli-
tude leads to a linear increase in the radiation intensity at fre-
quency w+, as follows from Fig. 4.

The periodic structure observed in Fig. 4 can be explained 
by the periodic dependence of the polarisation of the medium 
on the pulse area [the term sinF entering expression (10) for 
polarisation P(t, j)].

Note that we observed a similar dependence in [2] for a 
medium with linear geometry. Small minor oscillations of the 
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intensity of spectral components are due to the well-known 
effect of sharp limitation of the time interval during which the 
medium is excited, while their relatively large amplitude in 
Fig. 4 is due to only logarithmic representation.

4. Elementary theory of the phenomenon  
for the case where radiation is detected  
on a circumference 

Let us now assume that radiation from a medium can only 
propagate along a circumference (as in the case of whispering 
gallery modes [37, 38]) rather than along a chord and is 
detected not in the centre of the medium but at some point 
lying on a ring and specified by polar angle y (see Fig. 1). In 
this case, by means of considerations similar to those reported 
in the previous section, one can easily obtain an expression 
for the electric field at point y (with g = 0):

( , ) ( ) ( )cosE t N t V
R

c
R

0

2

0y j w j y j= - - -
p

j 8 B$ .y

	 ( ) dt V
R

c
R

# j y j jQ - - -8 B .	 (13)

Within our model, light can propagate only along the cir-
cumference; therefore, the term (R/c)(y – j) in the integrand 
in (13) corresponds to the propagation time of radiation 
from the oscillator located at the point characterised by 
polar angle j to the observation point, specified by polar 
angle y.

Calculation of this integral shows that the spectrum of the 
transient process contains again, along with the fundamental 
frequency of the medium, a new frequency [see (A3) in the 
Appendix]:

|
2
| /
/
V c

V
13 pW

L
=

-
j .	 (14) 

In contrast to the previous case, the new frequency 
depends on the V/c ratio. If the excitation propagates with a 
speed of light, the denominator in formula (14) becomes zero 
for the new frequency. In this case, radiation from any point 
of the medium arrives at the observation point simultane-
ously with excitation. No transient process is observed; cor-
respondingly, there is not any new frequency in the radiation 
spectrum. Directly after the pulse arrival, one observes damp-
ing eigenoscillations of oscillators at frequency w0.

Let us now discuss the physical meaning of formula (14). 
As in the previous case, this formula can be rewritten as

|| /V c1
exc

3
kW W

=
-

.	 (14a)

The numerator in expression (14a) has a meaning of the 
frequency of excitation of a system of periodically located 
oscillators (for example, lines of a curvilinear spatial diffrac-
tion grating) by an incident pulse. For an observer located at 
a point with angular coordinate y, this process would have 
apparent frequency W3 (the corresponding correction is taken 
into account by the denominator). Note that in the case of 
complex (but periodic) distribution of particles over the cir-
cumference, excitation of frequency W3 will be accompanied 

by excitation of multiple harmonics (diffraction orders higher 
than the first).

When the resonance condition (5b) is satisfied, formula 
(14) has the form

/V c13
0wW =

-
	 (14b)

and coincides with the formula for the frequency shift caused 
by the Doppler effect, where a source moves towards an 
immobile detector.

If the excitation velocity exceeds the speed of light, radia-
tion from the medium is detected at the observation point at 
the same time when the excitation pulse arrives at this point, 
as is clearly indicated by the results of our numerical calcula-
tion based on formula (13). The dependences of the emission 
spectrum of the system on the parameters of the problem 
(velocity V of the excitation point and circle radius R) are pre-
sented in Figs 5a and 5b, respectively. In Fig. 5 one can see a 
branch, corresponding to the resonant frequency of the 
medium, w = w0, and a branch of additional frequency W3, 
determined by formula (14). The calculation was performed 
for the observer’s angular coordinate y = 2p. All other param-
eters of the problem were the same as in Fig. 2. It follows from 
Fig. 5a that frequency W3 increases with an increase in V at 
V <  c and decreases at V > c. When the excitation velocity 
tends to the speed of light c, frequency W3 tends to infinity 
[see (14)]. As one would expect, frequency W3 decreases with 
an increase in the circle radius R (Fig. 5) at a fixed linear 
velocity of the excitation point.

The situation changes if the excitation velocity is smaller 
than the speed of light. In this case, excitation lags behind 
radiation from the medium. Therefore, if the polar angle y 
of the observation point is nonzero, radiation is detected at 
the observation point not immediately but after the time 
Ry/c, which is necessary for light to reach the observation 
point.

To conclude, we should note again that formula (14) for 
the new frequency also holds true for excitation with sublumi-
nal velocity. In this case, it is only the aforementioned charac-
ter of the transient process that changes.
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Our elementary consideration of this version of light 
propagation disregards spatial nonlinear effects that may 
arise when a short pulse affects an extended resonant medium. 
Generally, calculations must be performed within the more 
rigorous semiclassical theory of interaction of light with a 
resonant material [36]. This question, being a subject of indi-
vidual consideration, is beyond the scope of our study. 
However, even based on general considerations, one can 
qualitatively understand the processes occurring during 
superluminal propagation of a short light pulse through, e.g., 
a straight-line resonant medium. Let a short pulse (with a 
duration shorter than the relaxation times of the medium, T1 
and T2) excite a resonant optically dense medium by moving 
through it with some velocity (for example, superluminal, as 
in [1, 2]). It is known [39] that a short pulse propagating 
through such a medium leaves behind induced polarisation of 
the medium, which will emit an electromagnetic field (coher-
ent optical ringing of the medium) after the excitation pulse. 
Since the medium is optically dense, cooperative effects may 
occur; i.e., a complex time-dependent periodic exchange in 
energy between the field and medium (occurring for times 
shorter than the relaxation time of the polarisation of the 
medium T2) is possible [40 – 44]. This should give rise to new 
frequencies in the emission spectrum of the medium.

Our consideration [2] for a medium with linear geometry 
showed that a frequency determined by expression (1) may 
also arise in the emission spectrum of the medium in this case.

5. Conclusions

Thus, we showed that, upon superluminal excitation of a res-
onant medium, both in the absence of nonlinear effects and 
with allowance for them, new frequencies can be generated in 
the case of different geometries with spatially modulated 
parameters. In the case of a medium with linear geometry, the 
new frequency is determined by the excitation propagation 
velocity, the period of oscillator spatial distribution, and the 
observation angle. For a medium with ring geometry, the 
relation determining the new frequency depends strongly on 
the spatial region where radiation from the medium is 
detected.

The calculations show that in the linear case, where the 
pump pulse power is low, the intensity of radiation at reso-
nant frequency w0 always exceeds the radiation intensity at 
new frequency W2. However, in the nonlinear case (high-
power pump pulse), the situation is opposite: the radiation 
intensity at new frequency W2 may exceed the intensity at 
resonant frequency w0. We observed a similar situation for a 
medium with linear geometry in [2].

The effect considered in this study can be used to detect 
superluminal motions, perform frequency conversion in reso-
nant systems, and determine the spatial structure of a scatter-
ing system from the spectrum of scattered signal. The tran-
sient process observed by us can also be used to form light 
pulses shaped in time. The analytical technique described here 
can be applied to study time-dependent diffraction from pho-
tonic crystals.

Appendix. Derivation of formulas (5) and (7)

In the case of ring geometry, when radiation is detected at the 
centre of a circle, the expression for the transient process 
[integral (4)] has the form (V > c, g = 0, R/c < t < 2pR/V + 
R/c)

( ) ( )cos dE t N t V
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This formula contains terms oscillating at frequencies w0 and 
W2. 

When the transient process is over, i.e., at t > 2pR/V + 
R/c, the expression for integral (4) can be written as
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The latter equation contains only the terms oscillating at the 
resonant frequency of the medium, w0. 

When radiation is recorded on a circumference at a point 
with angular coordinate y, the expression for integral (6) for 
the transient process (at V > c, g = 0, Ry/V < t < Ry/V + 
Ry/c) takes the form

( ) ( )cos dE t N t c
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where 
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This formula contains terms oscillating are frequencies w0 
and W3. 

When the transient process is over, (A3) contains only 
terms oscillating at frequency w0. This expression is omitted 
here.
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