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Abstract.   Focusing of electromagnetic energy of the optical range 
into a nanoscale spatial region is studied in the vicinity of a metal 
microtip (the radius of curvature of the tip of the order of several 
nanometres), arising due to a convergent surface plasmon (gener-
ally, surface plasmon polariton) wave. The metal boundary near the 
tip is approximated by a paraboloid of revolution. It is shown that 
the size of the focal spot in the vicinity of the microtip in spatial 
coordinates, normalised to the radius of curvature of the tip, is 
determined only by the frequency of focused plasmons. The focus-
ing regimes at different frequencies are compared. 
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1. Introduction 

Nanofocusing of light is the key problem of modern optical 
near-field microscopy, because it makes it possible to obtain, 
for conventional optical instruments, a resolution greater 
than the Rayleigh diffraction limit [1 – 14]. It is important for 
developing optical nanosensors and delivering photons to 
individual molecules or even atoms, as well as for conducting 
local spectral measurements [13 – 20]. Nanofocusing of light 
allows one to efficiently control information flows in nano-
optics devices [21]. 

The most important phenomenon enabling real nanofo-
cusing of light is an extraordinarily sharp increase in the 
intensity of a surface plasmon polariton in the vicinity of the 
focus, i.e., the top of a pointed metal cone [22, 10]. It is due 
to the fact that at a geometrically perfect metal tip there 
exists a singularity of the electric field of a convergent wave. 
This phenomenon is well explained in the quasi-static 
approximation, which is performed near the tip of an ideal 
metal conical structure [23 – 25]. However, an ideal conical 
structure does not happen in nature, the tip of a real cone 
having a finite radius of curvature [22]. Although the theory 
constructed for an ideal conical structure explains nanofo-
cusing, it does not answer the question about the structure 
of the electromagnetic field in the vicinity of the rounded 
tip. To eliminate this gap in theory, we study in this paper 
focused fields in the vicinity of the top of a pointed metal 
cone whose surface is approximated by an axisymmetric 
paraboloid of revolution. 

2. Finding the electric field at the apex 		
of a rounded metal microtip 
in the quasi-static approximation 

Consider a metal microtip whose surface near the apex is 
described by an axisymmetric paraboloid of revolution (Fig. 1). 
We introduce parabolic coordinates (system of rotating para-
bolic coordinates)  a, b and y [26], which are related to rectan-
gular Cartesian coordinates x, y and z by the formulas 

, , ( )cos sinx c y c z c
2
1 2 2ab y ab y b a= = = - ,	 (1)

where c is a constant scale factor. 

Let us find the electric field distribution near the apex of 
the microtip. Let the dielectric constant of the metal, of which 
the microtip is made, be em at the cyclic frequency of the field 
w (we assume a complex representation of the fields with a 
temporal dependence of form eiwt), and the dielectric constant 
of the external homogeneous medium at the same frequency 
be ed. In the quasi-static formulation the electric field poten-
tial should obey the Laplace equation, while the normal and 
tangential components of the field at the cone interface (a 
paraboloid of revolution with b = b0) should meet the condi-
tions 

,E E E Emd d dn m mne e= =t t .	 (2)

It follows from (1) that the cone interface b = b0 in coordi-
nates x, y, z is defined by the formula 

Focusing of a surface plasmon wave at the apex of a metal microtip 

A.B. Petrin 
			 

NANOFOCUSING OF OPTICAL RADIATION PACS numbers: 78.67.–n; 68.37.Uv; 73.20.Mf 
DOI: 10.1070/QE2015v045n07ABEH015713

A.B. Petrin Joint Institute for High Temperatures, Russian Academy 
of Sciences, ul. Izhorskaya 13, Bld. 2, 125412 Moscow, Russia; 
e-mail: a_petrin@mail.ru	

Received 12 November 2014; revision received 26 January 2015	
Kvantovaya Elektronika  45 (7) 658 – 662 (2015)	
Translated by I.A. Ulitkin

z

x

Figure 1.  Geometry of the problem. 
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It is easy to show that the radius of curvature of the tip is R = 
cb0

2, and formula (3) can be rewritten as 
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In the coordinate system in question (Fig. 1) the Laplace 
equation for the electric potential F at the axial symmetry (F 
does not depend on y) can be written as [26]: 
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The total axially symmetric solution of equation (5) is given 
by [26] 

[ ( ) ( )] [ ( ) ( )]B J p B Y p C I p C K p1 0 2 0 1 0 2 0a a b bF = + +/ ,

where p, B1, B2, C1, C2 are the constants; J0 and Y0 are the 
zero-order Bessel functions of the first and the second kind; 
and I0 and K0 are the modified zero-order Bessel functions of 
the first and the second kind. The summation is performed 
over all solutions satisfying the boundary conditions. 

We seek for a solution of the boundary problem for a field 
focused onto the tip by assuming that the potentials of the 
electric field outside ( b H b0) and inside ( b G b0) of the metal 
tip have, respectively, the form

( ) ( )AJ p K pd 0 0a bF = ,

( ) ( )BJ p I pm 0 0a bF = ,	
(6)

where A and B are the constants. 
This choice of functional dependences is due to the natu-

ral requirements to the field focused at the microtip: 
1) outside of the tip the potential should decrease with 

increasing distance from its surface, be finite and maximal at 
the top of the tip; 

2) inside of the metal tip the potential should be finite at 
the origin of the coordinates; moreover, it should be continu-
ous across the interface. 

Then, for the field components outside and inside of the 
tip we have, respectively, the expressions 
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On the surface of the tip (at b = b0) boundary conditions 
(2) should be met, from which we obtain a system of two 
equations: 

( ) ( ) 0AK p BI p0 00 0b b- + = ,

( ) 0pb =( )p BId m0 0 0b e+ 0- AKe l l .	 (7)

A nontrivial solution of (7) will exist when the determi-
nant of the system is zero: 
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then, we have 

( )pb =0( ) ( ) .p K p I 0d m0 0 0 0 0 0b e b-0( )I p Ke b l l

The resulting equation can be written in a more compact 
form, as an equation in one unknown q = pb0, as follows: 
edI0(q)K'0(q) – emK0(q)I'0(q) = 0. Given that I'0(q) = I1(q) and 
K'0(q) = –K1(q), we finally find the condition of existence of a 
nontrivial solution of the system of equations (7): 

( ) ( ) ( ) ( ) 0I q K q K q I q0 1 0 1d me e+ = .	 (8)

Let the dielectric constant of the metal and the surround-
ing dielectric be specified; then, equation (8) defines some 
value q* = p*b0 (and hence p* = q*/b0), which, in turn, com-
pletely determines the variation of the electric field in the 
vicinity of the tip by formula (6) [the relations between the 
constants A and B are found from expression (7) for the 
obtained q*]. Thus, on the surface of the tip [at b = b0, a = 
x y2 2

+ /(cb0)] the electric field potential has the form 
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From the first equation (7) it follows that for q = q* (and p* = 
q*/b0) the constants A and B are related by the expression В = 
А[K0(q*)/I0(q*)], and then the expressions for the electric 
potential F in the dielectric and metal with the boundary con-
ditions taken into account can be represented (up to a con-
stant factor) in the form 
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Consider the potential distribution in the plane xz. We 
make use of the positive values of x, a and b, wherein 

,
2
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and we obtain 
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where x* = x/c, z* = z/c.
Let the coordinates of the tip apex [see Eqn (4)] be equal 

to 0, z0, where z0 = R/2, then 
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Introducing the Cartesian coordinates /x x R=u , /z z R=u  nor-
malised to the radius of curvature of the tip, we obtain 
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As a result, the potential distribution (10) in the vicinity of 
the tip in the normalised Cartesian coordinates will have the 
form: 
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3. Study of electric field near the microtip

The dielectric constant of the metal is well described by the 
lossless Drude formula em = 1 – w2p/w2, where wp is the plasma 
frequency of the metal. At frequencies of surface plasmon 
existence (w < wp/ 2 ), the dielectric constant of metal is em 
< –1 on the metal – vacuum surface. Figure 2 shows the 
dependence of the solution of equation (8) on –em/ed at ed = 1. 

Numerical calculations showed that for a fixed value of 
–  em/ed, the solution of equation (8) is unique [the plot of the 
function on the left-hand side of (8) crosses the horizontal 
axis at one point]. Therefore, in this problem the sum that 
expresses the potential will contain only one term. 

The resulting dependence shows that at em ® –¥ (i.e., in 
the electrostatic limit w ® 0), q ® 0. From (9) it follows that 
the surface potential of the tip will be constant. Thus, in the 
electrostatic limit we obtain an ordinary electrostatic solution 
for a metal tip, which is under constant potential. 

For finite frequencies away from the top of the microtip, 
potential oscillations occur even in the quasi-static approxi-
mation, and, in the limit w ® wp/ 2 , the wavelength of these 
oscillations is reduced to zero. It should be noted that a simi-
lar phenomenon was observed for an ideal conical tip [23, 24]. 

Thus, using this value of frequency w we can find em and 
the value of q from (8), which determines the variation of the 
electric field in the vicinity of the microtip and on its surface: 
Fs µ ( ) ( )J q x y R K q0

2 2
0+ . 

Let us denote the dimensionless distance from the point 
on the surface of the tip to the z axis by the variable  r = 
x y R2 2

+ . Then, d = 1/q is the characteristic distance, 
which determines the size of the focal spot at the microtip. We 
assume that the boundary of the focal spot corresponds to the 
first root s1 » 2.40483 of the Bessel function J0(s). Then the 
distance from the boundary of the central focal spot to the 
axis of the tip is rb = s1d = s1/q. The larger the q, the smaller 
the size of the central spot in units of R. 

Focusing is optimal (in a relative sense) when the size of 
the focal spot is on the order of the radius of curvature of the 
tip, R. In this case, rb » 1 and qopt » s1 » 2.40483. Then, for 
a given material of the tip (i.e., for a given wp), equation (8) 
defines an upper cutoff frequency of optimal focusing. Using 
the Drude formula and assuming that outside of the tip is 
vacuum, from equation (8) at q = s1 we can find the cutoff 
frequency of optimal focusing, wb » 0.6225wp. 

Interestingly, the resulting cutoff frequency does not 
depend on the radius of curvature of the microtip, R. This 
regime seems optimal because the size of the focal spot cor-
responds to the microtip on the order of a few nanometres 
and slight deviations of the real surface of the tip from the 
paraboloid surface (e.g., due to the atomic structure or imper-
fections in manufacturing technology) should not affect the 
focusing, as well as due to the fact that the plasmon frequency 
in the optimal regime is not too close to the cutoff frequency 
of surface plasmon existence (for a flat surface the cutoff fre-
quency is wp/ 2 ). Such high surface plasmons are excited 
quite inefficiently, because their matching with the freely 
propagating waves requires the presence of matching devices, 
such as diffraction gratings. However, we note that excitation 
of plasmons on the tip at frequencies greater than optimal 
ones requires further investigation in terms of possible appli-
cations in view of the fact that these frequencies fall within the 
UV region of the spectrum for gold and silver. In the experi-
mental use of the tip in the case of such high frequencies it is 
necessary to take into account the effect of the side maxima of 
the focused field distribution. 

To illustrate the above, we present the distribution of the 
electric potential near the microtip, calculated by formulas 
(11), in the normalised coordinates ,x zu u. Since formulas (11) 
determine the potential with accuracy to a constant, its value 
at the maximum (on top of the tip) is set equal to unity. 
Figure 3 shows the distribution of the potential at em = –100, 
which according to the Drude formula corresponds to the fre-

s1 » 2.40483
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Figure 2.  Dependence of q on – em/ed. 
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quency w » 0.0995wp. One can see that at such a low fre-
quency (w << wp/ 2 ) the potential distribution is almost 
identical to the electrostatic solution. The field maximum (the 
place where the distance between the lines of a constant 
potential is minimal) is on top of the tip. 

Figure 4 shows the potential distribution for em » –1.5804 
(according to the Drude formula it corresponds to the cutoff 
frequency of optimal focusing wb » 0.6225wp). One can see 
that the focal spot really has a radius approximately equal to 
unity. The field amplitude increases sharply in the focus. 

Figure 5 shows the potential distribution for em » –1.2 
(according to the Drude formula it corresponds to the fre-
quency w » 0.6742wp). One can see that the radius of the focal 

spot at the microtip is smaller than the radius of curvature. 
The field amplitude increases sharply in the focus. One can 
clearly see that the resulting quasi-static solution representing 
a standing surface plasmon oscillation in the vicinity of the 
apex (the focus of a convergent surface plasmon wave) is 
actually localised near the surface of the tip. Although in this 
paper the oscillation at the microtip is considered quasi-stati-
cally, only a surface plasmon wave (or surface plasmon 
polariton) focused on the microtip and having the same sym-
metry with respect to the axis can ensure its effective excita-
tion (due to the axial symmetry of the field at the tip). The fact 
that such a plasmon wave can be excited efficiently (without 
its significant transition to propagating electromagnetic 
waves) is confirmed by successful experiments (see, for exam-
ple, [22]). 

The theoretical explanation of convergence of a surface 
plasmon wave toward a metal tip was given in [7] by consider-
ing a conical tip with a very small angle of opening as a cylin-
drical metal waveguide (wire) with a diameter very slowly 
decreasing towards the tip (the problem was solved in the 
adiabatic approximation for a local replacement of a wave on 
a cone by a wave on an infinite cylinder). Stockman [7] did 
not consider the distribution of the field at the top of a 
rounded tip, but presented only some estimates. Although an 
exact theoretical solution to the electrodynamic problem of 
focusing of surface plasmons on a rounded tip has not been 
obtained, it is nevertheless possible to assert that a surface 
plasmon wave converging toward the tip is very efficiently 
transferred to the quasi-static solution obtained at the tip. 
This is evidenced by a record high intensity of the electric field 
at the tip, observed in experiments [22]. 

The above theory did not take into account absorption in 
metal. If we take it into consideration, the dielectric constant 
of the metal will be complex: em = 1 – w2

p(w2 + iwG  )–1, where 
G is the coefficient taking into account absorption. Then, 
equation (8) should be solved in a complex region and its root 
will be complex. In addition, all the special functions in (8) 
and (11) must be analytically continued into a complex plane 
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Figure 3.  Electric potential distribution near the tip in the coordinates 
,x zu u  normalised to the radius of curvature of the tip at em = –100, w » 

0.0995wp << wp/ 2 . 
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Figure 4.  Electric potential distribution near the tip in the coordinates 
,x zu u  normalised to the radius of curvature of the tip at optimal em = 

–1.5804, w = wb » 0.6225wp. 
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Figure 5.  Electric potential distribution near the tip in the coordinates 
,x zu u  normalised to the radius of curvature of the tip at a frequency 

greater than the optimal (em = –1.2, w » 0.6742wp). 
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of an independent variable. It can be easy done in calcula-
tions, because these functions are presented in the form of a 
series converging on the complex plane in a convergence circle 
with a radius of convergence of a series on a real axis. One can 
also use the well-known integral representations for special 
functions in (8) and (11). Preliminary calculations for a silver 
tip at an optimum frequency show that the size of the focal 
spot is less than 10 % of that in the case without losses. The 
results of calculations for the high frequencies with allowance 
for losses in the metal will be published in the near future. 
Note that although the losses have little effect on the size of 
the focal spot, they will influence the amplitude of the wave at 
the maximum because of the energy loss of the surface plas-
mon wave arising during its propagation to the tip. 

4. Conclusions 

Nanofocusing of a plasmon wave at a metal microtip, whose 
surface is approximated by a paraboloid of revolution, is con-
sidered. It is shown that for a focal spot of size approximately 
equal to the radius of curvature to be formed in the vicinity of 
the tip and without significant oscillations of the focused 
field, it is required to limit from above the frequency of 
focused plasmons. The value of the cutoff frequency is found. 
Obviously, the results obtained can be used in the develop-
ment of nano-optics devices, which rely on nanofocusing of 
surface plasmons. 
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