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Abstract.  The heating of metals (silver and aluminium) by ultra-
short laser pulses is analysed proceeding from a spatially nonuni-
form kinetic equation for the electron distribution function. The 
electron subsystem thermalisation is estimated in a wide range of 
absorbed pulse energy density. The limits of applicability are deter-
mined for the two-temperature model. 

Keywords: femtosecond pulse, thermalisation time, two-temperature 
model. 

1. Introduction

It is well known that irradiation of metal targets by a high-
power laser pulse results in a strong overheating of the elec-
tron subsystem relative to the lattice one. Descriptions of this 
metal state usually rely on a so-called two-temperature model 
(TTM), which contains a system of coupled heat conduction 
equations for electrons and the lattice [1]. Strictly speaking, 
the electron subsystem may be described using the notion of 
temperature only under local quasi-equilibrium conditions. 
When a metal is irradiated by an ultrashort laser pulse 
(USP),  this situation takes place after some time (the ther-
malisation time), which depends on the kind of metal and its 
processing method. The presently available experimental 
[2 – 4] and theoretical [5, 6] works give estimates of the ther-
malisation time under pulsed irradiation with an absorbed 
energy density Qa << 2 mJ cm–2 when the thermalisation pro-
ceeds primarily after the cessation of irradiation and may last 
for hundreds of femtoseconds (up to picoseconds). We note 
that the experiment of Ref. [2] studied a metallic gold film, the 
authors of Ref. [3] dealt with a bulk metal (bismuth) and 
paper [4] was concerned with silver nanoparticles on a graphite 
substrate. According to Ref. [6], the electron-to-lattice energy 
transfer rate may be lower under these conditions, which is 
levelled out with increasing intensity of excitation laser pulses. 

From the technological viewpoint, the range Qa > 2 mJ cm–2 
is of greater interest. The applications of USPs involving metal 
ablation [7] (for Qa > 100 mJ cm–2) are commonly known. 
Recently interest was aroused under nondestructive irradia-
tion of metals by femtosecond pulses (approximately in the 
range 2 mJ cm–2 < Qa < 20 mJ cm–2). For instance, the pos-
sibility of producing chemical etching-resistant domains by 

irradiation of a chromium film by single USPs was recently 
demonstrated in Ref. [8]. According to the hypothesis expressed 
in Ref. [9], the appearance of resistance to chemical etching 
may be due to the formation of a protective oxide layer, whose 
growth is essentially related to the thermal electron emission, 
and therefore the investigation of the correctness of TTM 
applicability is highly important in this case. 

The authors of theoretical papers, Refs [5, 6], which lean 
upon the kinetic equation, restrict themselves to the treatment 
of spatially uniform problems. Accordingly, the critical issues 
of energy transport in USP-irradiated metals were investigated 
only in the framework of the TTM, whose exact limits of 
applicability have not been determined in this respect. Also 
little studied is the evolution of the distribution function during 
the course of the pulse for Qa > 2 mJ cm–2, when its variation 
is caused by the competition between excitation (absorption 
of radiation photons) and relaxation (electron – electron colli-
sions), whereas the magnitude of the electron emission cur-
rent is determined by precisely the form of the distribution 
function. 

The objective of our work is to analyse the heating of bulk 
metals by USPs proceeding from the spatially nonuniform 
Boltzmann kinetic equation for the electron distribution func-
tion and to determine the limits of TTM applicability. 

2. Formulation of the problem

Basic model equations. We consider one-band metals with a 
parabolic dispersion law. A good example of a one-band metal 
is provided by aluminium, in which the energy gap between 
the conduction and valence bands is equal to about 60 eV. 
For noble metals, this model is most suitable for silver, in 
which the d-band top is spaced at an energy of 3.8 eV from the 
Fermi level [10]. 

The approach to the description of USP-driven metal 
heating considered in the present work consists in the replace-
ment of the heat conduction equation with the kinetic equa-
tion for the distribution function. The model is supplemented 
with an equation which describes the radiation intensity dis-
tribution inside the metal. Also included is the emergence of a 
longitudinal electric field owing to the nonuniformity of the 
electron distribution. Therefore, the system of equations to be 
solved, in combination with the initial and boundary condi-
tions, is of the form 
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where f = f(x, p, t) is the electron distribution function such 
that dNe = 2 f dpdr/(2p')3 is the number of electrons in an 
element in the six-dimensional phase space (r, p) of coordi-
nates and momenta; the x axis is directed normally to the 
surface into the metal bulk (we consider the one-dimensional 
case); t is the time; ux is the projection of the electron velocity 
onto the x axis; Ex is the projection of electric intensity 
onto the x axis; e is the electron charge; the terms (¶f/¶t)abs, 
(¶f/¶t)e – e  and (¶f/¶t)e – ph describe the radiation absorption, 
electron – electron and electron – phonon collisions, respec-
tively; Ti = Ti (x, t) is the lattice temperature; (¶Ei /¶t)e – ph is 
the variation of volume energy density of the lattice due to 
the interaction with electrons; ci is the heat capacity of a unit 
volume of the lattice; e0 is the dielectric constant; e is the 
permittivity; q(x, t) is the radiation power density; '  is the 
reduced Planck constant; w is the incident radiation frequency; 
the expression in the right side of Eqn (4) defines the number 
of photons absorbed per unit time in a unit volume (for more 
details, see below); q0 is the power density at the metal sur-
face; E(p) is the electron energy; m is the chemical potential; 
kB  is the Boltzmann constant; T0 is the initial temperature; 
the  function K(p) is the probability that an electron with a 
momentum p escapes from the metal in the collision with the 
surface; and the function R(p, p*) is the probability that the p* 
electron is scattered by the surface into the p state. 

Equation (1) is of the form of a standard kinetic equation, 
whose right-hand side includes collisions of three types: absorp-
tion of radiation photons, electron – electron and electron – 
phonon collisions. The phonon subsystem is assumed to be 
in  the state of equilibrium, and therefore the ordinary heat 
conduction equation (2) is employed to describe its heating. 
The expression for the term which describes the electron – 
lattice energy transfer for an arbitrary electron distribution 
function is given in Ref. [11]. Equation (3) was earlier employed 
to estimate the magnitude of the electric field [12]. The boundary 
condition for the kinetic equation accounts for the possibility 
of electron emission. In the simplest case it is assumed that all 
electrons that reach the surface and have sufficient energy 
escape from the metal. 

Radiation absorption. The variation of the distribution 
function occurring under the absorption of radiation photons 
(with the inclusion of multiphoton processes) is described by 
the expression 
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where f+n = f(x, p+n, t); p+n is the electron momentum after 
(or prior to) the absorption of n photons; and wn(p, p+n) are 
the probabilities per unit time that a p electron undergoes 
n-photon absorption with the transition to the p+n state. 

The probabilities wn(p, p+n) are taken in the form 
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where sn are the multiphoton absorption cross sections [13]; 
me is the effective electron mass; and d(E(p+n) – E(p) – n'w) is 
the delta function which ensures energy conservation. 

The integrand in the right-hand side of Eqn (4) is defined 
by the formula 

¶
¶

( ) ( )
(2 )
2

.
d

t
f

n w fp 1n n n
n

n
3'p

= -
+

+ +
+p, fpc m / y

By using the estimates of sn from Ref. [13] it may be shown 
that the multiphoton processes should be taken into account 
for q > 1012 W cm–2. In the case of one-photon absorption, 
the approach described here yields an exponential absorption 
with a penetration depth d = (s1n1*)–1, where n1* is the density 
of electrons in the energy range from EF – 'w to EF (EF is the 
Fermi energy).

Electron – electron collisions. The electron – electron colli-
sion integral may be presented in the following form [14]: 
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where f1 = f1(x, p1, t); f’ = f’ (x, p’, t); f’1 = f’1(x, p’1, t); sW is the 
differential scattering cross section; and dW is an element of 
the solid angle. 

The electron – electron interaction is described by the 
screened Coulomb potential with the shielding radius taken 
from the Thomas – Fermi model [15]. The cross section sW for 
the indicated type of potential is calculated in the first Born 
approximation (see, for instance, Ref. [16]). 

Electron – phonon collisions. The electron – phonon collision 
integral which takes into account the emission and absorption 
of acoustic phonons is defined by the relation [17]: 
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where f+q = f(x, p + q, t); f–q = f(x, p – q, t); N(q) is the phonon 
distribution function; q is the phonon quasi-momentum; and 
we – ph(q) µ |q| defines the absorption (emission) probabilities 
of acoustic phonons [17], whose dispersion law is taken in the 
Debye approximation. 

The results of the numerical solution of the system of 
equations (1) – (4) for different processing modes are com-
pared with the TTM-based calculations reliant on traditional 
formulation of the problem (see, for instance, Ref. [18]): 
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where ce is the lattice specific heat; ke is the electron thermal 
conductivity coefficient; qn is the thermal source for electrons 
due to radiation absorption; and G is the electron lattice heat 
exchange coefficient. In these calculations, account was taken 
of the dependence of TTM parameters on the electron and 
lattice (in the case of electron heat conductivity) temperatures 
presented in the next Section.

The thermophysical metal characteristics (the electron 
heat capacity, the electron heat conductivity, and the elec-
tron – lattice heat exchange coefficient) are calculated pro-
ceeding from the same microscopic parameters that were 
employed in the solution of the system of equations (1) – (4) 
(we imply, for instance, the electron – electron interaction 
screening radius, the probabilities of electron – phonon colli-
sions, the approximation of band electron spectrum, etc.). 
Therefore, by comparing the data of TTM calculations with 
the data of simulations in the framework of the model based 
on the kinetic equation, it is possible to estimate the error of the 
data of TTM calculations and thereby determine the limits of 
its applicability. 

3. Main results and their discussion

We have performed simulations for two metals: silver and 
aluminium. In both cases, the effective electron mass was 
assumed to be equal to the electron mass in vacuum. The 
characteristic radiation penetration depth in the exponential 
absorption was also assumed to be the same for both metals 
and equal to d = 10 nm. Therefore, in the framework of model 
assumptions the individual distinguishing characteristics of 
the metals are primarily due to the density ne of conduction 
electrons, which is equal to 5.86 ́  1022 cm–3 for silver and 
18 ́  1022 cm–3 for aluminium. The temporal dependence of 
absorbed radiation power density (the pulse shape) was of the 
form 
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where t > 0 and t0 is a parameter with the meaning of pulse 
rise time [the total pulse duration is tp = 4t0 if the instant of 
pulse cessation is taken at a level of 20 % of the peak value 
of the q0(t) dependence]. 

Our calculations were carried out for the radiation with 
a wavelength of 1.06 mm (the corresponding photon energy is 
'w = 1.2 eV). 

Numerical simulation technique. The use of finite-differ-
ence numerical simulation techniques is seriously hindered 
due to the complex structure of multidimensional collision 
integrals and a large number of arguments of the distribution 

function. In this situation there is good reason to resort to 
so‑called direct statistical simulation methods.

The simulated medium is represented by a large set of 
particles, whose initial coordinates and momenta are defined 
in accordance with the initial form of their distribution func-
tion. Next, the temporal evolution of the system is determined 
using some statistical procedure to simulate the physical 
processes that are responsible for variations of particle coor-
dinates and momenta (collisions and collisionless motion). 
To calculate electron – electron collisions, use is made of the 
computational scheme described in Ref. [19] (a particle-in-
cell technique), which is supplemented by the condition that 
electron transitions to occupied states are forbidden. Electron – 
phonon collisions and photon absorption are modelled pro-
ceeding from the corresponding event probabilities, which 
may be explicitly obtained for each electron. At every time 
step, collisionless motion is modelled by calculating the varia-
tions of electron’s coordinates in accordance with its velocity. 

The direct statistical simulation technique is used in the 
solution of Eqn (1) and in the calculation of the integrals that 
appear in the right-hand sides of Eqns (2) – (4). The subse-
quent solution of Eqns (2) – (4) is performed using finite-dif-
ference methods. 

We emphasise that the electron – electron collision simu
lation scheme employed in our work opens the door to the cal-
culation of electron – electron collision frequencies for equilib-
rium conditions in a broad temperature range required in the 
calculation of the electron thermal conductivity coefficient. 

Equilibrium electron – electron collision frequencies. We give 
the data on electron – electron collision frequencies under 
equilibrium conditions as a confirmation of the adequacy of 
the numerical simulation technique employed in our work. 
According to Refs [20, 21], in the low-temperature domain the 
frequencies of collisions between electrons with a momentum 
p and other electrons, which determine the electron thermal 
conductivity, the following analytical dependence holds good: 
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where p = |p|; k = p/' , u = p/me are the moduli of the electron 
momentum, wave vector and velocity; and qs = 1/rs is the 
reciprocal of the Thomas – Fermi screening radius. 

Figure 1 shows the calculated dependence ne – e( pF, Te) 
(pF  is the Fermi momentum), which is compared with the 
analytical dependence (5) for silver and aluminium. As is 
clear from Fig. 1, the analytical dependence and our simula-
tions agree nicely in the temperature range Te < 0.1TF (TF 
is the Fermi temperature equal to 6.4 ́  104 K for aluminium 
and to 13.5 ́  104 K for silver). For Te > 0.1TF, as would be 
expected, the parabolic dependence saturates and the colli-
sion frequency increases slower than the parabola. For alu-
minium, the frequencies are approximately 2.5 times lower 
than for silver, which is primarily because the screening radius 
for electron – electron interactions is shorter.

Thermophysical metal parameters used in TTM calcula-
tions. As already noted, the thermophysical metal parameters 
which appear in the system of TTM equations must be cor-
rectly defined for reaching the objectives of our work. Figure 2 



	 D.S. Polyakov, E.B. Yakovlev920

shows the temperature dependences of electron heat capac-
ity for silver and aluminium in a broad electron temperature 
range. In accordance with the previously made assumptions, 
our calculations were performed in the framework of a one-
band model with a parabolic dispersion law. One can see 
from Fig. 2 that the linear dependence of the electron heat 
capacity on the electron temperature holds for Te < 0.15TF. 
For high (Te > TF) temperatures, the heat capacity 
approaches a constant value ce = 3/2 ne kB, which corresponds 
to the value of the heat capacity of a classical ideal gas. 
Figure 3 shows the calculated temperature dependences of 
the electron thermal conductivity coefficient ke due to elec-
tron – electron and electron – phonon collisions. Figure 3a 
shows the ke(Te) dependence for silver for different lattice 
temperatures. Figure 3b shows the calculated ke(Te) depen-
dence for aluminium at room temperature of the lattice and 
a comparison with the data of Ref. [11]. With reference to 
Fig. 3, the agreement between the calculations may be 
regarded as satisfactory.

A well pronounced feature is observed in the case of silver: 
a clearly nonmonotonic behaviour of the ke(Te) dependence 

(like in Ref. [11] for gold). This behaviour is easily understood 
when the temperature dependence of the thermal conductivity 
is approximated by the Drude formula 
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where 2u  is the average square of the electron velocity; and 
e ph
effn -  and e e

effn -  are the effective electron – phonon and elec-
tron – electron collision frequencies. Prevalent at low temper-
atures is the electron – phonon scattering ( e ph

effn -  >> e e
effn - ), 

whose intensity is independent of the electron temperature. 
Since ce µ Te and 

2u  depends only slightly on Te in the low-
temperature domain, the initial growth of the thermal conduc-
tivity obeys a linear law. As the temperature increases, the elec-
tron – electron scattering becomes significant ( e e

effn -  µ Te
2), 

which tends to decrease the thermal conductivity. This 
accounts for the saturation of the linear dependence, the 
appearance of a maximum of the thermal conductivity, and 
its subsequent decrease. On a further increase in the electron 
temperature, the growth of e e

effn -  is slower than the parabolic 
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Figure 1.  Temperature dependences of electron – electron collision frequencies [points stand for simulations and solid lines for analytical depen-
dence (5)] for (a) silver and (b) aluminium.
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Figure 2.  Temperature dependences of the heat capacity of the electron gas for (a) silver and (b) aluminium.
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one (see Fig. 1), while the growth of 2u  becomes appreciable 
and ce continues to grow. Consequently, beginning from some 
point, the ke(Te) dependence attains a local minimum (for Te » 
15 kK for silver) and begins to grow monotonically. A similar 
feature also takes place for aluminium, but it is less pro-
nounced. 

The dependence on the ion temperature manifests itself 
only in the low-temperature domain, where electron – phonon 
scattering is significant. In this domain ke(Te, Ti) µ Ti

–1, because 
e ph
effn -  µ Ti. The dependence of electron thermal conductivity 
on the ion temperature is insignificant in the electron-tempera
ture domain where the electron – electron scattering prevails. 
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Figure 3.  Dependences of the electron thermal conductivity on the electron temperature for different lattice temperatures for (a) silver and (b) alu-
minium.
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Figure 4.  Electron energy distribution function in silver irradiated by a pulse with the parameters Qa = 30 mJ cm–2, t0 = 40 fs at the surface, which 
was calculated with the inclusion of excitation and relaxation ( 1 ) and without relaxation ( 2 ), as well as the equilibrium distribution function ( 3 ) at 
the points in time (a) 7, (b) 14, (c) 21 and (d) 28 fs.
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In the case of a one-band electron spectrum, the G coeffi-
cient is hardly dependent on the electron and lattice tempera-
tures. The G values for silver and aluminium were found to be 
equal to 3.5 ́  1016 W (K m3)–1 and 3 ́  1017 W (K m3)–1, respec-
tively.

Estimates of thermalisation time. From the computational 
standpoint, the solution of problem (1) – (4) in its complete 
formulation is a laborious task, which requires considerable 
computational time. It is expedient to preliminarily estimate 
the thermalisation time in a broad range of a pulse energy 
density. These estimates can be obtained by neglecting the 
energy transport and electron – phonon collisions (in view 
of  the smallness of energy transfer in a single collision) in 
Eqn (1), i.e. by considering only the excitation (the absorption 
of radiation photons) and the relaxation due to electron – elec-
tron collisions. 

At first we briefly describe the mechanism of the distribu-
tion function variation. Figure 4 shows the typical evolution 
of the electron energy distribution function in silver near the 
surface under irradiation by a pulse with Qa = 30 mJ cm–2 and 
t0 = 40 fs. At the initial stage of irradiation, the excitation 
gives rise to steps of width equal to the photon energy ('w = 
1.2 eV). Subsequently, electron – electron collisions result in 
a  gradual step smearing, and some time later the distribu-
tion function becomes close to the equilibrium one. A similar 
mechanism was also described in Refs [5, 6]; it corresponds to 
experimental ultrafast emission spectroscopy data obtained in 
Refs [2, 4] at a low excitation pulse energy density. In Fig. 5, 
the calculated distribution function (in this case, electron – 
phonon collisions and the energy transfer are included in the 
simulation for a more correct comparison) is compared with the 
distribution function obtained in the experiment of Ref. [2] 
for gold for Qa » 0.3 mJ cm–2, tp = 180 fs, and 'w = 1.84 eV. 
One can see that the agreement is quite satisfactory. For a 
measure of the departure of the distribution function from the 
equilibrium one, we introduce the quantity 
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where f is the current distribution function; f0 is the equilib-
rium distribution function which corresponds to the same 
internal energy; and g(E) is the level density. In accordance 
with its definition, Cr(t) is the ratio between the area confined 
between the curves corresponding to the equilibrium and non-
equilibrium distribution functions and the total area under the 
distribution function [i.e. the electron density on the strength 
of the normalisation condition of the function g(E)]. The 
Cr(t) function increases to some maximal value with a subse-
quent decay. The thermalisation time t0 is estimated using the 
following criterion: Cr(t0) = 0.2 Crmax [Crmax is the maximal 
value of Cr(t)]. 

Figure 6a shows the dependence of t0 on the absorbed 
energy density near the metal surface. For Qa = 100 mJ cm–2 
(the characteristic value of metal ablation threshold) the ther-
malisation time at the surface is equal to 17 fs for silver and to 
30 fs for aluminium. With an increase in energy density, the 
relaxation time shortens slowly to flatten out at 13 and 23 fs 
for silver and aluminium, respectively. As the energy density 
decreases, the thermalisation time increases. Since the energy 
density decreases with depth, the thermalisation time in the 
metal interior will be longer than at the surface. Figure 6b shows 
the variation of the time t0 with depth for Qa = 100 mJ cm–2. 

One can see that the thermalisation time changes only little 
over the skin layer depth (d = 10 nm) both for silver and alu-
minium. In deeper layers the relaxation lengthens out to 
tens – hundreds of femtoseconds, but the heating of these layers 
is relatively small. 

The emission current density is directly determined by 
the form of the distribution function near the metal surface. 
In this case, it is clear that the behaviour of the distribution 
function in the domain E > U0 (U0 is the potential barrier at 
the metal boundary) is the decisive factor. The relaxation times 
given above were obtained proceeding from the criterion that 
took into account the departures of the distribution function 
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Figure 5.  Comparison of the calculated electron energy distribution 
function with the distribution obtained in the experiment of Ref. [2] for 
gold at different points in time. 
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from the equilibrium one over the entire energy range. In view 
of this, there is good reason to estimate the effect of the non-
equilibrium state of the electron distribution on the emission 
current density with the use of another criterion, specifically, 
by investigating the relative error of calculating the emission 
current from the equilibrium distribution: 
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is the emission current density and fs(E) is the distribution func-
tion at the surface. When fs = f0 and the inequality U0 – m(Te) >> 
kBTe is obeyed, formula (6) passes into the Richardson ther
mionic emission law:

,expj BT
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A

R e
B e

2 0= -c m

where B = 4pemekB2/(2p')3 = 120 A (cm K)–2, and A0 = U0 – EF 
is the work function. 

The ‘emission’ relaxation time t0em is defined by the fol-
lowing criterion: Crem(t0em) = 0.15. Figure 7 shows the depen-
dence of t0em on the absorbed energy density. One can see that 
the ‘emission’ relaxation time is shorter than the relaxation 
time t0. The difference is most conspicuous in the low energy 

density domain. This difference is due to the fact that the elec-
tron – electron collision frequencies are higher for high-energy 
electrons, and the ‘tail’ of the distribution function therefore 
forms faster. It is clear that the main contribution to the total 
number of emitted electrons is made by the instants of time 
when the electron temperature is close to the maximal tem-
perature. The maximal temperature is attained close to the end 
of a pulse, i. e. when t » tp. Since t0em << tp (tp = 160 fs), the 
contribution of nonequilibrium electrons to the total number 
of electrons emitted from the surface may be neglected. 

Therefore, preceding from our estimates it is possible to 
draw a conclusion that the electron thermalisation occurs 
rather rapidly at an energy input close to the ablation thres
hold (see Fig. 6) and that the effect of the nonequilibrium 
state of the electron distribution on metal heating is small. 
The range of lower energy densities invites further investiga-
tion. As regards emission effects, it is valid to note that the 
electron emission may be described throughout the energy 
density range (2 – 300 mJ cm–2) under discussion using the 
notion of temperature that corresponds to the volume elec-
tron energy density at the metal surface. We emphasise that 
the very value of this temperature with the inclusion of energy 
transport may differ from TTM predictions. 

Dynamics of electron and lattice temperatures. The inclu-
sion of energy transport has no significant effect on the above 
estimates of thermalisation time. Figure 8a shows the time 
dependences of the electron temperature at the silver surface 
calculated proceeding from the TTM [Te

ttm(t)] and the kinetic 
equation [Te

kin(t)] during the course of a pulse with the 
parameters Qa = 5 mJ cm–2, t0 = 40 fs. In the domain t < t0 
(i. e. when the distribution is nonequilibrium), by the tempera
ture is meant the quantity related to the internal energy by the 
same equation as in the case of equilibrium distribution. 
Figure 8a serves to illustrate the behaviour of the surface 
electron temperature under USP irradiation. One can see 
that the temperature Te

kin(t) initially grows faster, i.e. heating 
is closer to the adiabatic one. Subsequently, a more intense 
energy outflow from the surface has the effect that the Te

kin(t) 
curve runs lower than the Te

ttm(t) curve. The relative error in 
the TTM calculation of the maximum electron temperature 
is  equal to 13 % in this case. It is precisely the difference 
Te
ttm(t)  – Te

kin(t) > 0, which persists practically throughout 
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Figure 6.  Dependence of the near-surface relaxation time on the absorbed 
energy density for t0 = 40 fs (a) and on the depth for Qa = 100 mJ cm–2 
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the two-temperature stage, underlies the difference in the final 
(maximal) lattice temperature. The effect of the form of non-
equilibrium distribution function on the electron – lattice 
energy exchange is negligible because the thermalisation time 
throughout the depth is short in comparison with the charac-
teristic equilibration time for the electron and lattice tempera-
tures, which is consistent with the data of Ref. [6]. The relative 
error of calculating the increment of lattice temperature 
amounts to 10 % per pulse.

Supposedly the behaviour of the electron temperature 
may be explained as follows. The TTM proceeds from the 
Fourier law, which implies proportionality of the thermal 
flux at some point in time to the temperature gradient at the 
same point in time. In reality, the thermal flux induced in the 
medium under ultrafast heating will be somewhat retarded 
relative to the rapidly varying temperature gradient. 
Therefore, early in the pulsed irradiation, when the heating 
rate is high, the transfer of energy does not manage to 
remove it from the surface layers, which causes a somewhat 
faster growth rate of the electron temperature during the 
pulse rise. Subsequently, this effect becomes less significant, 
and beginning from the point in time t » 40 fs, as is clear 
from Fig. 6a, the energy outflow from the surface becomes 
more intense. The Fourier law implies that the electron free 

path is short in comparison with the heating gradient scale 
length. For Te » 5000 K, the free path is equal to about 
10  nm and is comparable to the radiation penetration depth 
(d = 10 nm), which determines the characteristic temperature 
gradient scale length. The hot electrons from the surface tra-
verse a distance d in a time d/u » 10 fs (u » 106 m s–1 is the 
characteristic electron velocity) and foster the enhanced 
energy removal from the skin layer. To this there corre-
sponds the lowering of the heating rate in the 30 – 140 fs 
interval in Fig. 8a. Next, as the energy is removed from the 
skin layer, the heating gradient scale length becomes larger 
and the further metal cooling may be described using the 
TTM.

Increasing the pulse energy density leads to an increase 
in electron – electron collision frequency and shortens the 
electron free path. Consequently, the error of TTM temper-
ature calculations lowers with an increase in pulse energy 
density. Figure 9 shows the relative errors of TTM-based 
calculations of the maximum electron [dT(Te)] and lattice 
[dT(Ti)] temperatures for silver and aluminium as functions 
of absorbed energy density (the curves are plotted for t0 = 40 
fs). If it is assumed that the maximum admissible error level 
is equal to 10 %, the boundary energy density QT (Te) above 
which the traditional two-temperature approach may be 
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regarded as adequate for calculating the maximal electron 
temperature is equal to 7.5 mJ cm–2 for silver and to 
28  mJ  cm–2 for aluminium. In the calculation of lattice heat-
ing, the boundary energy density QT(Ti) amounts to 
6.7  mJ  cm–2 and 10 mJ cm–2 for silver and aluminium, 
respectively. In the case of silver, the QT(Ti) value is appre-
ciable lower than the melting threshold energy density, 
which is equal to 35 mJ cm–2, according to simulations (by a 
melting threshold is meant the minimal absorbed energy 
density required for attaining the melting temperature at the 
surface; here we do not consider the issues related to the pos-
sible lattice heating above the melting temperature under 
USP irradiation of the metal). In the case of aluminium, 
QT(Ti) is close to the melting threshold.

Influence of electron temperature dynamics on electron 
emission. Owing to a strong dependence of thermal electron 
emission on the surface electron temperature, even a small 
error in its calculation may lead to significant changes in 
emission current density and, as a consequence, in the total 
number of emission electrons. Figure 10 shows the time 
dependences of the emission current density, which were cal-
culated in the framework of the TTM and the model pro-
posed in our work, for Qa = 5 mJ cm–2 and t0 = 40 fs for sil-
ver (the dynamics of the surface electron temperature in this 
case is shown in Fig. 8a). We emphasise that we are dealing 
with only the flux of electrons emanating from the surface; in 
reality, a fraction of the outgoing electrons will return back. 
The contribution to the total number of escape electrons 
arising from the time interval t < t0em is negligible. As is evi-
dent from Fig. 10, TTM calculations markedly overrate the 
emission current density. The total number of electrons 
emitted from the surface is approximately 2.5 times smaller 
than the TTM-predicted number for this processing mode. 
Plotted in Fig. 11 is the relative error of calculation of the 
total number of electrons emitted per unit area in relation to 
absorbed energy density for silver and aluminium. By esti-
mating the limit of TTM applicability as regards emission 
effects at a level of 10 %, we see that the TTM works for 
Qa  > 30 mJ cm–2 in the heating of silver and for Qa > 
70  mJ  cm–2 in the heating of aluminium. 

4. Conclusions

To summarise, we outline the main results of our work. The 
electron thermalisation time in the skin layers of typical met-
als (silver, aluminium) under irradiation by USPs which give 
rise to ablation (Qa » 100 mJ cm–2) does not exceed 45 fs, and 
so the heating by such pulses may be described in the frame-
work of the TTM. The thermalisation time becomes longer 
with a decrease in pulse energy density and amounts to hun-
dreds of femtoseconds for Qa » 2.5 mJ cm–2. The high-energy 
tail of the distribution function develops much faster than the 
equilibrium distribution function as a whole, and emission 
processes may be described using the notion of temperature 
throughout the energy density range under consideration 
(2.5 – 300 mJ cm–2). An analysis of the heating with the inclu-
sion energy transport showed that a TTM-based calculation 
has a certain error, which depends on the processing mode. In 
the calculation of the maximum electron temperature, the 
limits of TTM applicability in absorbed energy density 
amount to 7.5 mJ cm–2 for silver and to 28 mJ cm–2 for alu-
minium, assuming that the greatest admissible error is equal 
to 10 %. In the calculation of the maximum lattice tempera
ture, the limits are equal to 6.7 mJ cm–2 for silver and to 
10  mJ  cm–2 for aluminium. The departures seen in the dynam-
ics of the surface electron temperature are responsible for an 
appreciable lowering of the emission current and the total 
number of emitted electrons. In the calculation of the total 
number of electrons emitted per unit surface, the limits of TTM 
applicability in absorbed energy density amount to 30 mJ cm–2 
for silver and to 70 mJ cm–2 for aluminium for a 10 % error.

The boundary values for pulse energy density determined 
in our work allow the following conclusions. In the analysis 
of the lattice heating of bulk metals (silver, aluminium) by an 
USP with an energy density above the melting threshold, use 
can be made of the traditional TTM, while the kinetic approach 
is preferred for an energy deposition below the melting thres
hold. In the analysis of electron emission from the surface of a 
bulk metal irradiated by an USP, the TTM may be applied for 
an energy input above the ablation threshold for aluminium 
and above the melting threshold for silver.
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