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Abstract.  Tapered germanate fibres are proposed for effective adi-
abatic conversion of Raman soliton pulses to the mid-IR region. A 
theoretical analysis demonstrates that, in fibres with anomalous 
group velocity dispersion decreasing along their length, wavelengths 
of up to 3.5 mm can be reached, which are unattainable in fibres 
with a constant core diameter at the same parameters of a 2-mm 
input signal. The analysis relies on a one-way wave equation that 
takes into account the combined effect of dispersion, Kerr and 
Raman nonlinearities, nonlinear dispersion and optical losses and 
the frequency dependence of the effective fundamental transverse 
mode size.

Keywords: optical solitons, germanate fibres, tapered fibres with 
varying dispersion, DDF, Raman shift of the soliton pulse fre-
quency, mid-IR region.

1. Introduction

To date, tremendous progress has been made in the develop-
ment of near-IR laser sources, including systems generating 
ultrashort pulses. At the same time, in the mid-IR region 
such sources are difficult to create for many reasons, in par-
ticular for lack of a wide class of gain media with appropri-
ate parameters. Because of this, a promising approach is to 
convert pulses from the near-IR, a well-mastered spectral 
region, to the mid-IR by nonlinear optical techniques in 
crystals [1], gases, gas-filled capillary tubes [2] and optical 
fibres of specific chemical composition [3]. Even though 
solid-state laser systems lead the way in energy parameters, 
fibre laser sources can be used in many applications because 
they offer the advantages of compact design, relatively low 
cost, stability, high output beam quality and not requiring 
adjustments.

A rather important area of research is supercontinuum 
generation in the mid-IR region in chalcogenide, tellurite 
and fluoride glasses [4]. In addition, it has been shown in a 
recent theoretical study that, in a short piece of microstruc-
tured silica-based fibre, ultrashort pulses of light at 1.55 and 
2 mm can be converted to wavelengths above 3 mm [5]. At the 
same time, ultrashort pulses in the range 2 – 3  mm and, 

according to numerical estimates, above 3  mm can be 
obtained using germanate fibres, which are easier to fabri-
cate and enable one to produce an all-fibre laser system 
because they are similar in physical properties to silica fibres 
and can be fusion spliced by standard techniques. In partic-
ular, germanate fibres have been demonstrated to generate 
supercontinuum in the ranges 1.5 – 2.7 [6] and 1 – 2.6 mm [7] 
under pumping with an erbium-doped fibre laser, in the 
range 2 – 2.6 mm when pumped by a Cr : ZnS solid-state laser 
and in the range 1.9 – 3 mm using a thulium fibre laser as a 
pump source [8, 9]. Also, the possibility of producing fre-
quency-tunable Raman solitons in the range 2 – 3 mm was 
examined in Ref. [10]. However, to our knowledge there 
have been no reports on light generation in germanate fibres 
at wavelengths above 3 mm.

In this paper, we present a theoretical analysis of the 
possibility of converting ultrashort pulses to wavelengths 
above 3 mm in germanate fibres with group velocity disper-
sion varying along their length, namely, the Raman  conver-
sion of the optical soliton frequency in optical fibres with 
anomalous dispersion decreasing along their length. In the 
literature, such fibres are referred to as dispersion decreas-
ing fibres (DDFs). Note that dispersion management in 
optical fibres, including DDFs, allows one to convert soli-
ton pulses in a wide range of parameters [11 – 20]. DDFs 
may have the form of tapered fibres (with a varying core 
diameter), because there is not only material dispersion but 
also waveguide dispersion, which depends on fibre diameter 
[21]. As shown by Andrianov et al. [19, 20], both theoreti-
cally and experimentally, the carrier wavelength of Raman 
solitons can be tuned from 1.5 to 2 mm in silica DDFs. The 
optical range reached to date can be extended by using 
pulses of a thulium-doped all-fibre laser system at a wave-
length of 2 mm as input light and germanate DDFs, offering 
higher Kerr and Raman nonlinearities and lower optical 
loss, as a nonlinear Raman-active medium.

2. Analysis of pulse propagation 
in germanate fibres

The nonlinear dynamics of ultrashort pulses in optical fibres 
are often analysed in terms of a generalised nonlinear 
Schrödinger equation, which allows one to take into account 
an arbitrary dispersion profile, Kerr and Raman nonlineari-
ties, nonlinear dispersion and optical losses [22]. At the same 
time, in the case of ultrabroadband conversion of optical 
pulses, it is important to include the frequency dependence of 
the effective fundamental transverse mode size (and hence 
that of the nonlinearity coefficient). We use a model based on 
the one-way wave equation [23]. The model allows one to take 
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into account all the above-mentioned effects in tapered axi-
symmetric fibres with a precalculated transverse mode struc-
ture. It deals with the fundamental mode electric field linearly 
polarised across the fibre axis. Its Fourier transform can be 
represented as [9, 24]

( , ) ( , , ) [ ( , ) ]exp iE G z F z r z zw w b w=w ,	 (1)

where z is the distance along the fibre; w is the angular fre-
quency; r is the radial coordinate; F is the transverse fundamen-
tal mode field distribution; and b is the propagation constant of 
the fundamental mode. With ( , ) ( , ) [exp iG z G zw w= ( , ) ]z zb w , 
the one-way equation can be written in the form [9, 24]
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where c (3) is the third-order nonlinear susceptibility; c is the 
speed of light in vacuum; the b(w) function includes the 
instantaneous Kerr contribution and delayed Raman contri-
bution; a(w) is the optical loss; and the function K(z, w, w1, w1 + 
w2 – w, w2) is defined as
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To find the propagation constants and transverse electric 
field structures of the fundamental modes of axisymmetric 
germanate fibres of various diameters, we solved the problem 
of eigenvalues and eigenfunctions of the Helmholtz equation, 
which was represented mathematically as follows [25]:
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The normalisation of the function F(r, w) has the form

3
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0
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In our calculations, we assumed that the fibre had a silica 
cladding and that its core had a super-Gaussian GeO2 dopant 
profile. The refractive index n as a function of wavelength l 
was determined according to the following model:
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where XGeO2
 = exp(–r4/r04) is the germanium dioxide molar 

concentration distribution; r0 is a characteristic core size; 
SAi  and Sli are the Sellmeier coefficients for silica; and GAi 
and Gli are those for germanium dioxide [26] (SA1 = 
0.6961663, Sl1 = 0.0684043, SA2 = 0.4079426, Sl2 = 0.1162414, 
SA3 = 0.8974794, Sl3 = 9.896161, GA1 = 0.80686642, Gl1 = 
0.068972606, GA2 = 0.71815848, Gl2 = 0.15396605, GA3 = 
0.85416831, Gl3 = 11.841931).

Outside the fibre core, the electric field of the transverse 
modes falls off almost exponentially at high r values [25], so 
the finite dimensions of the silica cladding can be neglected 
and the cladding can be taken to be infinite in calculations. 
The eigenvalues and eigenfunctions of the Helmholtz equa-
tion were found using a finite-difference scheme. We 
changed the variable r = ryy/(1 – y), where ry  is a characteris-
tic size related to the core diameter. This substitution 
allowed us to transform the infinite interval 0 G r < ¥ to the 
finite one 0 G y < 1.

Losses in fibres are a rather important characteristic 
because they can limit optical pulse frequency conversion at 
wavelengths above 2 mm. It is known that, in addition to the 
fundamental losses associated with Rayleigh scattering and 
absorption in the electron and phonon subsystems, there are 
high excess (anomalous) losses at the core – cladding interface 
[27 – 30]. In our calculations, we introduced a model loss func-
tion using previous experimental data [27, 31]. Namely, we 
assumed that

( / ) ( / )exp expA AUV UV IR IRa l l l l= + - ,	 (9)

where AIR = 10–3 dB km–1, AUV = 109 dB km–1, lUV = 4.67 mm 
and lIR = 47.8 mm.

An important parameter of fibres is their cubic nonlinear-
ity coefficient, proportional to the nonlinear contribution of 
n2 to the refractive index [22]. It is worth pointing out that the 
n2 values reported for germanium dioxide in the literature dif-
fer rather markedly. In particular, Rottwitt and Povlsen [32] 
reported n2 = 12.5 ́  10–20  m2  W–1, whereas Yatsenko and 
Mavritsky [33], who measured the nonlinear refractive index 
of germanate fibres with a core containing 97 mol % GeO2, 
obtained n2 = 5 ́  10–20 m2 W–1. The latter value was used in 
our theoretical analysis.

In taking into account the contribution of stimulated 
Raman scattering, the model response function R(t) of 
germanate glass was assumed to be similar to that of silica 
glass [22]:
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where fR is the partial contribution of the Raman response; 
d(t) is the delta function; Q(t) is the Heaviside step function; 
and t1 and t2 are the characteristic Raman response times. 
However, fR, t1 and t2 were calculated from the experimen-
tally measured Raman gain spectrum gR(w) [34], related to 
the response function by [22] 
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where n0 is the refractive index at the centre frequency w0. We 
obtained fR = 0.25, t1 = 13 fs and t2 = 90 fs, and used these 
values in our calculations. Note that Rottwitt and Povlsen 
[32] reported the following parameters: fR = 0.13, t1 = 12 fs 
and t2 = 83 fs. The considerable discrepancy between the fR 
values obtained in this study and in Ref. [32] is attributable to 
the fact that different n2 values were used.

In mathematical modelling of ultrashort pulse propaga-
tion in tapered fibres with group velocity dispersion varying 
along their length, we used the pseudospectral, split-step 
Fourier method (SSFM) and fast Fourier transformation 
[22]. Note that the above single-mode model was used previ-
ously to analyse ultrashort pulse propagation in germanate 
fibres of constant diameter and made it possible to obtain 
interesting results, supported by experimental data, including 
those on the generation of supercontinuum and tunable ultra-
short pulses at wavelengths of up to 3 mm [9, 10].

Figure  1 shows the calculated group velocity dispersion 
and nonlinearity coefficients of fibres with a super-Gaussian 
doping profile of their core, whose diameter (full width at half 
maximum of the refractive index profile) is varied from 2 to 
4 mm in 0.1-mm steps (as a result, the cutoff wavelength varies 
from 1.7 to 3.5 mm). In the case of the thicker fibres, the con-
tribution of the waveguide component is relatively small and 
the zero dispersion wavelength is about 1.5 mm, being close to 
the zero material dispersion point. With decreasing core 
diameter, the zero dispersion point shifts to longer wave-
lengths. At wavelengths near 1.5 mm, the fundamental mode 
field is well-localised near the fibre core, the effective mode 
size is small, and, accordingly, the nonlinearity coefficient is 
large. With increasing wavelength, the mode size increases 
and the nonlinearity coefficient drops.

Such fibres with constant diameter d can be used for 
supercontinuum generation and soliton pulse wavelength 
conversion to above 2 mm owing to stimulated Raman scat-
tering, which leads to the amplification of low-frequency 
pulse components at the expense of high-frequency compo-
nents and, hence, to a gradual decrease in the signal’s carrier 
frequency. In the adiabatic approximation, the Raman shift 
rate of a soliton’s carrier frequency W can be evaluated as [11]
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where g is the nonlinearity coefficient; b2 = ∂2b/∂w2 is the 
group velocity dispersion; W is the soliton energy; and TR is 
the characteristic Raman response time [22]. It follows from 
(12) that the greater the decrease in carrier frequency, the 
slower the shift rate, because the functions [g(W)]4 and 
1/| b2(W)|3 drop very sharply with decreasing W and the W(W) 
energy decreases along the soliton trajectory. In view of this, 
we propose that the tapered fibre diameter should be adia-
batically (gradually) reduced so that, at the centre frequency 
of the soliton, the parameter g4/| b2|3 remains almost constant, 
i. e. the Raman shift rate far exceeds that in a constant core 
diameter fibre.

Since with decreasing fibre diameter the zero dispersion 
wavelength varies first more slowly than when the minimum 
diameter is approached, the d(z) profile can be chosen so that 
the derivative of this function decreases in magnitude with 
increasing z. The model profile chosen is shown in Fig. 2.

In numerical modelling using Eqn (2), the input pulse was 
sech-shaped at a centre wavelength of 2 mm and had an energy 
W0 = 2 nJ and duration T0.5 = 100 fs (full width at half-maxi-
mum intensity). Such a signal can readily be obtained using a 
hybrid erbium/thulium fibre laser system [35]. The electric 
field of the pulse can be represented as E(0, t) = /( )W T20 0 × 
exp(–iw0t)/cosh(t/T0), where T0 = T0.5 /[2ln(1+21/2)]. The soli-
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Figure 1.  Calculated (a) group velocity dispersion and (b) nonlinearity 
coefficients of germanate fibres with core diameters from 2 to 4 mm. 
Neighbouring curves differ in core diameter by 0.1 mm.
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Figure 2.  Core diameter vs. z-coordinate along the axis of germanate 
DDF of length L.
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ton order for such a pulse launched into fibre with a core 
diameter of 4 mm can be estimated as N = [gW0T0 /(2| b2|)]1/2 » 
4, so the initial stage in the spectral – temporal evolution of 
the pulse is determined by high-order soliton dynamics [22]. 
Self-phase modulation leads to broadening of the spectrum, 
accompanied by time-domain narrowing of the pulse due to 
the anomalous dispersion. The result is the formation of a 
narrow, strong peak on top of a broad pedestal. After the 
maximum compression point, the pulse breaks up into soli-
tons in the anomalous dispersion region and dispersive waves 
in the normal dispersion region [22].

We followed the evolution of the longest wavelength soli-
ton and attempted to increase its wavelength to above 3 mm. 
Figure 3 illustrates the spectral evolution of a pulse along the 
z-coordinate of a DDF of length L = 80 cm. Also represented 
for comparison is the evolution of identical pulses in fibres 
with constant diameters throughout their length. At core 
diameters of 4, 2.9 and 2.7 mm, the pulse is located in the 
anomalous dispersion region and its subsequent nonlinear 
dynamics are determined by high-order solitons. At core 
diameters of 2.5 and 2.4 mm, the pulse propagates in the nor-
mal dispersion region, so its nonlinear dynamics have qualita-
tive distinctions. Self-phase modulation causes broadening of 
the spectrum, but the normal dispersion leads not to compres-
sion but to stretching of the signal. If passing through the zero 
dispersion point (at d = 2.5 mm), the pulse breaks up into indi-
vidual spectral components. It should be emphasised however 
that a spectrally isolated signal having a wavelength of 3 mm 
and formed over a length z » 30 cm has a non-soliton nature 
and its wavelength remains essentially constant with increas-
ing z. At d = 2.4 mm, the broadened spectrum does not reach 
the zero dispersion point, and the pulse does not break up 
into separate parts in time domain but only becomes longer 
throughout its path.

Figure 3 demonstrates that the maximum frequency shift 
takes place in the DDF. The centre wavelength of the corre-
sponding soliton is 3.4 mm, and its spectrum contains compo-

nents up to 3.5 mm. At core diameters of 4, 2.9 and 2.7 mm, the 
Raman shift rate considerably decreases with increasing z 
because of the sharp drop in g4/| b2|3 at the centre frequency of 
the soliton, whereas the shift rate in the DDF is rather high 
throughout the propagation path. Figure 4 shows the centre 
wavelength as a function of z for the longest wavelength 
Raman soliton. The dashed lines represent initial portions 
where there is no fundamental soliton.

It is reasonable to choose a relatively large core diameter 
at the DDF input to ensure that, during the development of 
high-order soliton dynamics, the first soliton formed had suf-
ficiently high energy. In particular, at an input core diameter 
d = 4 mm the energy of a soliton formed near z = 3 cm is about 
1 nJ, but at the output it is a factor of 2 lower, 0.5 nJ, because 
of the loss represented by Eqn (9) and the Raman loss associ-
ated with molecular vibrations. It is known that the Raman 
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Figure 3.  Spectral evolution of sech-shaped pulses of 2-nJ energy and 100-fs duration in DDF and fibres with a constant core diameter d.
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loss can be evaluated from the constraint W/W = const for a 
soliton at a = 0 [36]. At smaller core diameters, the soliton 
order at the input increases because of the decrease in | b2| and 
increase in g , and the fraction of energy in the first soliton 
drops. There is some optimal input core diameter. It is seen in 
Fig.  1a that, at a large increase in diameter, the dispersion 
curve shifts very little. However, at a large diameter d, LP11, 
LP21, LP02 and other higher modes can be effectively excited 
in the fibre, which will be a parasitic effect, because it will be 
accompanied by a reduction in the energy of the fundamental 
mode LP01 and, accordingly, in the Raman shift rate, given by 
Eqn (12). The diameter of the output tapered fibre end deter-
mines the extreme position of the zero dispersion point. 
However, at very small d the zero dispersion point shifts very 
little. In our case, the optimal change in d is by a factor of 2: 
from 4 to 2 mm. In the adiabatic approximation, the maxi-
mum Raman soliton wavelength can be estimated merely as 
the maximum zero dispersion wavelength because, at small 
core diameters, the dispersion curve falls off very sharply 
after the zero point. In the case of DDF with large L, adiaba-
ticity may be violated because of the a(W) loss, the pulse may 
stop being a soliton at some instant in time and leave the 
anomalous dispersion region, and the zero point may ‘leap’ 
over the carrier frequency W. Too small lengths are also non-
optimal because they violate adiabaticity and the pulse has no 
time to ‘adjust’ its parameters to those of a soliton. In particu-
lar, the characteristic nonlinear length of a Raman soliton can 
be estimated at LNL = 2T0/(gW ) » 0.5 cm for soliton wave-
lengths near 2.5 mm and at LNL » 1 cm for wavelengths above 
3 mm, so the characteristic length scale for variations in the 
parameters of the DDF should exceed LNL.

3. Conclusions

Tapered germanate fibres with group velocity dispersion 
varying along their length have been proposed for effective 
conversion of ultrashort nanojoule pulses generated by a 
fibre laser system at 2 mm to the mid-IR region. Using a one-
way wave equation that takes into account nonlinear and 
dispersion effects and optical losses, we have shown that, in 
fibres with anomalous dispersion decreasing along their 
length, wavelengths of up to 3.5 mm can be reached, which 
are unattainable in the case of fibres with a constant core 
diameter at the same input signal parameters. Effective con-
version is due to the Raman soliton self-frequency shift. The 
parameters of the tapered fibre are varied so that the Raman 
shift rate remains sufficiently high throughout the propaga-
tion path. The characteristic fibre length is then of the order 
of 1 m and the input core diameter is twice the output diam-
eter. In the adiabatic approximation, the maximum attain-
able wavelength is determined by the zero dispersion wave-
length of the fibre near its output end. The present results can 
be useful in designing a mid-IR all-fibre laser source using 
standard components and fibre-optic technologies.
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