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Abstract.  We consider the methods for enhancing the temporal 
contrast of super-high-power laser pulses, based on the conversion 
of radiation polarisation in a medium with cubic nonlinearity. For 
a medium with weak birefringence and isotropic nonlinearity, we 
propose a new scheme to enhance the temporal contrast. For a 
medium with anisotropic nonlinearity, the efficiency of the temporal 
contrast optimisation is shown to depend not only on the spatial 
orientation of the crystal and B-integral, but also on the type of the 
crystal lattice symmetry. 

Keywords: temporal contrast, femtosecond laser pulses, anisotropic 
medium with cubic nonlinearity, B-integral. 

1. Introduction 

The development of chirped pulse amplification (CPA) tech-
nology has led to the fabrication of petawatt lasers. Petawatt 
lasers offer great opportunities for fundamental study of the 
interaction of laser radiation with matter in the ultra-rela
tivistic regime. A femtosecond laser pulse generally has a 
complex temporal structure. The main pulse is preceded by 
pre-pulses of lower intensity, resulting from different pro-
cesses occurring in the laser system, and the main pulse has 
a  wide picosecond pedestal. Because pre-pulses can simply 
destroy the target structure or distort the results of studies of 
the interaction of laser pulses with matter before the arrival 
of the main pulse, it is necessary to minimise the intensity of 
pre-pulses, in other words – to enhance the femtosecond pulse 
contrast.

If no special methods are used, the temporal contrast of 
a  pulse at the compressor output will be several orders of 
magnitude less than that required (at least 1010) for many 
applications. The temporal contrast can be enhanced using 
plasma mirrors [1, 2] and devices based on second harmonic 
generation [3, 4]. The energy loss in this case is 30 % – 50 % 
with the plasma mirror being replaced after each ‘shot’, 
whereas the second harmonic generation requires thin, large-
aperture nonlinear crystals, the production of which causes 
considerable practical difficulties. 

The double chirp pulse amplification (DCPA) technique 
has become widespread, when, after a system of preliminary 
laser amplification, the contrast is enhanced at milli-joule 

energy [5]. Temporal and spatial inhomogeneity of laser radi-
ation leads to low efficiency of generation of high-contrast 
radiation, and therefore use is made of re-stretching and 
amplification of a femtosecond laser pulse. For this reason, 
the DCPA technique is not so sensitive to the energy loss, 
despite the need to install an additional stretcher and a com-
pressor. This allows the use of a nonlinear circular Sagnac 
interferometer [6], a saturable absorber [7, 8] and devices 
based on the effects emerging in a medium with cubic nonlin-
earity: rotation of the polarisation ellipse [9, 10] and genera-
tion of orthogonally polarised waves [11, 12], i.e., XPW (cross 
polarised wave generation). The XPW method is the most 
promising in terms of enhancing the temporal contrast – a 
possible increase in contrast is 4 – 5 orders and is limited by 
the contrast of polarisers. An additional advantage consists in 
the ability to simultaneously broaden the spectrum, which 
can significantly reduce the laser pulse duration. One of the 
most recent results [13] has been obtained in a scheme with 
two barium fluoride crystals – linearly polarised light with an 
intensity of 0.6 – 0.9 TW cm–2 and a Gaussian spatiotemporal 
profile was converted into orthogonally polarised radiation 
with an efficiency of 24 % – 30 %. The pulse duration was 
reduced from 25 to 10 fs, the temporal contrast was enhanced 
by at least two orders of magnitude and amounted to 1010. 
A further increase (estimated at up to 40 %) in the generation 
efficiency of orthogonally polarised radiation is associated 
with an increase in the input radiation intensity, which is 
limited by a threshold of small-scale self-focusing development. 

Despite considerable progress in the development of the 
XPW method, there are new works where use is made of cubic 
nonlinearity of a medium. For example, Liu et al. [14] use self-
diffraction. When two intersecting laser beams interact, an 
interference light field is formed, under whose action in a 
medium there occurs a periodic variation in the dielectric con-
stant and, as a consequence, there appear beams propagating 
in new directions. The advantage of this method, as compared 
with XPW, consists in the absence of limitation on the 
enhancement of the temporal contrast due to the contrast of 
the polariser; however, the conversion efficiency is low and 
amounts to 12 %. 

In Section 2 we describe the traditional method of contrast 
enhancement, based on the rotation of the polarisation ellipse 
in an isotropic nonlinear medium. In Section 3 we propose 
a  new method utilising the effect of the polarisation-ellipse 
rotation in a birefringent medium. This method is compared 
with the traditional one. 

The authors of [11, 13] present the results of the experi-
ments to enhance the temporal contrast in the process of gen-
eration of orthogonally polarised radiation in two (barium 
fluoride and calcium fluoride) nonlinear crystals. However, 
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from the viewpoint of improving the effectiveness of this 
method, other nonlinear media, including uniaxial crystals, 
may be of interest. In the literature, the problem of an aniso-
tropic crystal and the criteria for finding an optimal nonlinear 
crystal and its optimal orientation are underrepresented. In 
Section 4 we consider the possibility of using nonlinear crys-
tals (cubic and uniaxial) with different types of the crystal lat-
tice symmetry for XPW and summarise the known literature 
data on cubic nonlinearity tensors of different crystals. Note 
that the calculation results presented in this paper are obtained 
in the plane wave approximation. 

2. Isotropic medium 

Before considering anisotropic media, we present the main 
results of studies aimed at enhancing the contrast of an isotro-
pic medium. The method of the temporal contrast enhance-
ment, based on the effect of the polarisation-ellipse rotation 
in an isotropic medium with cubic nonlinearity, is investi-
gated in detail in [9, 10]. The scheme of this method is shown 
in Fig. 1. Nonlinear element (NE) ( 3 ) is placed between crossed 
polarisers ( 1 ) and two quarter-wave plates ( 2 ), whose optical 
axes are rotated around the z axis by the angles q and q + p/2, 
respectively. Varying q one can obtain any polarisation ellip-
ticity at the NE input. At a low intensity, the linearly polar-
ised light preserves the type of polarisation after the second 
quarter-wave plate and passes completely through the second 
crossed polariser. With increasing intensity, the polarisation 
of light after the second quarter-wave plate becomes elliptical 
due to the rotation of the polarisation ellipse in the NE. In 
this case, only part of the laser light passes through the second 
crossed polariser: the radiation component with a polarisa-
tion orthogonal to the initial one is coupled out from the sys-
tem by the polariser. This scheme of the temporal contrast 
enhancement allows one to separate low-intensity (pre-pulse) 
radiation from high-intensity (main pulse) radiation. 

The equations for the clockwise and counterclockwise cir-
cularly polarised components of the light field Е± = (Ex ± 
iEy)/ 2  have the form [15, 16] 
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where Ex and Ey are the transverse Cartesian components of 
the electric field vector E; cxxxx is the diagonal component 
of a fourth-rank nonlinear susceptibility tensor c(3); k0 = 2p/l; 
l is the wavelength; and n0 is the linear part of the refractive 
index of a medium. Here we have only taken into account the 
electronic mechanism of nonlinearity, caused by the electronic 
polarisability of atoms and molecules of the medium [17]. The 
solution to (1) has the form 

E± = E0± exp{iB{1 ± 1/3 cos[(p/2)(S + 1)]}},

where the value S = (4/p) arctan(|E–|/|E+|) – 1 defines the 
polarisation ellipticity; B-integral is given by the expression 
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c is the velocity of light in vacuum; I is the intensity of light; 
and L is the NE length. The angle of the polarisation-ellipse 
rotation at the nonlinear medium output is FNL = (B/3) ́  
cos[(p/2)(S + 1)], and its dependence on B and S is shown in 
Fig. 2a. 

An important characteristic of the process of the temporal 
contrast enhancement is the efficiency h, which is defined as 
the proportion of the intensity of the radiation component 
with a polarisation that is orthogonal to that which would 
have been in the absence of nonlinearity. Knowing the angle 
of rotation, FNL, for the dependence h(B, S ) one can easily 
obtain an analytical expression 
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Figure 1.  Scheme of the method for enhancing the temporal contrast, 
based on the effect of the polarisation-ellipse rotation in an isotropic 
medium with cubic nonlinearity: ( 1 ) crossed polarisers; ( 2 ) p/4 plates; 
( 3 ) NE. 
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Figure 2.  Dependences of (a) the angle of the polarisation-ellipse rotation and (b) conversion efficiency h on ellipticity S at B = ( 1 ) 4, ( 2 ) 3 and ( 3 ) 2. 
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One can see from Fig. 2b that the optimal (in terms of the 
conversion efficiency of the polarisation) polarisation ellipticity 
S varies slightly with increasing B-integral and is approximately 
equal to ±0.5 [+ (–) refers to the clockwise polarised (counter-
clockwise polarised) wave]. In this case, the angle q = 22.5°. This 
conclusion can be explained by referring to Fig.  2a. The angle of 
the polarisation-ellipse rotation FNL = 0 in the case of propaga-
tion of linearly polarised light (S = 0) in a medium for any values 
of B. When light is circularly polarised (S = ±1), the angle of rota-
tion is maximal. However, the highest conversion efficiency occurs 
at the intermediate ellipticity S » ±0.5, because at S, close to ±1, 
the polarisation is close to circular, and its rotation even by 90° 
only slightly changes the polarisation. 

3. Weakly birefringent and nonlinear isotropic 
medium 

In [18], we investigated the method of polarisation distortion 
suppression in active elements of laser amplifiers, caused by 
the appearance of thermally induced birefringence and by the 
effect of cubic nonlinearity. Using the plane-wave approxi-
mation we observed significant residual thermally induced 
depolarisation at B > 0 in a scheme consisting of two identical 
active elements and a 90-degree polarisation rotator. The 
dependence of the degree of depolarisation of initially linearly 
polarised radiation on the thermally induced phase difference 
d of the eigenwaves of a medium was found to be nonmono-
tonic. The maximum of the polarisation degree was achieved 
at a small thermally induced birefringence – d = 3p/5, which cor-
responds to weak anisotropy of a medium. It was assumed that 
the distortion of the nonlinear susceptibility tensor of a initially 
isotropic medium due to thermal stresses is a second-order 
effect, i.e., nonlinear properties of the medium remain isotropic. 

In this paper, we investigate the possibility of using this 
effect for enhancing the temporal contrast of high-power 
laser pulses. Let us consider two NEs with the optical axes 
rotated through 90° relative to each other (Fig. 3). The NEs 
are made of a material having weak and uniform birefrin-
gence in the cross section. An example of a medium with such 
properties is a plate of a crystal with symmetry groups 622, 
6mm, 

–
6m2, 6/mmm, 32, 3m and 

–
3m, in which the optical axis 

is tilted at a small angle to the axis of laser radiation propaga-
tion (see Section 4). Another example would be a plastic 
plate, a weak birefringence in which occurs due to a uniform 
mechanical deformation. Full details of this example can be 
found in the theoretical and experimental studies [19, 20]. 
Note that due to a virtually unlimited aperture, plastic can be 
used not only in the DCPA technique, but also directly at the 
output of petawatt lasers. 

We investigate the conversion of laser light polarisation 
upon passage through the scheme shown in Fig. 3. Let the 
initial polarisation be linear and the electric field strength 
vector make an angle j with the x axis. Propagation of laser 
radiation in an isotropic medium with cubic nonlinearity and 
anisotropic refractive index is described by the system of dif-
ferential equations [21]: 
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where nx and ny are the refractive indices for orthogonally 
polarised eigenwaves of the medium; and d = k0(nx – ny)L is 
the phase difference of eigenwaves of the medium. It is easy to 
show that for an isotropic medium, i.e., when d = 0, system (3), 
by replacing the variables E± ® (Ex ± iEy)/ 2 , transforms to 
system (1). Equations (3) were solved numerically. 

We analyse the influence of d, j and B-integral on the 
conversion efficiency of linearly polarised light into orthogo-
nally polarised light in the scheme in Fig. 3. From a practical 
point of view it is convenient that when B = 0, the output 
radiation is linearly polarised. To do this, the phase differ-
ences d must be equal in magnitude and opposite in sign in 
two NEs. Let the values of the B-integrals of the first and 
second NEs, B1 and B2, be related by the expression B1 = qB2, 
where q takes values from the interval [0; 1], and B = B1 + B2 
is the total B-integral. 

In practice, the values of d and j are easily varied by 
selecting the optimal values; therefore, we define the maxima 
of the function h(d, j) for different values of B and B1. Each 
point of the dependences in Fig. 4a is plotted for optimal (the 
highest h) values of dmax and jmax. It is easy to notice that the 
maximum of the function h(dmax, jmax, В1) is achieved at B1 = 
0. The obtained result can be explained, if one analyses the 
dependence of h and ellipticity S of light polarisation at the 
input to the second NE on the angle j and phase difference d 
(Figs 4b and 4d) at B1 = 0, B = 3. When d = dmax, j = jmax, the 
quantity h reaches a maximum, and the ellipticity of polarisa-
tion at the input to the second NE is –0.5, which coincides 
with the optimum value of ellipticity in the scheme with an 
isotropic medium (Fig. 1). In other words, the first element in 
this case is simply a phase plate providing the desired elliptic-
ity of polarisation at the input to the second NE. The depen-
dence of the optimal angle jmax on B1 at B = 2, 3, 4 is shown 
in Fig. 4c. The optimum value of d is weakly dependent on the 
values of B and B1 and is approximately equal to 0.45p. 

For the scheme in Fig. 3 we also investigated the case of 
propagation of elliptically polarised light. It was found that 
the value of h in this case is less than that for linearly polarised 
radiation. The results of calculations allow one to abandon 
the use of less convenient (in terms of the practical applica-
tion) elliptical polarisation. 

Note that at small values of the B-integral, the conversion 
efficiencies of radiation into orthogonally polarised light in 
the proposed scheme and the scheme in Fig. 1 are comparable, 
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Figure 3.  Scheme of the method for enhancing the temporal contrast, 
based on the effect of the polarisation-ellipse rotation in a weakly aniso-
tropic medium with cubic nonlinearity: ( 1 ) crossed polarisers; ( 2 ) NE. 
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and at its large values the new scheme exhibits an increase in 
h: if B = 4, the value of h is greater by 5 %. Furthermore, the 
proposed scheme does not require the use quarter-wave plates, 
which is especially important in the case of large beam aper-
tures.

4. Nonlinear anisotropic medium 

For an anisotropic medium with cubic nonlinearity, the non-
linear susceptibility tensor has diagonal and off-diagonal com-
ponents [22]. In this paper we confine ourselves to consider-
ation of a practically convenient case of linear polarisation of 
the input light and one NE made of an isotropic (cubic) crystal 
or a uniaxial crystal oriented along the optical axis (Fig. 5). If 
the uniaxial crystal has another orientation, the significant 
difference of group velocities of ordinary and extraordinary 
waves will lead to spatial separation of the input pulse into 
two pulses. Thus, in the case of the uniaxial crystal, the system 
of coordinates coincides with the crystal axes. In this case, the 
form of a system of differential equations for the components 
of the electric field vectors Ex and Ey depends on the symme-
try of the crystal lattice. In general, the system has the form of 
expressions (4), and in particular cases it is reduced to systems 
(5) or (6) (the correspondence of systems of equation to sym-
metry groups is given in Table 1): 
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Figure 4.  Dependences of (a) the conversion efficiency and (c) optimal angle jmax at the output of the system in Fig. 3 on the value of the B-integral 
in the first element B1 at B = ( 1 ) 4, ( 2 ) 3 and ( 3 ) 2, as well as dependences of (b) the conversion efficiency and (d) polarisation ellipticity after the 
first NE on d and j at B = 3, B1 = 0. Points in Figs 4b and 4d correspond to the optimum values of d and j. 
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where no is the refractive index for the ordinary wave. Due 
to Kleinman symmetry [22] we used equalities for nonzero 
components of the tensor c(3): cxxyy = cxyxy = cxyyx and cxxxy = 
cxxyx = cxyxx = –cxyyy . Generally the XPW efficiency depends 
on the value of the B-integral, the angle j and two anisotropy 
parameters: 

s1 = 1 – 3cxxyy /cxxxx,   s2 = cxxxy /cxxxx.

Since in practice the angle j may be selected arbitrary, we 
will assume it to be optimal, i.e., an angle at which the conver-
sion efficiency h takes the maximum value hmax. 

If s2 = s1 = 0, i.e., anisotropy of nonlinearity is absent, the 
system of equations (4), (5) and (6) transforms into system (1). 
Crystals with the symmetry groups 622, 6mm, 

–
6m2, 6/mmm, 

32, 3m, 
–
3m, for which s1 = s2 = 0 (Table 1), have no aniso

tropy of nonlinearity (if the optical axis is parallel to z axis) 
and cannot be used for XPW, i.e., hmax = 0. This is consistent 
with the results presented in Section 2, because for the linear 
polarisation the polarisation-ellipse rotation is absent. At the 
same time, these crystals at low parallelism of the optical axis 
and the z axis can be used in the scheme described in the previ-
ous section (Fig. 3). 

If s1 = 0 and s2 ¹ 0, which corresponds to crystals with 
the symmetry groups 3, 

–
3, 6, 

–
6, 6/m, system (4) reduces to (5). 

The value of hmax depends only on two parameters: s2 and B. 
The corresponding dependence is shown in Fig. 6a. 

If s2 = 0 and s1 ¹ 0, which corresponds to the tetragonal 
crystals with the symmetry groups 422, 4mm, 42m, 4/mm 
(Table 1), system (4) is transformed into (6), and the value of 
hmax depends only on s1 and B. The corresponding depen-
dence is shown in Fig. 6b. 

If s2 ¹ 0 and s1 = 0 (tetragonal crystals with the symmetry 
groups 4, 

–
4, 4/m), it is necessary to solve system (4). Figure 6d 

shows the dependence hmax(s1, s2) at B = 3. One can see that 
it is preferable to use crystals with negative s1, while the sign 
of s2 is irrelevant. 

Cubic crystals do not have birefringence, and so the crystal 
orientation can be arbitrary, and thus, there appear two free 
parameters – Euler angles a and b. In this case (Fig. 5), the 
coordinate system does not coincide with the crystal axes; 
therefore, the tensor c(3) must be transformed using the matrix 
U(a, b) according to the rule [23] 
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where cpqmn are the tensor components in the coordinate system 
related to the crystal axes; and ijklcu  are the tensor components 
in the laboratory frame. The system related to the crystal 
axes, when Kleinman symmetry for the tensor c(3) is fulfilled, 
has only two independent and nonzero components – cxxxx 
and cxxyy, i.e., s2 = 0 and s1 ¹ 0. A cubic crystal is described 
by equations (6), the solution of which is shown in Fig. 6c. 
However, at arbitrary a and b after coordinate transforma-
tion (7), the tensor c(3) has new independent ( yyyycu ) and non-
zero ( xyxxcu , xyyycu ) components, and the system of differential 
equations for the components of the electric field vector, Ex 
and Ey, takes the form [24] 
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In the case of crystals with [101] orientation (a = p/4, b = 0), 
the system of equations (8) is simplified and takes the form 

Table  1.  Generation efficiency of orthogonally polarised components in uniaxial and cubic crystals.

Crystal lattice Symmetry group Orientation s1 s2 System of equations h

Trigonal 32, 3m, 
–
3m [001] 0 0 (1) or (3) at d = 0 0

3, 
–
3 [001] 0 ¹ 0 (5) see Fig. 6a

Hexagonal 622, 6mm, 
–
6m2, 6/mmm [001] 0 0 (1), (3) at d = 0 0

6, 
–
6, 6/m [001] 0 ¹ 0 (5) see Fig. 6a

Tetragonal 422, 4mm, 42m, 4/mmm [001] ¹ 0 0 (6) see Fig. 6b

4, 
–
4, 4/m [001] ¹ 0 ¹ 0 (4) see Fig. 6d

Cubic 23, m3, 432, m3m, 43m [001] ¹ 0 0 (6) see Fig. 6b

[101] ¹ 0 0 (9) see Fig. 6c

[nml ] ¹ 0 0 (8)

Note:  n, m, l = 0, 1.
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Comparison of Figs 6b and 6c shows that the efficiency 
hmax in cubic crystals with [101] orientation is slightly greater 
than in crystals with [001] orientation. The same conclusion 
was reached in Refs [11, 13]. At the same time it is important 
to note that this advantage of [101] orientation takes place 
at the same intensity, i.e., at the same value in the B-integral 
determined by the value of cxxxx [see Eqn (2)]. In practice, the 
value of the B-integral is limited by the instability of a plane 
wave, resulting in small-scale self-focusing [25 – 27]. Therefore, 
physically correct is a comparison of different orientations of 
the cubic crystal with the same instability increment – the 
value of h, which characterises the exponential growth of the 
amplitude of small-scale harmonic perturbations with a trans-
verse wave vector k against the background of a plane wave 
[µ cos(kr̂ ) exp(hz)] during the development of the instability 
in a nonlinear medium. This problem was solved for the case 

of propagation of radiation with linear [28], circular [28] and 
elliptical [29] polarisations in an isotropic medium. According 
to the classical paper [28] the maximum instability increment 
for linear and circular polarisations is equal to the doubled 
value of the B-integral, corresponding to each of the polarisa-
tions. The exact determination of the increment for an aniso-
tropic nonlinearity, i.e., for systems of equations (6) and (9), 
is a separate problem that is outside the scope of this paper. 
As a rough estimate we can assume that the increment is 
determined by the arithmetic mean of the diagonal components 
of the nonlinear susceptibility tensor cuxxxx and cuyyyy. For [001] 
orientation this arithmetic mean is equal to cxxxx, whereas for 
[101] orientation this mean is equal to cxxxx(1 – s1/4). Thus, 
an effective B-integral for [101] orientation is 1 – s1/4 times 
greater than that of [001] orientation. When the authors of 
[11, 13] used the parameter s1 = –1.2 for BaF2, the B-integral 
for [101] orientation was 1.3 times greater than that for [001] 
orientation at the same intensity of radiation. With this in 
mind, a detailed comparison of Figs 6b and 6c and an analysis 
of the dependences given in [11, 13] indicate that in the case of 
physically correct comparison, [001] orientation is better than 
[101] orientation. 

Thus, for a correct comparison of different orientations 
and a selection of an optimal orientation, one must determine 
the increment of small-scale instability of a plane wave in a 
nonlinear anisotropic medium, which for any system of equa-
tions [(4) – (6), (8) or (9)] is a separate problem. In this regard, 
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the question of optimal orientation of a cubic crystal remains 
open. 

Note that even a relatively small increase in efficiency 
(e.g., from 60 % to 75 %) may be very significant when using 
XPW at the output of the last compressor, especially for petta
watt radiation, because any loss in this case is particularly 
important (unlike DCPA). In addition, at the output of high-
power laser systems the radiation intensity distribution is 
typically quasi-uniform and the consequent reduction in effi-
ciency is insignificant. As for the losses caused by the pulse 
shape, important in many applications is pulse power rather 
than its energy. Moreover, in a number of applications, pulse 
compression with a proportional decrease in energy (that is 
what happens in XPW) can be an additional advantage. 

Finally, we discuss which crystals are the most promising 
for XPW. Measurement of all the components of the non
linear susceptibility tensor of crystals requires a separate and 
time-consuming research, which is why data on this issue is 
scarce in the literature. A review of reference data has shown 
that the most thoroughly investigated are cubic crystals having 
two independent components of the tensor c(3): cxxxx and 
cxxyy, whereas the data on uniaxial crystals is scarce (Table 2). 
In addition, the values of s1, which are presented in various 
experimental and theoretical studies, can vary by 30 % – 40 % 
for the same crystal (see data on SrF2 and BaF2), which makes 
it difficult to choose an optimal crystal. 

As shown above, one should choose crystals with a negative 
value of s1; in this case, the less the s1, the better. According 
to Table 2 the most promising crystals are CVD-diamond, 
SrF2, BaF2 and ADP. The first three have a cubic crystal lat-
tice. ADP crystal is uniaxial. Today, BaF2 crystal is most 
often used in XPW. However, because of incomplete data and 
differences in the parameter s1, the search for new crystals for 
highly efficient generation of orthogonally polarised radia-

tion is important. Additionally, uniaxial crystals, practically 
unused for XPW (except for YVO4 crystal [11]) may also be 
quite effective. 

5. Conclusions 

In this paper we have considered two methods of enhancing 
the temporal contrast of high-power radiation, based on the 
effect of cubic nonlinearity on the polarisation of laser radia-
tion. The first method investigates the change in the polarisa-
tion of radiation propagating in a weakly anisotropic medium 
with an isotropic nonlinearity. We have proposed a new 
scheme, which consists of two identical NEs with axes rotated 
through 90° relative to each other. It is shown that the effec-
tiveness of this method is comparable to the efficiency of the 
method, which uses a nonlinear isotropic medium (at B > 3 
even exceeds it). 

The second method of contrast enhancement is based on 
the generation of an orthogonally polarised component of 
radiation in an anisotropic medium with cubic nonlinearity. 
We have obtained the dependences of the maximum generation 
efficiency hmax on the nonlinearity tensor anisotropy param-
eters s1 and s2, as well as on the value of the B-integral for 
uniaxial and cubic crystals of all types of symmetry. It is 
shown that for the correct determination of the optimum ori-
entation of a cubic crystal it is necessary for each orientation 
to determine an effective B-integral. To this end it is needed to 
calculate the increment of the small-scale self-focusing insta-
bility in a nonlinear anisotropic medium. This problem is of 
interest and is the subject of further research. 
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