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Abstract.  The mechanism of spectral broadening and self-compres-
sion of down-chirped femtosecond pulses in the visible range 
(473  nm) upon nonlinear interaction of a converging Gaussian 
beam with a 1-mm-thick fused silica plate is experimentally and 
theoretically investigated. It is found experimentally that when the 
intensity increases and plasma is formed in the sample, the regime 
of femtosecond pulse splitting is transformed into the single-pulse 
generation regime during nonlinear interaction. As a result of self-
compression, the duration of the initial transform-limited pulse is 
reduced by a factor of 3. Based on the numerical solution of the 
generalised nonlinear Schrödinger equation, with the plasma for-
mation disregarded, it is shown that the profile, spectrum and tem-
poral phase of the pulse transmitted through the sample acquire a 
stationary shape behind the focal plane of the focusing mirror. The 
calculation results are in good agreement with experimental data. 
The possibility of parametric amplification of the pulse spectral 
components under given experimental conditions is discussed.

Keywords: down-chirped femtosecond pulse, self-compression, self-
phase modulation, four-wave mixing.

1. Introduction 

In this paper, we report the results of studying the mechanism 
of spectral broadening and self-compression of down-chirped 
femtosecond pulses in the visible range (473 nm) under non-
linear interaction of converging beams with fused silica. This 
phenomenon was observed for the first time in [1] using 
diverging femtosecond beams. Our study is aimed at develop-
ing new, relatively simple methods of self-compression of 
femtosecond pulses, which would expand experimental pos-
sibilities of their shortening and could be applied to higher 

energy pulses. The known self-compression methods based 
on beam filamentation in gases and solids (see, e.g., [2 – 5]) 
and ionisation self-compression in gas-filled capillaries (see, 
e.g., [6, 7]) have limitations on the pulse energy (several milli-
joules and several tens of millijoules, respectively).

2. Experimental

Figure 1 shows the optical scheme of our experiments. Initial 
transform-limited 70-fs pulses with a wavelength of 473 nm 
were generated by doubling the frequency of a laser beam 
generated by a Ti : sapphire laser system (Avesta-Project 
Ltd.). A negative quadratic phase was introduced into the 
beam using a prism pair, and the beam was subjected to spa-
tial filtering. As a result, down-chirped pulses with a duration 
of ~130 fs, energy up to 0.6 mJ and spectral width of ~3 nm, 
which corresponds to transform-limited 80-fs pulses (in the 
approximation of a pulse profile described by the function 
sech2) were formed. This pulsed radiation was focused on a 
1-mm-thick fused silica (KU-I grade) sample, which played 
the role of the input window of a 45-cm-long vacuum cell. The 
focal plane of the focusing mirror was behind the sample 
(inside the vacuum chamber). The incident beam intensity 
was varied by displacing the sample along laser beam path; 
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Figure 1.  Optical scheme of experiments.
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the diameter of the spot on the sample (at a level of 1/e2) was 
varied from 0.15 to 0.27 mm, which made it possible to obtain 
intensities up to 20 TW cm–2. Enlarged images of different 
beam cross sections inside the vacuum cell were projected 
onto a diaphragm 1 mm in diameter using another spherical 
mirror. We measured the spectrum, profile and energy of the 
beam incident on the sample; the beam profile and spectrum 
at different distances from the beam axis at the output of the 
vacuum cell; and the spatial profile, spectrum and autocorre-
lation function of the radiation transmitted through the dia-
phragm, the position of which was chosen so as to reduce the 
pulse duration to minimum.

3. Results 

Due to the spatial filtering, the beam incident on the sample 
was close to Gaussian. The emission spectrum is presented in 
Fig. 2. Figure 3 shows the beam profile in the diaphragm 
plane; it looks like a relatively homogeneous core surrounded 
by diffraction rings. This pattern is due to the addition of a 
radius-dependent nonlinear phase to the initial spatial phase 
of a spherically converging wave [8, 9]. Note that the spec-
tral broadening and pulse self-compression were observed 
only in the beam core. The emission spectrum in a diffrac-
tion ring barely differed from the spectrum of the initial 
beam incident on the sample. The diaphragm cut out the 

central part of the beam, enclosed in the white ring in Fig. 3. 
The beam profile in the near-field zone after the diaphragm 
is shown in Fig. 4.

Figure 5 shows the spectra and autocorrelation func-
tions measured behind the diaphragm at different beam 
intensities. The significant spectral broadening was observed 
in the sample at intensities exceeding 3 – 4 TW cm–2. At 
intensities below 5 – 6 TW cm–2 almost symmetric spectral 
broadening with respect to the centre wavelength and split-
ting of the femtosecond pulse (Fig. 5a) are observed. With 
an increase in intensity, the spectrum becomes blue-shifted, 
and the pulse splitting disappears (Figs 5b, 5c); these effects 
are caused by the plasma formation in fused silica at high 
beam intensities. The minimum single-pulse duration 
observed during plasma formation was smaller than the ini-
tial duration of the transform-limited pulse by a factor of 3 
(Fig. 5c).

The fact of the plasma formation at high beam intensities 
is confirmed by the presence of significant absorption in the 
sample (Fig. 6); taking into account that the fused silica 
band gap is 9 eV and the photon energy is 2.6 eV, the absorp-
tion mechanism represents a four-photon process [10, 11]. 

The self-compression efficiency, defined as the ratio of the 
pulse energy behind the diaphragm to the energy incident on 
the sample, is 10 % – 15 %.
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Figure 2.  Spectrum of the laser beam incident on the sample.
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Figure 3.  Beam profile in the diaphragm plane and the emission spectra in a diffraction ring and in the beam centre at a beam intensity of 5 TW cm–2. 

Figure 4.  Profile of a beam transmitted through a diaphragm, in the 
near-field zone.
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4. Discussion

4.1. Numerical simulation using nonlinear  
Schrödinger equation 

The nonlinear interaction of femtosecond radiation with 
fused silica was modelled based on numerical solution of the 
three-dimensional generalised nonlinear Schrödinger equation
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Figure 5.  Broadened (solid lines) and initial (dashed lines) spectra (on the left) and autocorrelation functions (on the right), obtained with the aid 
of an autocorrelator, at intensities of (a) 5, (b) 10 and (c) 15 TW cm–2. 
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Figure 6.  Dependence of the absorption in a 1-mm-thick fused silica 
sample on the radiation intensity. 
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Here, the first term on the right-hand side describes diffrac-
tion, the second term accounts for second-order dispersion 
and the third takes into account the nonlinearity of the 
medium and self-steepening. The nonlinear response function 
R(t) takes into account both the fast (electronic) and slow 
(molecular) components:

 R(t) = (1 – fR)d(t) + fRhR(t),

where the molecular component is described by the function

( ) exp sinh t t t
R

1 2
2

1
2

2
2

2 1t t
t t

t t=
+

-` j

at t1 = 12.2 fs and t2 = 32 fs [12]. The contribution of this 
component to nonlinearity is  fR = 0.18 [13, 14]. 

Calculations were performed for a converging Gaussian 
beam: 
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where R = 4.5 cm, r = 65 mm, T1/2 = 123 fs, C = –1.2 (down 
chirp) and Imax = 4 TW cm–2. The calculation procedure was 
separated into two stages: (i) interaction of a converging 
down-chirped beam with fused silica and (ii) free propagation 
in space. The group-velocity dispersion for fused silica is k2 = 
80 fs2 mm–1 and the nonlinear refractive index is n2 = 2.5 ´ 
10–16 cm2 W–1 [15].

The calculation results are shown in Fig. 7. One can see 
that the spectrum, profile and temporal phase of the pulse 
acquire stationary shapes at a distance of about 10 cm from 
the sample, i.e., behind the focal plane of the focusing mirror.

Figure 8 shows a numerically calculated spectrum on the 
beam axis at a distance of 20 cm from the sample and an 
experimental spectrum behind the diaphragm for a beam 

intensity of 5 TW cm–2. The good agreement between the the-
ory and experiment indicates that the main mechanism of 
spectrum formation at this intensity is self-phase modulation. 
The calculation demonstrates pulse splitting, which was also 
observed in experiments.

The pulse splitting in the paraxial region at relatively low 
beam intensities, when the plasma influence is insignificant, is 
due to the spatial redistribution of the radiation intensity, at 
which the radiation near the maximum of the temporal pulse 
profile, minimally subjected to self-phase modulation, under-
goes strong refraction due to the formation of a Kerr lens and 
is displaced to the beam periphery behind the focal plane of 
the focusing lens. This radiation does not fall in the dia-
phragm (cutting out the central part of the beam, which con-
tains radiation corresponding to the leading and trailing 
edges of the pulse) and, therefore, undergoes the strongest 
self-phase modulation. In the absence of plasma, the nonlin-
earity, being basically of electronic type, determines the self-
action of the pulse, which is relatively symmetric with respect 
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to its maximum, in view of which one would expect pulse 
splitting into two pulses with comparable amplitudes. This 
conclusion is confirmed by the spectral measurements at the 
centre of the beam and at its periphery (see Fig. 3), which 
demonstrate the presence of an unshifted spectral component 
mainly at the beam periphery.

The formation of plasma leads, on the one hand, to a 
negative additive to the refractive index and, on the other 
hand, to asymmetric (with respect to the pulse maximum) 
self-action because of the long (~150 fs [16]) electron pasma 
lifetime, which results in selection of one pulse. A more 
detailed study of the behaviour of the pulse spectrum and 
pulse shape at radiation intensities higher than 10 TW cm–2 
calls for numerical consideration of the plasma formation.

4.2. Four-wave mixing

When considering the nonlinear interaction of femtosecond 
radiation with fused silica, one cannot exclude the influence 
of four-wave mixing on the formation of spectral and tempo-
ral characteristics of radiation in the case where isolated spec-
tral components arise. To determine the fundamental possi-
bility of this influence, we solved numerically the equations 
for the degenerate case:
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where Db = ks + ki – 2kp; Ap, As, Ai and kp, ks and ki are, 
respectively, the complex amplitudes normalised to (|Ap0|2)1/2 
and wave vectors of the pump, signal and idler waves; z is the 
longitudinal coordinate, normalised to the sample thickness 
L = 0.2 cm; and gs » gi » gp = wpn2L|Ap0|2/c is the nonlinearity 
parameter.

In contrast to the widespread slowly-varying-envelope 
approximation, which is valid only in the initial stage of 
wave mixing and neglects the influence of the generated 
wave on the pump amplitude, the approach used by us takes 
into account the mutual influence of waves and the conser-
vation laws (invariants of wave propagation) for the interac-
tion under consideration. To this end, we used the method 
proposed in [17] to solve nonlinear equations describing dif-
ferent processes of laser frequency conversion (generation of 
the second and third harmonics as well as sum and differ-
ence frequencies). This method was applied to analyse the 
regimes of second-harmonic generation with a nonzero ini-
tial amplitude [18], for frequency doubling in photonic 
structures [19], and in some other cases. The conclusions 
drawn based on this analysis were confirmed by the results 
of computer simulation on the basis of the numerical solu-
tion of the corresponding systems of nonlinear Schrödinger 
equations.

The essence of this method is to derive an algebraic equa-
tion for the phase difference of interacting waves from the 
system of initial differential equations. To this end, the 
Hamiltonian (invariant) of the equations under consideration 
is applied instead of the generally used differential equation 
with respect to the phase difference of the interacting waves. 
In this case, the system of equations describing the wave inter-
action consists of equations with respect to the real ampli-
tudes, equal to square roots of their intensities, and an alge-
braic equation with respect to the phase difference (instead of 
the differential equation containing interacting-wave intensi-
ties in the right-hand side). Using the ratio between the inter-
acting-wave intensities, which follows from the Manley – Rowe 
relations, one can derive an equation with respect to the 
intensity of any wave and integrate it.

This equation contains a fourth-order polynomial with 
respect to the analysed-wave intensity. Therefore, at certain 
relations between the polynomial coefficients, which depend 
on the input-wave intensity, the phase difference of the inter-
acting waves (in the case of nonzero input intensities of all 
interacting waves) and the mismatch of wave numbers, there 
are four real roots at which this polynomial turns to zero. 
Then the intensity of the chosen wave will change within a 
certain pair of roots, corresponding to the maximum and 
minimum wave intensities; i.e., the bistable regime of wave 
interaction will be implemented. The evolution of the change 
in intensity is described by elliptic functions.

It should be noted that multiplicity of solutions often 
occurs, i.e., there may be two solutions for the same dimen-
sionless parameters, which correspond to bistable wave inter-
action. Switching from one interaction regime to the other 
depends on the parameters of the problem. For example, at 
some values of interacting-wave amplitudes (and other 
parameters of the problem), these two solutions have similar 
values in some cross sections of the medium: the maximum 
intensity for the lower branch of the solution is close to the 
minimum intensity for the upper branch of the solution. In 
this case, the switching is due to the influence of noise. There 
is a similar bistable regime in the case of second-harmonic 
generation under conditions of cubic nonlinearity [17, 18]. Its 
essence is in the fact that, when the input intensity of the 
pump wave is exceeded (and some other conditions are ful-
filled), there may be two (low- and high-efficiency) regimes of 
second-harmonic generation. The solution obtained is deter-
mined by the initial signal-wave intensity and the phase differ-
ence of the interacting waves at the input of the medium.

Figure 9 shows examples of solutions for the signal wave 
gain R = max(|as(z)|2/a2s0) under four-wave mixing, depending 
on the relation between the initial phases, j0 = js0 + ji0 – 
2jp0, at gs = g = 4.7 – 5.7, as0 = ai0 = .0 2 ap0 and D b = 0.12 for 
two branches. Here, aj0 and jj0 (  j = s, i, p) are the initial val-
ues (z = 0) of the real amplitudes and phases of interacting 
waves in the representation Aj0 = aj0exp(ijj0).

The results obtained show that there is a fundamental 
possibility of significant parametric amplification of side 
spectral components along the direction of femtosecond pulse 
propagation in a wide range of initial phases. This circum-
stance may lead to redistribution of band intensities in the 
beam spectrum without any changes in its structure, which is 
formed due to the self-phase modulation. Generation of new 
frequencies and occurrence of additional spectral compo-
nents due to amplification of spontaneous noise are excluded, 
because phase-matching conditions are violated for signal 
and idler waves of low intensities [20]. However, as the calcu-



	 Ya.V. Grudtsyn, I.G. Zubarev, A.V. Koribut, et al.420

lations show, at sufficiently high initial intensities of these 
waves, the self- and cross-phase modulation caused by them 
leads to phase matching and parametric amplification.

5. Conclusions

Our experimental and theoretical study of the nonlinear inter-
action of down-chirped femtosecond pulses of visible light 
(473 nm) with fused silica in converging Gaussian beams 
revealed the following.

(i) The spectrum undergoes a significant broadening in the 
sample at intensities exceeding 3 – 4 TW cm–2; this broadening 
is inhomogeneous over the cross section of the beam trans-
mitted through the sample and reaches a maximum in its cen-
tral part, where pulse self-compression is also observed.

(ii) Stationary intensity, phase and spectrum profiles are 
formed in the paraxial region of the beam behind the focal 
plane of the spherical mirror focusing the beam onto the sam-
ple.

(iii) As in the methods based on filamentation-induced 
self-compression and self-compression in gas-filled capillar-
ies, plasma (the formation of which is confirmed by the pres-
ence of multiphoton absorption in the sample) plays an 
important role in the generation of single pulses.

Laser beam filamentation does not occur in the self-com-
pression method implemented in this study. The main hin-
drances are the small sample thickness and high initial inten-
sity of the incident beam, which leads (via multiphoton ioni-
sation) to generation of plasma, and the latter impedes 

self-focusing. Under these conditions, we reduced the pulse 
duration by a factor of 3: from 80 fs (the initial duration of 
spectrally limited pulse) to 26 fs.

It was theoretically shown that four-wave mixing may 
affect the relative distribution of band intensities in the stage 
of formation of the spectrum band structure due to the self-
phase modulation upon nonlinear interaction of down-
chirped femtosecond pulses with fused silica.

The regime of wide-aperture nonlinear interaction calls 
for a more detailed theoretical and experimental study in 
order to optimise the self-compression conditions for femto-
second pulses and obtain maximum energy efficiency of the 
method under consideration and minimum (close to limiting) 
pulse duration.
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