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Abstract.  We report a theoretical investigation of high-order har-
monic generation (HHG) in the ionisation of atoms by nonlinear 
frequency-modulated laser pulses of short duration. It is shown that 
the reduction in the instantaneous value of the laser pulse frequency 
can lead to a significant increase in the width of the plateau in the 
HHG spectrum. We have found optimal parameters of frequency 
modulation at which photons with energies of 1 keV are efficiently 
generated at a relatively low laser-pulse intensity. High HHG effi-
ciency at optimal parameters is explained by the peculiarities of 
atomic ionisation dynamics and acceleration of photoelectrons by a 
frequency-modulated laser field. 

Keywords: frequency-modulated radiation, femtosecond pulses, 
atoms, ionisation, high harmonic generation, X-rays, attosecond 
pulses, numerical simulation. 

1. Introduction 

One of important directions of research in femtosecond 
optics is the synthesis of ultrashort optical waveforms for 
generation of pulses with an arbitrary time dependence of 
the electric field [1, 2]. In particular, a significant progress 
has been made in the generation of pulses with a predeter-
mined envelope shape and in the control of changes in the 
instantaneous value of the electric field at a scale smaller 
than one period of its oscillation (see, for example, [3] and 
references therein). Progress in this field is associated with 
the development of technology of generation of broadband 
pulses [4], the manipulation of relative phases and ampli-
tudes of the different spectral components of laser radiation 
and their coherent summation. For example, the authors of 
[2, 5, 6] have demonstrated the generation and measurement 
of pulses with controlled subfemtosecond changes in the 
electric field, based on the synthesis of the waveforms from 
a spectral continuum or a quasi-continuum extending to 
1.5 – 2 octaves.

Optical waveform shaping allows the complete steering of 
the microscopic dynamics of electrons and other charged par-

ticles in the ionisation of atoms and molecules by laser pulses. 
In particular, first experiments have been successfully per-
formed to demonstrate the use of these pulses to control the 
process of ionisation of atoms with subfemtosecond accuracy 
[6]. This allows one to effectively excite emitting electron cur-
rents generated in the produced plasma at different frequen-
cies, which can range from the terahertz [7 – 9] to vacuum 
ultraviolet (VUV) and X-ray bands [10 – 14]. Research in this 
direction attracts attention due to the possibility of control-
ling the generation of attosecond pulses, which have broad 
prospects for the use in various applications, including ultra-
high-time-resolution spectroscopy [11 – 13]. 

Emitting high-frequency currents, responsible for the gen-
eration of VUV and X-ray radiation in gases, are excited due 
to ultrafast detachment of electrons from atoms, acceleration 
of electrons and their recollisions with parent ions [14]. The 
spectrum of dipole acceleration (proportional to the deriva-
tive of the electron current density) contains a high-frequency 
plateau with a sharp cutoff near a certain frequency wc. In the 
case of a monochromatic laser field [15] 

wc » (Ip + 3.17Up)/' ,	 (1) 

where Ip is the ionisation potential of the atom; Up is the pon-
deromotive energy of the electron; '  is Planck’s constant; and 
the spectrum of dipole acceleration consists of odd harmonics 
of the pump frequency. Thus, the width of the plateau in the 
spectrum of high harmonic generation (HHG) is determined 
by the ponderomotive energy of the electron in the laser field, 
which is proportional to the product of laser intensity I to the 
square of its wavelength l: 

Up = e2E 20 /(4mw2
las) ~ Il2,	 (2)

where e and m are the charge and mass of the electron; and E0 
and wlas are the amplitude and frequency of laser radiation. It 
is evident that for the plateau to be extended, one can increase 
the wavelength of the laser pulse and its intensity. However, 
generation of intense high-energy harmonics by long-wave-
length laser sources is seriously hampered by a rapid decrease 
in the high-frequency atomic response with increasing laser 
wavelength [16 – 18]. This largely stems from the fact that the 
electron wave packet spreads at the stage of free motion and 
also that with increasing wavelength atomic levels are strongly 
depopulated during the laser field period. Increasing the pla-
teau width by increasing the laser pump intensity also has 
restrictions related to the rapid growth of the rate of tunnel-
ling ionisation of atoms with an increase in the electric field of 
the laser pulse, resulting in a sharp reduction in the number of 
atoms involved in the process of harmonic generation [19, 20]. 
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According to the three-stage model of high harmonic genera-
tion [14, 21], in the regime of tunnelling ionisation the main 
role in this process is played by free-bound transitions. 
Therefore, the effective HHG requires a high enough popula-
tion of both bound and free states. In the limiting case corre-
sponding to a very small population of the bound states, 
effective HHG does not occur. 

When using pulses with a specially chosen waveform, one 
can overcome these difficulties and significantly expand the 
plateau in the spectrum of the electron current, as well as 
increase the spectral intensity of higher harmonics. In particu-
lar, some authors (see, for example, [22, 23]) discuss the use of 
pulses with nonlinear frequency modulation, which corre-
sponds to a decrease in the instantaneous value of the fre-
quency in the maximum of the laser pulse envelope. A local 
decrease in frequency leads to an increase in the kinetic energy 
of photoelectrons at the moment when they return to the ion 
and thus to an increase in the cutoff frequency wc. Note that 
the spectrum of dipole acceleration is continuous, unlike the 
case of quasi-monochromatic pulses; however, in accordance 
with the established terminology, the excitation of the high-
frequency electron current by chirped laser pulses is also 
called high harmonic generation. 

This paper investigates optimal HHG conditions in the 
ionisation of a gas by chirped laser pulses. Using the numer-
ical calculations in the framework of a one-dimensional 
(1D) quantum-mechanical model and the analytical treat-
ment by a modified Lewenstein model, we have found the 
optimal parameters of laser pulses, corresponding to the 
maximum HHG efficiency in the high-frequency domain. It 
is shown that by using chirped laser pulse the conversion 
efficiency to higher harmonics may be an order of magni-
tude higher than in the absence of frequency modulation. 
Considering the population dynamics of the atomic ground 
state and using the time-frequency analysis of the high-fre-
quency response of the system, we explain the high efficiency 
of nonlinear frequency conversion in the found optimal 
HHG regime by the peculiarities of the dynamics of electron 
photodetachment and acceleration in this regime. We have 
also estimated the duration of attosecond pulses which can 
be obtained using laser pulses with a strong nonlinear fre-
quency modulation, and it is shown that this duration can 
reach ten attoseconds. 

2. Statement of the problem 

In this paper it is assumed that the electric field of a chirped 
laser pulse is linearly polarised along the z axis and is param-
eterised in the same way as in [22 – 24] 

( ) ( ( ) )cos exp lnE t E t t t2 2las
p

0 2

2
w d j

t
= + + -e o.	 (3) 

Here tp is the pulse duration; j is the carrier-envelope phase; 
and 

( ) tanht t t
ch

ch

0d wt tD=-
-c m	 (4) 

is the time profile of the carrier-envelope phase, which speci-
fies the pulse frequency modulation. The parameters Dw and 
tch in (4) determine the amplitude and time scale of frequency 
modulation; t0 is the instant of time at which the instanta-
neous frequency, defined as a derivative of the field phase, 

deviates from the centre frequency by a maximum value of 
Dw. Note that for a chirped laser the concept of pulse inten-
sity, generally speaking, does not make sense, because the car-
rier frequency of the pulse is not constant. Nevertheless, we 
will use below the quantity of peak intensity, which is repre-
sented by I = cE2

0 /(8p), where c is the speed of light. 
The time-dependent and z-axis-directed dipole accelera-

tion a(t), which is acquired by an atomic electron due to its 
interaction with the electric field, is calculated using the 
Ehrenfest theorem [25]: 

¶
¶( ) ( )a t m

e E t m z
V1 y y= - ,	 (5) 

where y is the wave function of an atomic electron; V(r) is the 
Coulomb potential created by the parent ion; and r is the 
radius vector defining the position of the electron relative to 
the Coulomb centre. The squared modulus of the Fourier 
expansion coefficient of the dipole acceleration (the HHG 
spectrum) 

( ) ( )exp i da a t t tw= -
3

3

w
-
y 	 (6) 

determines the spectral intensity of the generated high-fre-
quency radiation. To find the optimal parameters of fre-
quency modulation the so-called HHG power is calculated, 
equal to the integral of |aw|2 over frequencies in some spectral 
range: 

2| | dW a
min

max
w= w

w

wy .	 (7) 

The positions of the boundaries wmin and wmax of the spectral 
range in question will be specified in Sections 3 and 4. 

3. Numerical calculations 

3.1. Methods of calculation 

At the first stage of this research, to accelerate calculations 
when searching for the optimal parameters of chirped laser 
pulses we used a 1D quantum-mechanical model of the hydro-
gen atom, proposed in [10]. Using this model involves the 
solution of a 1D time-dependent Schrödinger equation 
(TDSE)

¶
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where 
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is the model (the so-called supersolid-core) potential; and rB 
= 5.29 ´ 10–9 cm is the Bohr radius. The energy of the 
ground state in this potential is equal in absolute value to 
the ionisation potential of the hydrogen atom (Ip = 13.6 eV), 
and the potential itself is asymptotically close to the 
Coulomb potential away from the ion. The use of this poten-
tial provides high accuracy in describing the stage of ionisa-
tion of an atom, which is essential for the research conducted 
in this paper. 
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In some cases, the results obtained in 1D model calcula-
tions as well as in the analytical consideration (Section 4) 
were compared with the results of three-dimensional (3D) 
numerical calculations. Taking into account the axial symme-
try of the problem, the 3D TDSE was numerically integrated 
in the cylindrical coordinate system ( r, q, z), in which it is 
written as 

¶
¶

¶
¶

¶
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(10)

where V( r, z) is the Coulomb potential of the ion. 
The numerical integration of the TDSE in the 1D and 3D 

cases was performed by using the pseudospectral method [26]. 
To transform the wave function from the coordinate repre-
sentation to the momentum representation and back, we use 
a fast Fourier transform in the 1D problem and a fast Fourier 
transform along the z axis and a discrete Fourier – Bessel 
transform along r in the 3D problem. The calculations were 
performed in the domains zmin £ z £ zmax (1D problem) and 
zmin £ z £ zmax, 0 £ r £ 64rB (3D problem). To suppress the 
reflection of the wave function from the boundaries of the 
computational domain and emerging wave packets on the 
opposite edge of the grid, use is made of the absorption of the 
wave function on the periphery of the computational domain. 
The values of zmin and zmax were determined based on the 
solutions of the classical equations of motion of the electron 
so that the electrons born at arbitrary time instants and 
returning to the ion do not fall into the absorbing layer during 
the motion. In solving the 1D TDSE, a step Dz along the coor-
dinate was chosen equal to 0.15rB. In solving the 3D TDSE, 
we used an equidistant grid along z with a step Dz = 0.23rB, 
while the nodes of the grid along r were located nonequidis-
tantly: they become condensed with approaching r = 0, and 
their total number Nr is equal to 420. The integration over 
time is performed in the domain – tmax £ t £ tmax, where tmax 
= 3.5tp with a step Dt = 0.015ta, where ta = 2.42 ´ 10–17 s is 
the atomic unit of time. 

3.2. Calculation results 

Here we consider the problem of finding the parameters of a 
chirped laser pulse, at which the HHG power W is maximal 
in a semi-infinite spectral range w > wmin, where 'wmin 
= 800 eV. It is assumed that the amplitude of the frequency 
modulation of the laser pulse can take values in a wide range 
0 £ Dw £ wlas. The peak intensity I of the pulse is set equal to 
6 ´ 1014 W cm–2, the duration tp = 5.89 fs, the unshifted cen-
tre wavelength l = 2pc/wlas = 0.8 mm, the carrier-envelope 
phase j = 0, and the time scale of the frequency modulation 
tch = 4.84 fs. 

To find the optimal values of t0 and Dw we used the 1D 
model described in Section 3.1. Using this model we calcu-
lated the values of W in the range 0 £ Dw £ wlas and a wide 
range of t0. The results obtained show that the local maxima 
W are achieved near the maximum value of the modulation-
frequency amplitude Dw = wlas. The global maximum is 
reached near t0 = 0.82 fs and Dw/wlas = 0.988. Figure 1 shows 
the dependence of W on t0 at Dw/wlas = 0.988. One can see 
that the curve W(t0) has several sharp peaks alternating with 
a period 1.4 fs, which approximately corresponds to half the 
field period at a wavelength of 0.8 mm. In the two peaks 
located near t0 = 0.82 and 2.3 fs, the value of W takes similar 

values that significantly exceed the corresponding values in 
other peaks of the function W(t0). Also, an interesting feature 
in the dependence of W on t0 is a very sharp (many orders of 
magnitude) drop of W(t0) at a small (hundredths of a femto-
second) change in t0. A sudden drop in W(t0) means that the 
edge of the plateau crosses the lower boundary wmin of the 
spectral interval in integral (7). This indicates that the posi-
tion of the plateau edge in the HHG spectrum varies greatly 
with a small change in t0. 

Next, we performed a 3D numerical integration of the 
TDSE for the chirped pulse parameters, which correspond, 
according to the 1D calculation in Fig. 1, to one of the 
most intense peaks (at Dw/wlas = 0.988, t0 = 0.82 fs). One 
can see from Fig. 2, where the black line shows the HHG 
spectrum for this case, that the photon energy correspond-
ing to the plateau edge is 'wc » 890 eV (far exceeding the 
value of the cutoff energy, obtained in [22]). Thus, short 
chirped laser pulses with a relatively low intensity can be 
used to generate radiation with photon energies on the 
order of 1 keV. 

Let us now consider how the spectral densities of the 
dipole acceleration in the region of the plateau edge correlate 
in the case of a chirped pulse and a pulse without frequency 
modulation. The gray line in Fig. 2 shows the HHG spectrum 
calculated for a pulse with d = 0 when the values of I, tp and 
j are the same as those for a chirped pulse, but at a longer 
centre wavelength ( l = 2.234 mm). One can see from Fig. 2 
that in both cases the HHG spectrum extends almost to 
0.9 keV, but in the case of a frequency-modulated pulse the 
conversion efficiency to higher harmonics is almost an order 
of magnitude higher than in the absence of frequency modu-
lation. 

This significant difference in the output of harmonics is 
explained by significant differences in temporal changes in 
the electric field inside the specified envelope for the two 
pulses in question (Fig. 3). Because of the strong dependence 
of the ionisation rate of the electric field [27], these differ-
ences lead to a significant difference in the ionisation dynam-
ics and, as a result, in a time-frequency evolution of the 
HHG process. 

10–4

10–3

10–2
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–1 0 1 2 3 t0/fs
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Figure 1.  Dependence of the HHG power W in a semi-infinite spectral 
range w > wmin ('wmin = 0.8 keV) on time t0, corresponding to the high-
est modulation frequency, at I = 6 ´ 1014 W cm–2, tp = 5.89 fs, l = 
0.8  mm, j = 0, tch = 4.84 fs and Dw/wlas = 0.988. 
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To show this, let us consider the results of the calculations 
shown in Fig. 4. Figure 4a shows the time dependence of the 
ground state population of the atoms:

P0(t) = |áy|y0ñ|2,	 (11)

where y0 (r) is the wave function of the ground state. Figu
res 4b and 4c show wavelet spectrograms of the dipole accel-
eration, which provide a time-frequency analysis of the high-
frequency response of the system. To calculate the spectro-
gram we used the formula 

( , ) ( )exp i dS t a t t t t t
20 0
2

2 2

t t
W W W W

= - - -
3

3

-

l l l le oy ,	 (12) 

where 5 / ln40 pt =  » 13.34 (see, for example, [28, 29]). As 
follows from Fig. 4a, both pulses, depicted in Fig. 3, quite 
strongly ionise the gas near the time instant t » – 3 fs, corre-
sponding to the local maxima of the electric field modulus. 
Further dynamics of the electrons for these two pulses mark-
edly varies. 

In the case of a pulse without frequency modulation, the 
electric field strength amplitude in the next half-cycle after the 
electron detachment increases. By the time t » 1.5 fs, when 
part of the wave packet corresponding to the most high-
energy free electrons returns to the parent ion, the ground 
state under the influence of this field is almost completely 
depleted (see Fig. 4a, dashed curve), which leads to the fact 
that the excited high-frequency electron current is weak. 

In using a chirped pulse, the population P0 of the ground 
state remains almost unchanged in the time interval between 
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Figure 2.  HHG spectra in the high-frequency region for a chirped laser 
pulse (black curve) and a pulse without frequency modulation (gray 
curve) at I = 6 × 1014 W cm–2, tp = 5.89 fs, j = 0 and l = 0.8 mm (with 
frequency modulation) and 2.234 mm (without it); the parameters of 
the chirped pulse frequency modulation are: tch = 4.84 fs, Dw/wlas = 
0.988 and t0 = 0.82 fs. 
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Figure 3.  Time profiles of the electric field of pulses with frequency 
modulation (solid curve) and without it (dashed curve), which corre-
spond to HHG spectra plotted in Fig. 2. 
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Figure 4.  (a) Time dependences of the ground state population P0 of 
the atom and wavelet spectrograms S(W, t) of the dipole acceleration for 
pulses (b) with frequency modulation and (c) without it, as shown in 
Fig. 3. 
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detachment and return of the high-energy electron (Fig. 4a, 
solid curve) and corresponds to approximately 70 % of the 
total number of electrons. Because the field near the envelope 
maximum changes slower than at the leading edge (Figure 3, 
solid curve), the photoelectrons by the time of their return 
acquire a large enough energy. Since the population of both 
free and bound states in this case is sufficiently high, the high-
frequency polarisation is excited efficiently and the spectral 
HHG density is much higher than in the case of a pulse with-
out frequency modulation. 

The use of short pulses with a nonlinear frequency modula-
tion allows one to efficiently generate isolated attosecond 
pulses [22, 23]. To show this, let us consider again the wavelet 
spectrogram of dipole acceleration for a chirped pulse (Fig.  4b). 
As can be seen from the figure, high frequencies in dipole 
acceleration are excited on a separate time interval with a 
duration determined by the time of return of electrons pro-
duced on the same crest of the electric field at t » – 3 fs. This 
duration in the case under study is a few femtoseconds, which 
is related to the fact that the phases of different spectral com-
ponents of dipole acceleration greatly differ from each other. 

The duration of the generated high-frequency pulse can be 
reduced using a selection of ‘short’ trajectories of electrons 
and chirp compensation of the generated radiation [30]. 
‘Short’ and ‘long’ trajectories of electrons (called so in accor-
dance with the time of motion of electrons in the continuum) 
correspond to different parts (positive and negative frequency 
chirps) of the spectrogram. In selecting only short trajecto-
ries, the frequency chirp of dipole acceleration is positive and 
close to linear, i.e., w(t) » at + b, where a > 0 and b are some 
coefficients. Because the phase of the spectral components of 
dipole acceleration is determined by the integral of the fre-
quency over time, it has a term Df, quadratic in frequency 
w(t): Df = w2/2a. The corresponding frequency quadratic 
phase portion of the generated radiation can be compensated 
for by transmitting radiation through a thin plate (or a set of 
plates) made of a metal having anomalous dispersion in the 
passband [30 – 32]. 

Let us estimate what duration of the attosecond pulse we 
can thus obtain in the case of a chirped laser pulse (with the 
parameters specified in the caption to Fig. 2). To do this, we 
conduct the following transformation of dipole acceleration 
a(t). For the ‘short’ trajectories to be selected, the function 
a(t) is multiplied by the mask function equal to zero in the 
time interval, corresponding to ‘long’ trajectories, and to 
unity in the time interval, corresponding to ‘short’ trajecto-
ries. From the Fourier spectrum of the resulting function we 
subtract the phase Df = w2/2a, where a = 0.28ta–2  (the value 
of this coefficient was found from the wavelet spectrogram), 
and filter out the low-frequency portion of the photons with 
energies below 420 eV. The square of the modulus of the 
inverse Fourier transform coefficients of the resulting signal 
corresponds to the square E 2ap(t) of the electric field generated 
as an attosecond pulse. Figure 5 shows the time dependence 
of E 2ap, shifted to zero along the t axis. It can be seen that the 
characteristic duration of the generated attosecond pulse is 
~13 as. This result demonstrates that using frequency-modu-
lated laser pulses one can achieve a significant decrease in the 
attosecond pulse duration. 

4. Analytical description 

The solution to the problem of finding the parameters of a 
frequency-modulated laser pulse presented in Section 3 to 

implement the optimal HHG regime was based on the use of 
numerical calculations in the framework of the quantum-
mechanical model, i.e., on the numerical solution of the 1D 
TDSE. However, if there are more than two variable laser 
pulse parameters, the use of this approach to solve the optimi-
sation problem requires much time and significant computing 
resources. This makes it necessary to use alternative (usually 
approximate) approaches in such problems. One of these 
approaches is any of semi-analytic quantum-mechanical the-
ories [21, 33, 34], allowing one, in the framework of certain 
approximations, to represent the sought-for high-frequency 
polarisation response of the system under study in an inte-
grated form. Below we use Lewenstein’s theory [21], modified 
so as to take into account the important effect of the deple-
tion of atomic levels by an intense laser field.

4.1. Modified strong-field approximation 

Lewenstein’s theory [21] provides a quantum-mechanical 
description of a three-step HHG process [14] in the strong-
field approximation. In this theory, the wave function of an 
electron interacting with an intense electromagnetic field has 
the form of a superposition of the unperturbed eigenfunction 
of the ground bound state in the atom and set of continuous 
spectrum functions given, in accordance with the strong-field 
approximation, in the form of plane waves without taking 
into account the influence of the Coulomb potential. The 
time-dependent mean dipole moment of the system is 
expressed in this case as an integral in time and components 
of a canonical momentum of the electron, containing a rap-
idly oscillating integrand factor in the form of an exponential, 
whose exponent is given by the electron’s quasi-classical 
action S( p, t, t¢ ) ( p is the canonical momentum of the elec-
tron, t is the current time and t¢   is a temporary variable of 
integration). The main contribution to the momentum inte-

13 as
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Figure 5.  Time profile of the square of the electric field of an attosecond 
pulse produced by HHG using frequency-modulated radiation with the 
parameters specified in the caption to Fig. 2. The attosecond pulse is 
produced using the selection of ‘short’ trajectories of electrons involved 
in the HHG and compensation of the positive chirp of the frequency of 
the generated radiation. 
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grals are given by stationary points of action: ÑpS( p, t, t’ ) = 0. 
These stationary points have a clear physical meaning: their 
contribution to the high-frequency nonlinear response of the 
system corresponds to free-electron trajectories, beginning at 
the nucleus and ending at the same nucleus later; this picture 
is consistent with the assumptions of the semiclassical model 
[14]. The theory [21] provides not only qualitative but also 
quantitative confirmation of the main conclusions of the 
semiclassical model, showing, in particular, good agreement 
with it, regarding the position of cutoff energy (1) in the HHG 
spectrum. 

The original version of Lewenstein’s theory was con-
structed on the assumption of weak ionisation, i.e., the popu-
lation of the ground state was considered unchanged. Further 
development of the HHG theory showed that accounting for 
the depopulation of the bound state can be reduced to the 
multiplication of the probability amplitudes of the electron 
transitions from the ground state to the continuum at time 
t – t and from the continuum to the ground state at time t by 
the amplitude of the ground state at time moments t – t and t, 
respectively, where t is the time of the electron motion in free 
space. This changing amplitude of the ground state can be 
approximately calculated as 

( )
( )

exp da t
t

t
2

t v
= -

3-

l
l; Ey ,

where v (t¢ ) is the time-dependent ionisation rate. As a result, 
the expression for the variable dipole moment of the atom in 
an external linearly polarised electromagnetic field has the 
form (hereinafter atomic units are used): 
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Here, A(t) = ez Az(t) is the vector potential of the electromag-
netic field of the laser pulse; ez is the unit vector along the z 
axis; e is the regularisation parameter, which may be selected 
small; 

( , )
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A t
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st
z

t

t
t t=
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l
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is the z coordinate of a stationary point [Ñp Sst( p, t, t) = 0] of 
the quasi-classical action, describing the free motion of an 
electron in the field of the laser pulse: 

( , , )
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I tp p
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t 2
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l
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the stationary value of the z-component of the canonical 
momentum of the electron, p, corresponds to the classical tra-
jectory starting at the nucleus at time t – t and ending on it at 
time t; Sst(t, t) is the quasi-classical action corresponding to 
pst(t, t); and dz(   p) is the component of the dipole matrix ele-
ment corresponding to the transition from the ground bound 
state into the continuous spectrum. For hydrogen-like sys-
tems in which highly excited states in the continuum can be 

approximately regarded as plane waves, the matrix element 
has the form 
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To calculate the value of v(t), which is responsible for 
the depletion of the nonlinear medium, various approaches 
[21, 35 – 37] were proposed. It is known from the literature 
[38, 39] that the widely used formula for the tunnelling ionisa-
tion rate [40], at large values of |E| (of interest to us in this 
problem), greatly overestimates its value. Therefore, follow-
ing [37], in the present study we calculate v(t) by using an 
analytical formula for the tunnelling ionisation rate of an 
atom in a static field, corrected for above-barrier regime pro-
posed in [39]: 
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Here, Cl is the numerical coefficient, which is determined 
from the condition of the wave function normalisation; and Z 
is the effective nuclear charge. The last exponential factor in 
(17) is the aforementioned correction factor that allows one, 
as shown in [39], to calculate with high accuracy the ionisa-
tion rate of atoms in a wide range of electric-field strengths E. 

4.2. Calculation results 

The results presented below were obtained within the frame-
work of the modified strong-field approximation described in 
Section 4.1. Here we consider the problem of maximising the 
efficiency of conversion of optical radiation into the ‘water 
window’, i.e., the wavelength region between 2.3 and 4.4 nm, 
which is important for biochemical studies, where carbon-
containing biological objects effectively absorb radiation, 
while water is relatively transparent. Accordingly, in order to 
find the optimal parameters of the considered laser pulses we 
calculated the HHG power in the photon energy range from 
'wmin = 284 eV to 'wmax = 543 eV. Using the analytic theory 
instead of direct numerical integration of the TDSE allowed 
us to investigate the HHG efficiency in a wide range of vari-
able parameters E0, Dw, t0, tch and j of a frequency modu-
lated pulse, given by formulas (3) and (4). The unshifted cen-
tre wavelength and pulse duration were assumed equal to 0.8 
mm and 5 fs. The high-frequency part of the HHG spectrum 
corresponding to the found optimum set of the parameters is 
shown in Fig. 6a (black curve). The cutoff energy in this case 
is about 375 eV. 

As in Section 3.2, we compared the efficiency of conver-
sion of optical radiation into the high frequency radiation for 
cases of a chirped pulse and a pulse without frequency modu-
lation; in the second case, we set the pulse parameters which 
provide the same position of the plateau edge, as in the case of 
a chirped pulse. The comparison was carried out for a wide 
range of unchirped pulse intensities; moreover, since, accord-
ing to (1) and (2), the position of the plateau edge in the spec-
tra of high harmonics is determined by the product of the 
laser intensity by the square of its wavelength, we varied the 
wavelength l with intensity I (according to the condition of 
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constant Il2). The results of these calculations are shown in 
Fig. 7. 

Figure 7 shows that in the case of a pulse without fre-
quency modulation the HHG power is 2.4 – 4.6 times lower 
than in the case of a chirped pulse. The maximum efficiency 
of the harmonic generation with the above-mentioned cutoff 
energy in the case of a pump without frequency modulation is 
observed at I » 6 ´ 1014 W cm–2 and l » 1.43 mm; the cor-
responding HHG spectrum is shown in Fig.6a (gray curve). 
Note that the mentioned optimum pulse intensity without fre-
quency modulation, required for obtaining the energy cutoff 
of 375 eV, is approximately 1.33 times higher than in the case 
of a chirped pulse. At lower intensities, the generation of pho-
tons with such energies requires longer-wavelength pumping, 

which, as noted in the Introduction, leads to a decrease in the 
yield of harmonics, while at higher intensities HHG is sup-
pressed due to the depletion of the nonlinear medium. The 
HHG spectra given in Fig. 6b, obtained by solving the 3D 
TDSE, are in good agreement with the results of calculations 
in the framework of the modified strong-field approximation 
(Fig. 6a). 

An analysis of the dynamics of the ground state popula-
tion of the atom in the case of pulses with frequency modula-
tion and without it in the considered problem of high har-
monic generation in the ‘water window’ leads to the results 
similar to those for harmonic generation in the region below 
1 keV (Fig. 4a). This indicates a common mechanism, which 
is responsible for a significant increase in the HHG efficiency 
in the regimes under study when use is made of laser pulses 
with strong frequency modulation. 

5. Conclusions 

We have studied the high-order harmonic generation in the 
ionisation of the gas by an intense laser pulse with nonlinear 
frequency modulation. We have found the optimal laser pulse 
parameters, corresponding to the maximum conversion effi-
ciency of laser radiation into the ‘water window’ (correspond-
ing to photon energies of 280 – 540 eV) and into a higher fre-
quency range with photon energies of the order of 1 keV. It is 
shown that by using a chirped laser pulse the conversion effi-
ciency to higher harmonics may be substantially greater than 
in the absence of the frequency modulation, and the gener-
ated radiation can be converted into isolated ultrashort pulses 
having a duration of ~ 10 as. The high efficiency of nonlinear 
frequency conversion in the found optimal HHG regimes is 
explained by the features of the dynamics of the ionisation 
process that is characterised in this case by a combination of 
a high probability of detachment of electrons making the 

10–5

10–6

10–6

10–5

10–4

10–4

S
p

ec
tr

al
 d

en
si

ty
 (

a.
u

.)
S

p
ec

tr
al

 d
en

si
ty

 (
a.

u
.)

100 200 300 400
Photon energy/eV

100 200 300 400
Photon energy/eV

a

b

Figure 6.  HHG spectra in the high-frequency region for a chirped laser 
pulse (black curve) at tp = 5 fs, j = 2.9 rad, I = 4.5 × 1014 W cm–2, l = 
0.8 mm, tch = 3.65 fs, Dw/wlas = 0.75, t0 = 3.06 fs and a pulse without 
frequency modulation (gray curve) at I = 6 × 1014 W cm–2, l = 1.43 mm. 
The calculations were performed using (a) the modified strong-field ap-
proximation and (b) the solution of the 3D TDSE.
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Figure 7.  Ratio h of the HHG powers for a laser pulse without frequen-
cy modulation and a frequency-modulated pulse as a function of the 
intensity I of a pulse without frequency modulation with a centre wave-
length l satisfying the condition Il2 = const. In both cases, the laser 
pulse duration and cutoff energy in the HHG spectrum are equal to 5 fs 
and 375 eV. 
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main contribution to the high-frequency region of the HHG 
spectrum with a relatively low probability of the depletion of 
atomic levels in the time interval between the detachment of 
the electron and its collision with the parent ion.
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