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Abstract.  We report the results of a theoretical investigation of 
light wave transformation in a one-dimensional photonic crystal. 
The scheme considered comprises an incident wave directed in par-
allel with layers of the photonic crystal under an assumption that 
the wave vector is far from a forbidden zone. Expressions for prop-
agating and evanescent electromagnetic waves in a periodic medium 
of the photonic crystal are obtained. It is found that the transverse 
structure of the propagating wave comprises a strong constant com-
ponent and a weak oscillating component with a period determined 
by that of the photonic crystal. On the contrary, the dependence of 
evanescent waves on transverse coordinates is presented by a strong 
oscillating component and a weak constant component. The process 
of transformation of propagating waves to evanescent waves at a 
crystal – metal interface is investigated. Parameters of the photonic 
crystal typical for synthetic opals are used in all numerical simula-
tions. The theoretical approach elaborated yields in an explicit 
form the dependence of the amplitude of a generated surface wave 
on the period of the dielectric function modulation in the photonic 
crystal. The results obtained show that in the conditions close to 
plasmon resonance the amplitude of the surface wave may be on the 
order of or even exceed that of the initial incident wave.

Keywords: photonic crystal, evanescent waves, wave transforma-
tion at a crystal – metal interface, surface wave amplitude.

1. Introduction

Classical methods for exciting surface plasmon polaritons 
(SPPs) at a metal – dielectric interface, described in funda-
mental work [1], are still used in experiments. These methods 
are based on the effect of frustrated total internal reflection or 
on the employment of metal periodic structures. In the last 
decade, investigations related to the search for other ways and 
schemes for obtaining SPPs have been actively developed. 
There are many schemes, in which light is directed to an ultra-
narrow channel in a metal layer or to a sub-wavelength hole 
or sub-micron slit in a thin metal film. Surface waves were 
then observed at the opposite side of the metal layer [2 – 4]. 
Phenomena occurring in this case were analysed theoretically 
by some authors (see, for example, [5 – 7] and review [8]). Of 
particular interest is the scheme [9], in which a light beam 
passed to a system of multiple holes in a metal film. This work 

has inspired numerous experimental and theoretical investi-
gations (see, e.g., [10 – 12]).

Currently, there is a trend for combining plasmonics and 
specific features of photonic crystals. A rapidly developing 
field of studies has emerged, aimed at analysing new optical 
phenomena in photonic crystals and their practical employ-
ment. Relevant physical problems, some practical applica-
tions and possible prospects are discussed in [13 – 15]. These 
works combining plasmonics and photonic crystals pay 
much attention to modification of optical properties in crys-
tals placed near a metal surface or comprising embedded 
metal particles. These phenomena were first studied and ana-
lysed in 1D photonic crystals [16 – 23]. These works studied 
the modification of the crystal zone structure caused by the 
interaction of Bloch waves with electromagnetic oscillations 
in metal and paid special attention to the role of forbidden 
photonic zones. It was asserted that the existence of surface 
plasmons is ensured by evanescent waves pertaining to for-
bidden zones of the photonic crystal. This statement was 
stressed in [17, 18].

In [24 – 29] and papers cited therein, experiments were per-
formed with 2D and 3D photonic opal-like crystals. In one 
such experiment, two samples of different photonic crystals 
were used simultaneously. In some other experiments, a metal 
film deposited on a glass substrate (or directly on the crystal 
surface) was used. The metal film added to the system imple-
mented the conditions for the existence of plasmons which 
resulted in a drastic change of the total transmission and 
reflection coefficients with a complicated angular structure of 
these coefficients. The angular structure of the coefficients 
depended on a distance between the crystal and metal film; 
this fact has been experimentally confirmed.

Substantial changes of spatial light waves were also 
observed in crystals with imbedded metal nanoparticles 
[30 – 32]. In this case, optical phenomena were initiated by 
localised (not propagating) plasmons.

Phenomena observed in the interaction of plasmons with 
various nanostructured objects are indicative of the complex-
ity of problems in this field.

In the present work we consider a rather simple and effi-
cient scheme of plasmon interaction with plane waves. The 
simplest microstructured object is investigated, namely, a 
one-dimensional photonic crystal placed on a metal substrate. 
The dielectric function of the crystal is assumed periodic in 
the direction parallel to the input plane onto which the pri-
mary light wave falls. In this scheme the wave transformation 
at the crystal – metal interface can be described analytically 
and the intensity of the generated surface wave can be quanti-
tatively estimated as a function of the primary wave intensity 
and the modulation period of the photonic crystal.
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2. Problem formulation

Consider a photonic crystal unlimited in the coordinates x 
and y. The plane z = 0 is the crystal – metal interface; the plane 
z = –d, onto which the primary radiation falls, is the crys-
tal – air interface (Fig. 1). The alternating white and grey areas 
in Fig. 1 tentatively show a periodic dependence of the dielec-
tric function on the coordinate. The spatial modulation of the 
dielectric function is generally described by an infinite set of 
Fourier harmonics. In this section we will estimate Fourier 
coefficients for several lower harmonics. In final calculations 
we will restrict ourselves to a single harmonic and a constant 
component. The dielectric function is taken in the form

( )e ei iGx Gx
0e e e= + + -u .	 (1)

The magnetic permeability of the crystal is taken constant 
and equal to unity. In further calculations we will assume that 
an external source in the plane z = –d produces the field  
eA i tw- , which is independent of y and x and propagates in the 

positive z-direction. We emphasise that the initial field propa-
gates along the layers constituting the crystal. The situation 
differs, for example, from cases [16,  21] where the primary 
wave propagates perpendicular to the crystal layers.

For the numerical parameters of our problem we take 
characteristics of a synthetic opal (a 3D photonic crystal). 
Some parameters are taken from papers [33, 34] where non-
linear optical effects induced by radiation of a ruby laser 
(with the wavelength  l = 2pc/w = 694.3 nm) operating in the 
regime of giant oscillations have been studied. In these exper-
iments, the convergence of the beam was usually about 
0.1 – 0.05 rad. The average dielectric function is taken e0 = 
1.851. This value corresponds to the case where pores between 
silica globules (eSiO2 = 2.15) are not filled (ep = 1.0).

The description of a real crystal requires a set of Fourier 
harmonics. In order to estimate the values of Fourier coeffi-
cients one may calculate these coefficients for several lower 
harmonics. Recall that the centres of spheres (silica globules) 
in a synthetic opal form the face-centred cubic structure.

Ideally, all globules are identical and described by a 
unique diameter Dgl, which is on the order of or less than 
1 mm. In most cases Dgl varies from 200 to 700 nm. Consider 
the plane of the crystal in which centres of globules are 
arranged according to the hexagonal close packing (the plane 
1, 1, 1). We draw in this plane axes x and y such that the x axis 
concatenates two nearest neighbouring globules, and the y 
axis is orthogonal to it. Let the z axis be orthogonal to the 
chosen plane. Obviously, the distance between the centres of 
the closest globules is lx = Dgl and the distance between neigh-

bouring rows of globules is /2l D 3gly = . The distance 
between neighbouring layers of globules is /l D 2 3glz = . The 
periods along the x, y and z axes are, respectively, hx = lx, hy = 
2ly and hz = 4lz. The corresponding wavenumbers are given by 
the expressions G = 2pq/hx, 2 /G q hyp=l l , 2 /G q hzp=ll ll , 
where q, q' and q'' are integers.

Consider the harmonic dependent on x only, that is, with 
the wavenumber of type G = 2pq/hx. At q = 1 we obtain the 
Fourier coefficient equal to zero because the contributions 
from neighbouring rows of globules would compensate for 
each other. For second harmonic with the wavenumber G = 
4p/hx the value of the Fourier coefficient is given by the 
expression

( ) ( )G sph pe e e= -u

	 ´ 
exp exp

d d d

i i d d d

x y z

Gx Gx x y z

2
Vtot

sphN

+ -
V

] ]g g6 @

yyy
yyy

.	 (2)

Here, Vtot  is the volume of a rectangular parallelepiped with 
the sides lxNx, lyNy, lzNz; VN sph is the volume of all N spheres 
(N = NxNyNz) inside the volume Vtot; and esph and ep are the 
dielectric constants of globules and pores, respectively. By 
expressing the numerator in terms of the sum of N equal inte-
grals over a single sphere we finally obtain

( ) ( )
/

G
GD2 2

sph p
gl

3
pe e e= -u

^ h

	 ´  ( / ) ( / ) ( / )sin cosGD GD GD2 2 2gl gl gl-6 @.	 (3)

By substituting the values G = 4p/hx, hx = Dgl into (3), we 
obtain 0.056( )sph pe e e= -u . Let us point out that the consid-
ered value of G corresponds to the period Dgl/2.

The Fourier coefficients for the wavenumbers dependent 
on y and z are calculated by a different scheme because of dif-
ferent phase relations between the contributions from neigh-
bouring rows and neighbouring layers of globules into the 
total result. For three lowest harmonics contributing into the 
dependence of e on {x, y, z}, namely, for {G, G', G'' } = 
{p4/Dgl, 4/ , /D D3 6gl glp p }, we obtain the following values 
of the modulation component ( )sph pe e e= -u {0.056, 0.064, 
0.089}. To the chosen values of wavenumbers correspond the 
following values of modulation periods: {L, L', L'' } = 
{ /2, /2, / }D D D3 2 3gl gl gl . By using the contrast of the dielec-
tric function defined above through the values of e for spheres 
and pores 1.15sph p SiO air2e e e e- = - = , we can write the three 
values of the modulation coefficient in the form eu  = {0.065, 
0.073, 0.102}. In further calculations we will only retain 
the first coefficient adopting in this way the one-dimen-
sional model of the photonic crystal. Let us introduce the 
ratio x of this coefficient to the average value of the dielectric 
function

( ) /G 0x e e= u .	 (4)

At eu= 0.065 and e0 = 1.851 we have / 0e eu  = 0.035. Note that 
the following condition holds

x << 1.	 (5)
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Figure 1.  Waves at the photonic crystal – metal interface: Ar   and A are 
the propagating waves in the crystal; Br  is the evanescent wave in the 
crystal; D, T are the evanescent waves in metal.
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The smallness of the parameter x simplifies further calcula-
tions. 

3. Eigenwaves in an unlimited photonic crystal

Consider the wave equation for a nonuniform medium (see 
[35]). In solving the problem it is reasonable to deal with 
transverse-magnetic (TM) waves and write out the magnetic 
field equations from [35] in the form

0H H Hrot
c

1
2

2

#de w
e eD + + =5 ? .	 (6)

The expression for the y-component of the magnetic field 
inside the crystal is taken in the form

( )exp iH H x k zHy z/ = 5 ?;

hereafter, the time-dependent factor exp[–iwt] is omitted. By 
writing Eqn (6) for the chosen spatial dependence of the field 
and taking into account properties (1) and (5) of the dielectric 
function e, we obtain

¶
¶

¶
¶ 0e eH

c
H

c
H

x x
H1i iGx Gx

0 2

2

2

2

0
e w e w

e
eD + + + - =-u ^ h .	 (7)

In view of smallness of the parameterа / 0x e e= u , the field can 
be written as

( ) .e e eH H H Hi i iGx Gx k z
0 1 1

z= + + -
- 	 (8)

Let us combine a system of equations for coupled waves as it 
is usually done in analysing waves in periodic structures (see 
[36, 37]). It is pertinent to note that in our case both the scat-
tered waves included in (8) (H1 and H–1) are well off the Bragg 
resonance condition. Hence, neither of them is preferable and 
both should be taken into account on equal terms. Expression 
(7) entails the system of equations for three amplitudes H0, H1 
and H–1:

0
c

k H
c

G H Hz0 2

2
2

0 0 2

2
2

1 1e w x e w
- + - + =-c c ]m m g ,

0, 1
c
H

c
G k H jz j0 2

2

0 0 2

2
2 2 !xe w e w

+ - - = =c m .	

(9)

From (9), by setting the determinant equal to zero we obtain 
the third-order equation for the squared component of the 
wave vector kz

2 :

2
c

k
c

k G
c

z z0 2

2
2

0 2

2
2 2

2
2
0 2

2
e w e w x e w

- - - -c cm m

	 ´  0
c

G
c

k Gz0 2

2
2

0 2

2
2 2e w e w

- - - =c cm m .	

(10)

One can easily obtain the expressions for three roots of kz
2 :

( )k
c

G
2z

2
0 0 2

2 2
e w

= - +

	 +  G G
c c

k
2

2
2 2

2
0 2

2
2

0 2

2

0
2/x e ew w

- -b cl m ,	 (11)

( )k
c

G
2z

2
1 0 2

2 2
e w

= -

	 –  ( )G G
c c2

2
2 2

2
0 2

2
2

0 2

2

1
2/x e ew w g- - -b cl m ,	 (12)

( ) ( )k
c

Gz
2
2 0 2

2
2

2
2/e w g= - - .	 (13)

From exact formulae (11) and (12) one can easily obtain the 
simplified expressions for square wave vectors (with sub-
scripts 0 and 1):

( ) 2 /k
c c G

G c kz
2
0 0 2

2
2
0 2

2

2

2
0

2 2

0
2/e w x e w e w

= -
- ,	 (14)

( ) 2 / ( )k
c

G
c G
G c

z
2
1 0 2

2
2 2

0 2

2

2

2
0

2 2

1
2/e w x e w e w g= - +

-
- .	 (15)

The fields corresponding to the found eigenwave numbers 
are described by the formulae:

( , ) 1 ( )e e ef x z ,
i i iGx Gx k z

0 1 0
0x= + + -7 A 	 (16)

for mode 0,

( , ) 2 ( )e e ef x z ,
i iGx Gx z

1 0 1
1x= + +

g- -7 A 	 (17)

for mode 1, and

( , ) ( )e e ef x z i iGx Gx z
2

2= -
g- - 	 (18)

for mode 2. Here we used the notations

/ , /
G
c

G
G c

, ,1 0 2
0

2 2

0 1 2

2
0

2 2

x x e w x x e w
= =

- .	 (19)

The solution with subscript 2 is rejected because it yields the 
amplitudes H1 = –H–1, H0 = 0; however, we will only consider 
the solutions that are symmetric in x.

It worth noting that for each of the modes (16) and (17) 
there is a corresponding inverted mode obtained by making 
the substitutions k0 ® –k0, g1 ® – g1:

( , ) ( , ), ( , ) ( , )f x z f x z f x z f x z0 0 1 1= - = -r r .	 (20)

It should be stressed that the fields f0 and f1 do not interact 
in an infinitely long crystal. These waves only get coupled due 
to the boundary effect.

4. Wave transformation at the crystal – metal 
interface

The boundary conditions at the crystal-metal interface are 
expressed as 

H Hz z0 0=
=- =+

,	 (21)
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¶
¶

¶
¶

z
H

z
H1 1

mz z0 0e e=
=- =+

,	 (22)

where em is the dielectric function of metal. The boundary 
conditions require taking into account the crystal modes 
f0(x, z), ( , ) ( , )andf x z f x z0 1r r  as well as the metal modes with 
the x-components of the wave vector equal to 0, ±G. In the 
general case, the total field inside the crystal is given by

( , 0) ( , ) ( , ) ( , )H x z Af x z Af x z Bf x z< 0 0 1= + +r rr r .	 (23)

The field inside metal has the form

( , 0) ( )expH x z T z> mg= -

	 +  ( ) ( )exp e eD z,m
i iGx Gx

1g- + - ,	 (24)

where

/ , /c G c,1m m m m
2 2 2 2 2g e w g e w= - = - .	 (25)

By substituting expressions (23) and (24) into the boundary 
conditions (21), (22) and separating oscillating summands 
from those independent of x we obtain a system of equations 
for the amplitudes , , , ,A A B T Dr r . Solving the system it is pos-
sible to express all the amplitudes in terms of the amplitude A 
of the input wave. The system of equations for the unknown 
amplitudes can be written in the form

2A A B T,0 1x+ + =r r ,	 (26)

A A B D,1 0x+ + =r r] g ,	 (27)

2( )ik A A B T1 1 1
,

m
m

0
0

0
1 0 1e e g x x e g- + - =-r r] g ,	 (28)

( ) ( )ik A A B D1 1 1
, ,

m
m

0
0 1 0

0
1 1e x x e g e g- - + =-r r .	 (29)

From (26) – (29) one can derive the expression for the coeffi-
cient of transformation of the initial wave into the surface 
wave:

2
( / / ) ( / / )

( )
i

iA
B k

k
1

,

,

m m m m m

m m

0

0

1 1 0 0 0

1

e ex
g e g e g e e d

ng g n
=

+ - +

+ -r
,	 (30)

with the notations

2 ( ) ( ) ik1 1,

m

m

m

m2

0

1 1

0

0d x n e
g

n e
g

n e
g

n e= - - + -9 9C C;	 (31)

/
G
c2 ,
2

0
2

1 0/n e w
x

x
= .	 (32)

Expression (30) can be simplified if we neglect terms of the 
order of x2. This is made by dropping d in the denominator 
and excluding the small values proportional to x2 in formulae 
(14) and (15) for the parameters k0 and g1:

2
( / / ) ( / / )

( )
i

iA
B k

k
1

,

,

m m m m m

m m

0

0

1 1 0 0 0

1

e ex
g e g e g e e

ng g n
=

+ -

+ -r
,	 (33)

( ) / , ( ) /k c c G0
2

0
2 2

1
2

0
2 2 2e w g e w= - = - .	 (34)

Note that the denominator of expression (33) for the surface 
wave amplitude comprises the factor

/ /,1m m 1 0g e g e+ ,	 (35)

which, after neglecting the terms of the order of x2, takes the 
form

G
c

G
c

1 1
m

m
2

2

0

2
0

2

2 2e e w
e e w

- + - .	 (36)

One can see that expression (36) is a well-known formula used 
in plasmonics for calculating the wave vector of the surface 
plasmon. The wave vector of the plasmon is obtained (see [1]) 
by solving the equation

0K
c

K
c

1 1
m

m
2

2

0

2
0

2

2 2e e w
e e w

- + - = .	 (37)

Expression (36) coincides with the left-hand side of (37) up to 
notations. The only distinction is that in our case the value of 
G is a purely real number whereas the solution of Eqn (37) for 
plasmons K is, generally, a complex number. Thus, one may 
assume that in a vicinity of plasmon resonance the surface 
wave amplitude may take an enhanced value. In the next 
Section we will search for a maximal modulus of expression 
(30) that determines the surface wave amplitude B  relative to 
the initial wave amplitude A. In a numerical simulation we 
will vary the value of G in a vicinity of K0 [i.e., the root of 
Eqn (37)].

5. Transformation of an nitial wave to a surface 
wave

The amplitude ratio /B A can be found by solving the system 
of equations (26) – (29). Let us determine the value of G cor-
responding to the maximal ratio /B A. First, we consider the 
resonance factor in the denominator of (33) and find the con-
dition of its turning to zero. Upon solving (37) with the com-
plex parameter em we obtain a complex root K0. In our case, 
the Fourier harmonics of the dielectric function may only 
have real wave numbers. We take the real part of K0 and put 
G = Re(K0). Here we will consider only positive values of 
Re(K0). The case of Re(–K0) corresponds to an oppositely 
directed surface wave and may be considered in a similar 
way.

Recall that we consider the case of ruby laser radiation (l = 
694.3 nm) and the spatially averaged permittivity of the 
medium is e0 = 1.851. Let the adjoint metal be gold; at the 
radiation wavelength of the ruby laser, the dielectric function 
for gold is em = –16.082 + 1.059i. (Data on dielectric functions 
of metals were taken from [38].) A solution of Eqn (37) is  K0 
= (1.4458 + 0.00616i)w/c. In view of the equality G = Re(K0) 
we have G = 1.4458w/c. By substituting the value of G into 
(30) we obtain /B Ar = –0.687 + 1.599i and for the modulus of 
this ratio we have | / | 1.741B A =r . Thus, the amplitude of the 
surface wave is almost twice that of the initial propagating 
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wave. The maximal value of /B Ar  can be found from calcula-
tions for a series of G values in a vicinity of the selected value 
G = Re(K0). The dashed curve in Fig. 2 shows the dependence 
of /B Ar  on the wave number G found from (30). One can see 
that the position of the actual maximum G = 1.4461w/c is neg-
ligibly shifted from the above discussed value G = 1.4458w/c. 
This value of G corresponds to the period of the dielectric 
function modulation L = 480 nm. The maximal value of   /B Ar  
is 1.742.

Similar calculations have been performed for silver as a 
metal adjoint to the photonic crystal. At the chosen radiation 
wavelength, the dielectric function of silver is em = –22.637 + 
0.401i. The other system parameters remain unchanged. Due 
to small dissipation of silver, one may expect a more efficient 
excitation of the surface wave than in the case of gold. By 
performing calculations we obtain the complex value K0 = 
(1.4198 + 0.0011i)w/c. Again, we put G = Re(K0) = 1.4198w/c. 
With this value of G we find from (30) /B Ar  = –2.532 + 5.969i, 
and for the modulus of this value we have | /B Ar | = 6.483. 
Thus, the surface wave amplitude in this case is almost 6.5 
times that of the incident wave, that is, the transformation 
efficiency is more pronounced than in the case of gold.

By varying G in a vicinity of G = Re(K0) we obtain the 
dependence of | /B Ar | on the wavenumber G, which is shown in 
Fig. 2. One can see that the position of the actual maximum G = 
1.4199w/c corresponding to the modulation period L = 489 
nm is negligibly shifted along the G axis and the maximal 
value is | /B Ar | = 6.525, which slightly differs from the starting 
value of 6.483. Hence, the estimates made by the approximate 
formulae are sufficiently accurate.

6. Tuning resonance curves

The characteristics of surface waves calculated in Section 5 
testify the one-to-one correspondence between the radiation 
frequency and the photonic crystal period, which ensures the 
optimal excitation of plasmons. The method suggested 
implies that for a particular radiation frequency, the photonic 
crystal period (and the corresponding wavenumber G) should 
be accurately chosen. Nevertheless, minor changes in the 
scheme help overcome this difficulty. It would suffice to 

transfer to the inclined incidence of radiation onto a crystal. 
If the initial wave on a crystal surface has the form exp[i(w/c)× 
sinq], then the satellite waves will arise with the wavenumbers 
(w/c)sinq ± G. Thus, the inclined incidence of radiation is 
equivalent to a change in the crystal period. In the case of 
inclined incidence, the system of equations (26) – (29) is not 
valid, and the calculation technique should be accordingly 
modified. For this purpose, one can use the approach elabo-
rated in [39] and generalise it to our problem. The corre-
sponding calculated efficiency of transformation of the 
inclined propagating wave to the surface wave is presented 
in Fig. 3.

The efficiency is shown versus the wavenumber of the 
Fourier harmonic of the dielectric function. Curves in Fig. 3 
for various angles of incidence q are similar in shape; how-
ever, they have different positions on the x axis (due to differ-
ent G). The maxima of curves ( 1 ), ( 2 ), ( 3 ), ( 4 ) and ( 5 ) cor-
respond to the modulation periods L = 975, 594, 489, 416 and 
327 nm, respectively. A thorough calculation shows that the 
shapes of the curves are not absolutely identical and the dif-
ference may become quite noticeable at other values of 
numerical parameters; this especially concerns such a param-
eter as the contrast of the dielectric function. Note that low-
intensity plasmons can be generated in a wide range of radia-
tion frequencies and angles of incidence of the initial wave. 
The calculations performed in this section were aimed at find-
ing the conditions for plasmons of elevated intensity. This 
requires a thorough matching of the crystal period with the 
angle of incidence of the initial wave.

7. Exit of the evanescent wave from the crystal 
to open space

Consider the exit of the surface wave outside the photonic 
crystal and subsequent wave propagation in a free space. It is 
necessary to consider one more crystal boundary; in our 
scheme, a side wall is placed in the plane x = 0. Rigorous con-
sideration of this configuration and the corresponding 
changes in the field characteristics require a special analysis. 
The side boundary may noticeably distort the field structure, 

|B/A|

0

1

2

3
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6

1.35 1.40 1.45 l/L

Figure 2.  Efficiency of exciting a surface wave vs. the ratio of the radia-
tion wavelength l to the modulation period of the crystal dielectric 
function L for the cases of gold (dashed curve) and silver (solid curve) 
substrate.
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Figure 3.  Efficiency of the initial wave-to-surface wave transformation 
at various incident angles q in the case of a silver substrate: sinq = ( 1 ) 
0.707, ( 2 ) 0.25, ( 3 ) 0, ( 4 ) – 0.25, ( 5 ) – 0.707.
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which otherwise would exist in the crystal unlimited in the x 
direction. Similar problems were studied in our previous 
works devoted to the theoretical description of the spatial 
structure of light waves in nanowaveguides and to consider-
ation of localised plasmons on the aperture of the channel in 
a metal layer [40 – 43]. It was shown that the exit plane gener-
ates reflected waves, which affect the spatial characteristics of 
the field that would exist if there were no boundary. Here we 
limit ourselves to a rough solution assuming that the field 
inside the crystal – metal system is not affected by the side 
boundary. In addition, in the undisturbed field we only retain 
the most intensive part of the field and neglect weak compo-
nents. Thus, the field in the exit plane takes the form

( 0, 0) ( )exp iH x z A k zy 0G= =

	 + ( ) ( )exp expiA k z B z0 1g- +r r ,	 (38)

( 0, 0) ( ) ( )exp expH x z T z D z,m my 12 g g= = - + - .	 (39)

First we consider two propagating waves: the initial wave 
with amplitude A and the corresponding oncoming wave with 
amplitude Ar . The jump of the dielectric function on the side 
boundary (from e0 = 1.851 to eout   = 1) provides for these 
waves the condition of total internal reflection. Note that in 
both cases of normal incidence onto the upper plane and of 
inclined incidence (when the angle of incidence is not too 
large 0 G q G 42°) the wave is locked inside the crystal. 
Therefore, it is reasonable to exclude the contribution of the 
waves with amplitudes A and Ar  from field calculation in free 
space. 

Consider the contribution of surface waves to the field 
structure in free space. In contrast to the waves A and Ar , the 
evanescent wave propagating in the positive x direction 
weakly reflects from the side boundary. Due to a large modu-
lus of the wave vector G, the side boundary scarcely prevents 
the plasmon from exiting outside. 

Concerning the contribution of evanescent waves it worth 
noting that near the resonance in the case considered in 
Section 5 the following estimates for the amplitudes are valid: 
| | | |T BG x r , | | | |D B B. x- r r . In view of these estimates, we 
may neglect the amplitude T and substitute D for Br  in our 
calculations.

In free space, it is easy to calculate the field structure pro-
duced by the surface wave exiting through the plane x = 0. By 
rejecting in (38) the propagating waves, the surface wave 
passing to the negative x direction, and the waves that make a 
small contribution to the field in the region x H 0, we arrive 
at the following expression for calculating the external field

( 0, 0) ( )expH x z B zexit 1G g= = r ,

( 0, 0) ( )expH x z B z,exit m 12 g= = -r .	
(40)

By expanding the function Hexit in Fourier series, continu-
ously extending it to x > 0, and assuming there are no waves 
coming to the plane x = 0 from the side of positive x values, 
we obtain the equality

33

( , )
2

( )H x z H z1
out exitp=

33 --

lyy

	 ´  ( )exp i i d dz z x
c

z2

2
2h w h h- + -l l= G .	 (41)

By substituting expression (40) for the field in the exit plane to 
formula (41), we obtain

3

( , ) exp i iH x z z x
c2

1
out 2

2
2

p h w h= + -
3-

d ny

	 ´ 
i i

d1 1
,m1 1g h g h

h
-

+
+

c m .	 (42)

At long distances from exit plane we have xw/c >> 1, and 
for z satisfying the condition |z|g1 << xw/c, from the obtained 
expression we find the absolute value of the field

( , )
/ / | |

H x z
x

1 1 ,1
max

m1

l

g g
=

+
,	 (43)

which is maximal for a given x = const. Thus, the field ampli-
tude falls inversely proportional to the square root of the dis-
tance between the exit plane and observation point. Numerical 
calculations have been performed for a wide range of coordi-
nates x and z by formula (42).

The following parameters characterising the field in the 
exit plane were used: for gold g1 = 0.49w/c, |gm,1| = 4.26w/c; for 
silver g1 = 0.39w/c, |gm,1| = 4.96w/c. Dimensionless constant Br  
was taken equal to unity. Contour plots of the absolute value 
of field in external space (x > 0) are shown in Fig. 4. The crys-
tal was placed in the spatial range of negative values of z, the 
metal was placed below the crystal, similarly to the scheme 
presented earlier in Fig. 1. At point x = 0, z = 0 the value of 
field equals unity. In Fig. 4 one can see, that greater intensity 
values are shifted towards negative z values. One can also see 
that the wave amplitude decreases with x according to the 
estimate made above.
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Figure 4.  Distribution of the absolute value of the field in external 
space in the cases of (a) gold and (b) silver substrates.
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8. Conclusions

The expressions for the eigenwaves excited in a one-dimen-
sional photonic crystal by an initial wave directed parallel to 
crystal layers have been found. A transverse structure of the 
eigenwaves comprises a constant and an oscillating compo-
nent. Among the eigenwaves obtained there are evanescent 
waves with a transverse structure comprising a strong oscil-
lating component and a weak constant component. 
Frequencies of these waves are beyond forbidden photonic 
zones. The propagating eigenwaves have a weak oscillating 
component and a strong constant component. If the crystal 
has a boundary with a metal substrate, the evanescent waves 
transform into plasmons. The system of equations is derived, 
which describes redistribution of electromagnetic energy over 
waves at the interface with a metal substrate. Formula for cal-
culating the ratio of the plasmon amplitude to the amplitude 
of the initial wave has been obtained.

It has been shown that the amplitude of the evanescent 
wave may be on the order of or even exceed (at particular 
parameters) the amplitude of the propagating wave. The eva-
nescent wave is most intensive when system parameters are 
close to the conditions of plasmon resonance.

The expressions for eigenwaves used in the present work 
clearly demonstrate that the surface plasmon propagates 
along the crystal – metal interface with zero exponential atten-
uation. The undamped regime is provided by the primary 
wave coming onto the crystal from an external source.

Thus, the scheme suggested provides a simple way for 
exciting surface plasmons.

Particular attention has been paid to the problem of emer-
gence of electromagnetic radiation to open space through a 
side boundary. It is evident that in the considered scheme with 
adopted impedance values, a plasmon freely escapes to outer 
space. However, the value of the permittivity jump at the 
crystal – air interface is sufficient to ensure the total internal 
reflection for the initial propagating wave. This wave leaks to 
outer space only to a distance on the order of a light wave-
length.

Thus, the exit of a plasmon to free space is not accompa-
nied by noticeable background. When the surface wave exits 
through the lateral wall to open space, the radiation field 
propagates similarly to the field of a two-dimensional 
localised source. Therefore, the spatial dependence of the 
field amplitude is inversely proportional to the square root of 
the distance to an observation point.

Efficient generation of surface plasmons in the considered 
scheme requires that the radiation frequency be exactly 
matched with the photonic crystal period. The required 
period should provide the plasmon resonance condition. If 
the radiation frequency is not resonant for a particular crystal 
then the scheme can be modified. It is easy to tune the scheme 
by varying the angle of incidence of initial radiation onto the 
crystal surface.
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