
Quantum Electronics  45 (11)  1075 – 1082  (2015)	 © 2015  Kvantovaya Elektronika and Turpion Ltd

Abstract.  The evolution of polarisation states (PS’s) of broadband 
light propagating through a bent optical fibre with a helical struc-
ture of its refractive index anisotropy (hi-bi spun fibre) has been 
studied theoretically and experimentally. It has been shown that 
there exists a coordinate system of PS’s in which the differential 
Jones matrix can be replaced by a diagonal matrix, which allows 
the polarisation parameters of the output broadband light to be 
readily calculated with sufficient accuracy. We have derived a for-
mula for evaluating the magneto-optical sensitivity of a bent spun 
fibre. An approach has been proposed for restoring the degree of 
polarisation of light in a bent hi-bi spun fibre and, as a consequence, 
the visibility (contrast) of the interferometer in a current sensor 
with a sensing element based on the fibre under consideration.
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1. Introduction

Electric current measurements by an optical method using 
magnetic field-sensitive optical fibres with a helical structure 
of their refractive index anisotropy (hi-bi spun fibres) are of 
interest for electric power generation and electrometallurgy. 
The key component of the sensing element (SE) in Faraday 
effect fibre-optic current sensors (FOCS’s) [1] is a loop con-
sisting of one or a few turns of hi-bi spun fibre, and a wire 
carrying an electric current to be measured passes through the 
plane of the loop. Hi-bi spun fibres are produced by drawing 
a preform with a built-in linear birefringence (BR), which is 
rapidly spun during the drawing process. The performance of 
SEs depends on the parameters of the spun fibre: the beat 
length of the built-in linear BR of the fibre (Lb) and the spin 
pitch of its helical structure (Ltw). To improve the resistance 
of sensing elements to mechanical deformation, it is reason-
able to use fibre with high BR (small beat length Lb). The 
performance of sensing elements depends, in particular, on 
the bend radius of the fibre when it is wound: with decreasing 
R, the magneto-optical sensitivity S of the spun fibre decreases 
and, no less importantly, the visibility of the interference pat-
tern of the current sensor drops considerably, which limits the 
dynamic range of electric current measurements from below.

The properties of bent spun fibre have been the subject of 
several studies [1 – 3]. Laming and Payne [1] were the first to 
propose using hi-bi spun fibre in sensing elements of Faraday 
effect current sensors and present a phenomenological for-
mula for sensitivity S as a function of R, which was verified 
experimentally within a 2 % change in sensitivity.

Gubin et al. [2] and Polynkin and Blake [3] reported the 
first theoretical studies of the effect of fibre bending on the 
parameters of the sensing element of FOCS’s. Gubin et al. [2] 
proposed a physical model for bent spun fibre and, using 
numerical integration of a differential Jones matrix, assessed 
the magneto-optical sensitivity of the fibre. They obtained an 
analytical expression for the Faraday phase shift between two 
light waves in a straight spun fibre segment. As shown in 
Refs  [2, 3], under excitation with circularly polarised light the 
Faraday phase shift accumulation (i.e. magneto-optical sensi-
tivity) has an oscillating nature along the length of the fibre, 
with a large and a small spatial period, and the oscillation 
amplitude increases with decreasing bend radius. According 
to Polynkin and Blake [3], for a certain input polarisation 
state (PS), dependent on the parameters and bend radius of 
the fibre, the large-period oscillations disappear.

Note that the above-mentioned studies analysed mono-
chromatic light. In real FOCS’s, however, use is made of 
broadband light. In analysis of light propagation in spun 
fibre, the bandwidth of the light has so far been taken into 
account only for a straight fibre segment [4, 5]. This circum-
stance indicates that the properties of bent spun fibre have 
not yet been studied in sufficient detail. Also, there are no 
analytical formulas applicable in a wide range of SE diame-
ters.

In this paper, we present an analytical approach to 
describing the PS of both monochromatic and broadband 
light propagating through bent spun fibre. The approach 
allows one to calculate wavelength-averaged parameters of 
the PS and the magneto-optical sensitivity of the fibre. The 
limitations we place on the parameters of the spun fibre and 
the winding radius are beyond the ranges of these parameters 
in real FOCS’s. The approach is a development of theory con-
sidered previously [4] for a straight spun fibre segment and 
involves a search for such a coordinate system for represent-
ing the PS of light in which the differential Jones matrix of 
bent spun fibre can to some approximation be replaced by a 
diagonal matrix at each point of the fibre. This means that, in 
the case of bent spun fibre, one can also calculate parameters 
of the wavelength-averaged PS of the output light and mag-
neto-optical sensitivity, similarly to what was reported previ-
ously [4]. The theory developed by us has made it possible to 
propose a method for restoring the contrast of the interfer-
ence pattern in the interferometer of FOCS’s.
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2. Principles of theoretical analysis of spun fibres

To describe the PS of a light wave propagating in optical 
fibres, use is often made of the differential Jones matrix for-
malism. The evolution of the Jones vector representing the PS 
of light can be described by the differential equation

,
d
d
z

NE E= 	 (1)

where E is the Jones vector formed by the complex amplitudes 
of the electric field components of the wave and N is the dif-
ferential Jones matrix of the optical fibre.

In a circular polarisation basis, the differential Jones 
matrix of a uniformly bent spun fibre segment has the form [2]
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where g is the rate of the increase in the Faraday effect-
induced phase difference between waves with orthogonal cir-
cular polarisations; b = ky – kx = 2p/Lb is the rate of the 
increase in the phase difference between waves with orthogo-
nal linear polarisations due to built-in linear BR with a beat 
length Lb; x = 2p/Ltw is the spatial rotation frequency of the 
axes of built-in linear BR with a spin pitch Ltw; d = 2p/Lind is 
the rate of the increase in the phase difference between waves 
with orthogonal linear polarisations due to bend-induced BR 
with a beat length Lind [2]; n is the azimuth of the bend-induced 
BR axes at the input fibre end relative to the built-in BR axes; 
and z is a coordinate along the fibre axis.

To describe the PS of light, it is convenient to utilise its 
representation on the Poincare sphere [6]. In a circular polari-
sation basis, the poles of the Poincare sphere represent circu-
lar PS’s, and the points on its equator represent linear PS’s 
with various azimuths. The constant-latitude circles, parallel 
to the equator, represent the set of PS’s of constant ellipticity, 
and the constant-longitude arcs represent PS’s of constant 
azimuth.

In what follows, we use the auxiliary matrices
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These matrices will be considered as transformation matrices 
of the coordinate system of PS’s, namely, as rotation matrices 
of the Poincare sphere. The T1 matrix represents a rotation of 
the sphere through an angle a about the Z axis of three-
dimensional space containing the sphere, and the T2 matrix 
represents a rotation of the sphere through an angle j about 
the Y axis (Fig. 1). The inverse matrices of Ti (i = 1, 2) are then 
equivalent to rotations through negative angles: Ti

–1(a) = 
Ti ( – a).

3. Substantiation of the choice of the coordinate 
system for analysing the PS of bent fibre

In examining the evolution of the PS of light in a straight spun 
fibre, it is often convenient to use a so-called rotating coordi-
nate system of PS’s (which rotates as the z coordinate increases 
along the fibre), or a helical coordinate system of space. In 

this coordinate system, basis PS’s are orthogonal PS’s whose 
ellipticity (equal to the eigenellipticity [4]) is determined by 
the parameters of the fibre and whose azimuths are identical 
to the azimuths of the vectors of the BR axes at a given point, 
i.e. vary linearly with increasing distance along the fibre.

This coordinate system of PS’s is convenient in that the 
differential matrix of a straight spun fibre in this system has a 
diagonal form at each of its points, so the equations of evolu-
tion can readily be integrated. This means that the evolution 
of the PS of an excitation light wave is represented on the 
Poincare sphere particularly simply: with increasing distance 
from the input fibre end, the representative point of the PS 
uniformly moves on the sphere along a trajectory whose 
points are equidistant from the basis PS’s, i.e. along a circum-
ference. At the same time, in the case of broadband light the 
spatial velocity of motion along such a circumference is wave-
length-dependent, so some distance from the input fibre end 
the points representing the PS’s of all the spectral components 
of the input light fill an entire circumference. Owing to this 
simple geometric distribution of the points representing PS’s, 
one can readily obtain the average parameters of the light at 
the fibre output: from the fact that the PS’s of the spectral 
components of light are equidistant from the points repre-
senting the basis PS’s, it follows that the average ellipticity is 
equal to the ellipticity of the basis PS’s and that the average 
azimuth is equal to the azimuth of one of the basis PS’s, 
depending on the PS of the input light. This can be used to 
calculate the magneto-optical sensitivity (determined by the 
average ellipticity) of the spun fibre under consideration, 
which is used in SEs of current sensors [4]. It is also easy to 
calculate the degree of light polarisation, which determines 
the interferometer contrast, depends on parameters of the PS 
of the input light and can be found as the distance from the 
centre of the sphere to the plane containing the circumference 
with the points representing the PS when the radius of the 
sphere is unity.

In the case of a bent spun fibre, the differential equations 
of the evolution of the PS are equivalent to a Riccati equation 
[2], which generally cannot be integrated. This means that, 
generally speaking, there is no such coordinate system of PS’s 
in which the differential Jones matrix has a diagonal form at 
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Figure 1.  Rotations of the T1 and T2 matrices of the Poincare sphere.
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each point of the fibre. It can be shown however that there is 
a coordinate system of PS’s in which, to some approximation, 
the same situation occurs as in examining a straight spun fibre 
in a rotating coordinate system: the point representing the PS 
of a light wave moves along a trajectory which is nearly equi-
distant from the points representing the basis PS’s. This 
means that, in the case of a bent spun fibre, one can also cal-
culate, to the approximation in question, the parameters of 
the wavelength-averaged PS of the output light and the mag-
neto-optical sensitivity of the fibre. The coordinate system in 
question is represented by the following transformation 
matrix:

Ee = T(z)Ec = T2(j2)T1(a2)T2(j1)T1(a1)Ec.	 (4)

The former pair of rotations in (4) (the same as in the case 
of a straight spun fibre) comprises sequential rotations 
through an angle a1 about the Z axis and through an angle 
j1 about the Y axis of space containing the Poincare sphere 
(Fig. 1):
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The latter pair comprises the same sequence of rotations, 
but through the following angles:

a2(z) = –2(xz – n),    j2 = j2(z),	 (6)

where j2(z) generally depends on the z coordinate.
Differentiating (4) and using (1) we obtain an equation for 

the evolution of the PS in the new coordinate system:

 ( )
d
d
z

N z EEe
e e= .	 (7)

Here the differential Jones matrix is expressed through the 
corresponding matrix in the laboratory coordinate system of 
PS’s as follows:
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d
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Making algebraic calculations, we can obtain an expres-
sion for the differential Jones matrix in the new coordinate 
system:
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and j'2 is the derivative of the function j2(z) with respect to 
the z coordinate.

The angle j2 has not yet been determined. To understand 
how to determine j2, consider the behaviour of the function 
m. It is seen from (10) that m is expressed through periodic 
functions, so it is also periodic. An idea of how to determine 
j2 is seen from the form of matrix (9): this angle can be deter-
mined as the period-averaged m (with a slight displacement 
due to oscillations in the amplitude of Y ). The cos( m – j2) in 
the diagonal matrix elements will then oscillate around unity, 
and the off-diagonal elements will oscillate around zero, 
because sin( m – j2) and Q oscillate around zero and, as shown 
below, j'2 is either zero or negligible in the context of the 
problem under consideration.

Consider now the function Ysin( m – j2) in greater detail. 
To simplify the formulas below, we use the following desig-
nations:
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Substituting (10) into Ysin( m – j2), we obtain
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It is seen that the difference between the first two terms in 
Eqn (12), which is independent of z, is zero if the angle j2 is 
determined as follows:

tan 2j s= u .	 (13)

Similarly, taking into account (13) we obtain for the function 
Ycos( m – j2)
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Finally, the differential matrix can be represented as a sum:
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All the above transformations were rigorous. As pointed 
out above, the starting equations generally have no analytical 
solution, so a number of assumptions will be made in what 
follows. We seek an approximate solution to the basic equa-
tion (7), using time-dependent perturbation theory and treat-
ing Ne

0 as a matrix describing the unperturbed system and V1, 
V2 and VQ as a perturbation. We then have an analogy with a 
classic problem for a two-level system with an interlevel tran-
sition frequency Wu  (in our case, the levels are the propagation 
constants of waves with basis PS’s, and frequencies are spa-
tial). It is seen from matrices (16) that the spatial frequencies 
of perturbations are 2x and 4x. Therefore, if the spatial fre-
quency Wu  differs strongly from these frequencies (as shown 
below, this is so for the parameters of fibre and bend radii 
used in practice), perturbations have no significant effect and 
can be neglected in the approximation in question.

Consider now two types of fibre bends: a constant-radius 
bend and a bend with a gradually varying radius. Analysis of 
a constant-radius bend is of great importance for understand-
ing the evolution of the PS of light waves in a bent fibre, but 
in practice the bend radius is difficult to maintain constant 
throughout a fibre, including its ends. Moreover, it is impor-
tant to take into account the azimuthal orientations of the 
input light, fibre axes and winding plane. The latter case (a 
bend with a gradually varying radius) is simpler in terms of 
experimental verification and practical application.

4. Spun fibre with a constant bend radius

In the case of a constant bend radius, d = const and hence 
j'2 = 0. The starting equation of evolution in an elliptic coor-
dinate system of PS’s has the form

( )
d
d
z

N VE Ee
0

= + .	 (17)

(here and in what follows, the subscript e at the Jones vector 
is omitted to simplify the notation).

We seek an approximate solution using time-dependent 
perturbation theory and treating V1, V2 and VQ as perturba-
tions in a problem represented by the Ne

0 matrix:
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Equation (18) can readily be integrated and the general 
solution has the form of a linear combination of independent 
solutions:
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The general solution to the starting equation (17) can be 
represented as solution (19) with the coefficients C1 and C2 
dependent on the z coordinate:
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We seek Ci (i = 1, 2) in the form of the expansion Ci = Ci
0 + 

Ci
1, where Ci

0 is the zero-order term, which is independent of 
perturbation, and the coefficient Ci

1 is a linear function of the 
perturbation. Let only the Eu component of light be excited at 
the input fibre end. Then, we have

C1(z) = 1 + C1
1(z),    C2(z) = C2

1(z).	 (22)

Performing algebraic calculations by a standard proce-
dure of perturbation theory, we can obtain an approximate 
solution to the starting equation:
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After integration, the terms on the right-hand side of (23) will 
be proportional to d/(2x) = Ltw/(2Lind). In practice, this ratio 
is very small because Ltw is typically 3 – 5 mm, which is far less 
than Lind (for example, at a fibre diameter of 125 mm and 
winding radius of 4 mm we have Lind ~ 50 mm). Integrating 
(23) and taking into account that, since the integrals are small, 
the term in curly brackets in (23) can be thought of as an 
expansion of an exponential function, we obtain after integra-
tion
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Similarly, the Eu component of the solution can be repre-
sented as follows:
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Integrating (26), we obtain summands divided by the 
sums and differences of the frequencies Wu  and 2x or 4x, 
because these integrals are bounded Fourier transforms of the 
corresponding functions at frequency Wu . Consider how these 
frequencies are related to each other. To this end, we examine 
the relation

2
1 1 1
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The ratio is determined by the latter term, because the former 
is small. It is seen that, for s < 1.5 (which is fulfilled in most 
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practical cases: e.g., at Ltw = 3 mm, we have Lb > 1 mm), the 
inequality 421 1x xWu  is satisfied. Therefore, after integra-
tion of (26) the largest term will be that proportional to the 
coefficient /( )2d x W- u , whose magnitude (at s = 1.5) is

/( )2d x W- u  » 5d/(2x) << 1.	 (28)

Thus, we are led to conclude that, for Ltw /(2Lind) << 1 and 
s = Ltw /(2Lb) < 1.5, the perturbation in Eqn (17) has no sig-
nificant effect, so solution (20) to the unperturbed problem 
(18) can be used in the initial problem with good accuracy.

The fact that, in this approximation, the differential 
matrix can be thought of as having a diagonal form [Ne

0 in 
(16)] allows us to draw important conclusions as to the evolu-
tion of the PS. In such a coordinate system, the PS of a light 
wave moves along a circumference equidistant from the basis 
PS’s on the Poincare sphere. In the case of broadband light, 
some distance from the input fibre end (coherence length) the 
points representing the PS’s of light waves throughout the 
spectrum of the input light begin to fill an entire circumfer-
ence, so the degree of light polarisation as a function of 
parameters of the input PS can be found as the distance from 
the centre of the Poincare sphere to the plane containing the 
circumference with the PS’s of the waves [4]. The wavelength-
averaged ellipticity is then equal to the ellipticity of the basis 
PS’s and the average azimuth is equal to the azimuth of one of 
the basis PS’s. It is therefore important to know the evolution 
of the basis PS’s of the elliptic coordinate system, whose 
motion can be represented in the laboratory coordinate sys-
tem of circular PS’s from Eq. (4), by substituting, e.g., vector 
u of the polarisation mode

( ) ( ) ( ) ( ) ( )z T T T TE
1
0cu 1 1 2 1 1 2 2 2a j a j= - - - - e o	 (29) 

into this equation.
It is seen from (29) and (3) that the Jones vector is peri-

odic, so the motion trajectory is a closed curve. If there is no 
bend, the trajectory has the form of a constant-latitude cir-
cumference (Fig. 2a) corresponding to an eigenellipticity with 
a linearly increasing azimuth [4]. With increasing d (decreas-
ing bend radius), the trajectory tilts towards the bend BR vec-
tor and the shape of the curve begins to distort and differ 
from a circumference (Fig. 2b). The ellipticity begins to oscil-
late at a frequency 2x, the ellipticity averaged over the period 
Ltw /2 drops, and the azimuth increases with increasing z, also 
with some oscillations. After a certain value of d is reached, 
the trajectory of the evolution of the basis PS on the Poincare 
sphere passes through a circular PS. The ellipticity then con-

tinues to oscillate with a larger amplitude around a lower 
period-averaged value, and the azimuth stops infinitely 
increasing and begins to oscillate around an average value 
equal to the azimuth of the bend BR vector (Fig. 2c). Thus, 
the ellipticity averaged over the oscillation period Ltw /2 
decreases with decreasing fibre winding radius.

Differential magneto-optical sensitivity is defined as the 
increase in the phase difference between u and u polarisation 
modes when the coefficient g changes by dg over a fibre sec-
tion of length dz:
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The latter term in (30) represents oscillations around zero. 
Since the phase difference between the u and u polarisation 
modes is obtained by integration over all dz segments, this 
term does not contribute to the final phase difference, so the 
integrated sensitivity is only determined by Sav. Differentiating 
(11b), we obtain
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Thus, the magneto-optical sensitivity of fibre comprises two 
factors, one of which is determined by the eigenellipticity of 
the fibre and is equal to the sensitivity of a straight spun fibre 
[4] and the other is determined by the bend.

Note that the integrated sensitivity of a current sensor 
with a spun fibre-based SE depends not only on its intrinsic 
magneto-optical sensitivity but also on the number of fibre 
turns wound around a current-carrying conductor and the 
Verdet constant of the fibre material. Note that, with decreas-
ing winding radius, S decreases, whereas the number of turns 
around a current-carrying conductor at a fixed spun-fibre 
length increases. Figure 3 presents a calculated final depen-
dence of the sensitivity of a current sensor on the winding 
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Figure 2.  Trajectories of the evolution of a basis PS of an elliptic coor-
dinate system at different bend radii.
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The dashed line shows the sensitivity for one turn with R = 159 mm.
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radius. It is seen that, down to minimum radii, the increase in 
sensitivity due to the increase in the number of turns upon a 
decrease in winding radius surpasses the drop in magneto-
optical sensitivity, which justifies the use of SEs at a small 
spun-fibre winding radius [e.g. at R = 4.1 mm, sensitivity is 
11.5 times that for one turn with R = 1/(2p) m » 159 mm].

5. Spun fibre with a varying bend radius

It can be shown that, if the bend radius varies smoothly 
enough, the polarisation evolution at each point of the fibre 
is, to some accuracy, the same as in the case of a constant 
winding radius corresponding to R at a given point.

Let the winding radius and, hence, the coefficient d be 
functions of fibre length: d = d(z). An additional perturba-
tion then emerges, which is determined by the derivative j'2 
[see (16)]:

( )sin
2
2 2

d
d j

=2jl l .	 (33)

It should be taken into account that, in this case, d in 
expressions (23) and (26) for components of a wave cannot be 
pulled out of the integral sign and that the term ei z

2
Wijl
u
 

appears under the integral sign in the expression for Eu in 
(26). As above, Eu is represented by (24), where
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1 2
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2

1
41

2d
j

j x n+
-

- E 	 (34)

and the expression for Eu comprises bounded Fourier trans-
forms of the corresponding functions at the frequency Wu . 
Therefore, for this component to be small the length scale of 
variations in d should far exceed the period 2 /p Wu . The polar-
isation component Eu will then not convert into the orthogo-
nal one.

When a bent fibre is used in practice as a sensing element 
of a current sensor, the u and u polarisation modes should be 
working light waves of the interferometer in order to main-
tain a high degree of polarisation and, hence, the contrast of 
the entire interferometer. To produce these modes and ensure 
reflection from a mirror into the orthogonal mode, appropri-
ate phase plates should be placed at the input and output fibre 
ends in the same way as in the case of straight fibre described 
previously [5]. At the same time, in the case of bent fibre the 
polarisation parameters of input light also depend on the 
radius and orientation of the winding plane, which should be 
taken into account for reflection of light from the mirror at 
the output fibre end. This adds complexity to the fabrication 
of the input and output phase plates and is extremely incon-
venient in practice.

For this reason, in the case of practical application of a 
sensitive loop with a small spun-fibre winding radius in a cur-
rent sensor, it is more convenient to use such a loop configu-
ration in which the radius at the loop input gradually decreases 
from a large one, at which the effect of fibre bend can be 
neglected, to the desired one, whereas the radius at the loop 
output varies in the opposite way. The input and output phase 
plates will then be identical to those in the case of a straight 
spun fibre [5].

Note that if Lb is several times greater than Ltw, the input 
phase plate approaches a l/4 plate, and the output plate has a 
negligible effect on the PS (see [5]), it is permissible to use a 
conventional SE configuration with a l/4 phase plate at its 
input and a mirror at its output.

6. Interferometer contrast and magneto-optical 
sensitivity measurements

The conclusion that the degree of polarisation remains 
unchanged in the case of gradual fibre bending was verified as 
follows: A sensing element with different fibre winding con-
figurations was connected to a FOCS [2], and the interference 
pattern contrast was measured, first at R = 100 mm and then 
with the entire spun fibre wound onto a small-radius silica 
tube (Fig. 4a). Next, about 2 m of the fibre was wound off at 
both ends and coiled in the form of a spiral next to the fibre 
wound onto the tube (Fig. 4b).

In our experiments, we used three 125-mm-diameter hi-bi 
spun fibre samples: with an elliptical stress cladding and ini-
tial parameters Lb = 21 ± 1 mm and Ltw = 3.0 ± 0.5 mm 
(spun-1); with an elliptical core, Lb = 11 ± 1 mm and Ltw = 
3.0 ± 0.5 mm (spun-2); and bow-tie fibre with Lb = 10.8 ± 
0.5 mm and Ltw = 4.8 ± 05 mm (spun-3). The measurement 
results are presented in Figs 5a, 5c and 5e. The experiments 
confirmed that, in the proposed scheme, high contrast was 
maintained at small loop winding radii.

To assess magneto-optical sensitivity [see formulas (31), 
(32a) and (32b)], a predetermined reference current was 
measured using a FOCS [2] and an SE based on the fibre 
under investigation. First, we used an SE with a large 
(200  mm) spun fibre winding diameter, at which the effect of 

To FOCS

To FOCS

l/4

l/4

a

b

Figure 4.  Schematics of the sensing element of a current sensor: (a) tra-
ditional, (b) with a gradual decrease in winding radius at the input fibre 
end and a gradual increase at the output end.



1081Propagation of polarised light in bent hi-bi spun fibres

bending on its sensitivity was negligible. Next, the fibre 
was wound as shown in Fig. 4b. Spiral winding allowed us 
to compare measurements at similar contrast values and 
ruled out any effect of contrast on measurement results. The 
relative sensitivity due to the bend was calculated as the 
ratio of the measured currents normalised to one turn in the 
configurations schematised in Figs 4a and 4b [the coefficient 
representing eigenellipticity in (32a) is then cancelled out]. 
The measurement results for spun-1, spun-2 and spun-3 are 
presented in Figs 5b, 5d and 5f. The slight discrepancy 
between the experimental data and calculated curve for the 
spun-1 sample in Fig. 5b can be accounted for by difficulties 
in the experiments with this sample, because it exhibited 

high sensitivity to external mechanical influences due to its 
low built-in BR.

7. Conclusions

The evolution of polarisation states of light has been exam-
ined theoretically for light propagation through a hi-bi spun 
fibre coiled along a circumference of arbitrary radius and 
placed in a magnetic field. Using the differential Jones matrix 
formalism, an approximate solution to the equation of PS 
evolution has been obtained analytically for fibre parameters 
and bend radii typically used in practice. It has been shown 
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Figure 5.  Interferometer contrast as a function of fibre bend radius for the (a) spun-1, (c) spun-2 and (e) spun-3 fibres (squares: constant-radius fibre 
winding; diamonds: fibre winding with two spiral sections; straight line: straight spun fibre) and sensitivity as a function of fibre winding radius 
[circles: measurement results; solid line: theoretical curve obtained using formula (32b) and the following parameters: (b) Lb = 20 mm, Ltw = 3.5 mm; 
(d) Lb = 11 mm, Ltw = 3 mm; (f) Lb = 11 mm, Ltw = 4.8 mm; (spun-3); dashed lines: calculation [1] for the same parameters].
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that there exists a coordinate system of PS’s in which, to some 
approximation, a situation holds analogous to that for a 
straight spun fibre in a local (rotating) coordinate system in 
which the differential Jones matrix has a diagonal form and 
equations can be solved exactly. In the coordinate system in 
question, the differential Jones matrix of a bent spun fibre can 
be represented as the sum of a diagonal matrix and perturba-
tion matrices, which allows one to find an approximate solu-
tion to such a system using time-dependent perturbation the-
ory. We have determined fibre parameters and bend radii at 
which spatial perturbation frequencies and the frequency of 
transitions between basis PS’s differ strongly (this is the case 
for fibre and bend parameters typically used in practice), 
which allows perturbations to be neglected. Therefore, in the 
case of a bent spun fibre, one can also analytically calculate, 
to the indicated approximation, polarisation parameters 
(ellipticity, azimuth, and degree of polarisation) of the wave-
length-averaged PS of the output light and the magneto-opti-
cal sensitivity of the fibre. We have considered a gradual 
variation in bend radius when the degree of polarisation of 
light remains unchanged.

The proposed theory has been used to derive a formula 
for evaluating the magneto-optical sensitivity of a bent spun 
fibre. An approach has been proposed for restoring the degree 
of polarisation of light in a bent spun fibre and, as a conse-
quence, the interference pattern contrast in a Faraday effect 
current sensor. The approach relies on the fact that, if the 
spun fibre bend radius varies smoothly enough, the associated 
perturbations do not create conditions for light depolarisa-
tion in the fibre. The proposed configuration of the sensing 
element of a current sensor includes fibre sections (spirals) 
with a varying winding radius at its input and output. 
Theoretical conclusions have been confirmed experimentally. 
We have demonstrated visibility improvement from 40 % to 
90 % at minimum winding radii in the range 4.1 – 20.5 mm.
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