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Abstract.  We present a comparative analysis of transient processes 
in media with a negative refractive index for the parametric interac-
tion of co- and counter-propagating waves. The transient time for the 
interaction of counter-propagating waves is shown to considerably 
exceed that for the interaction of co-propagating waves. In the case 
of counter-propagating waves, we present fitting results for the gen-
erated wave amplitude as a function of time and for the transient 
time vs. the amplitude of the pump wave and the length of the medium.

Keywords: transient parametric processes, counter-propagating waves, 
negative refractive index.

Recent advances in the development and fabrication of media 
with a negative refractive index [referred to as negative index 
metamaterials (NIMs)] in the microwave [1] and optical [2, 3] 
ranges of electromagnetic radiation frequencies have revived 
interest in the parametric interaction of counter-propagating 
waves. Predicted by Bobroff [4], the anomalously high gain in 
a parametric pump wave decay process involving counter-
propagating waves opens up wide possibilities for practical 
application of this phenomenon in creating a cavity-free opti-
cal parametric oscillator [5, 6] and amplifiers and oscillators 
in the optical and microwave ranges of electromagnetic radia-
tion. These possibilities, however, have not yet been imple-
mented experimentally in positive-dispersion media, because 
two conditions should be met simultaneously: phase matching 
and counter-propagation of interacting waves. The parametric 
interaction of counter-propagating waves can be realised most 
naturally in NIMs if a nonlinear medium for one of the waves 
being amplified is an NIM in which the wave vector and 
Poynting vector have opposite directions. This allows the 
phase matching condition to be met and, at the same time, a 
counter-propagating wave to be present [7, 8]. Shalaev et al. 
[9] and Popov et al. [10, 11] examined Raman scattering in 
crystals, which is an analogue of parametric processes in 
NIMs. Under pulsed pumping, significant distinctions between 
time-dependent amplification of counter- and co-propagating 

waves were detected. The objectives of this study are to per-
form a numerical comparative analysis of transient parametric 
processes for co- and counter-propagating waves and find 
quantitative relationships for these processes.

Consider the interaction of three waves propagating along 
the z axis in a quadratically nonlinear medium of length L. The 
electric field of the waves is Ej (z, t) = Aj (z, t) exp[i(wj t – kj z)], 
where Aj (z, t) are their complex amplitudes; wj are their fre-
quencies; kj are their wavenumbers; and t is time. The fre-
quencies and wavenumbers meet the conditions w3 = w1 + w2 
and k3 = k1 + k2. In the case of slowly varying amplitudes and 
a given pump (A3 >> A1, A2), the system of equations has the 
form [8, 9, 12]
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where aj is a normalised amplitude related to the field ampli-
tude Aj by aj = /( )j j j

24 e wm Aj (z, t); uj are the group velocities 
of the interacting waves; g = c(2)(8p/c) a3 /( )1 2 1 2 1

2
2
24 m m e e w w  is 

the gain parameter; c(2) is the second-order nonlinear suscep-
tibility of the medium; and e1, e2, m1 and m2 are the dielectric 
permittivities and magnetic permeabilities of the medium at 
frequencies w1 and w2, respectively.

We will examine a time-dependent solution to system (1), 
a2(z = L, t), at the output of the medium in the ‘on’ regime 
(semi-infinite pump pulse whose leading edge travels at a 
velocity u3). Let a3 = a30 {1 – tanh[(z/u3 – t)/tf ] }/2, where a30 
is  the maximum normalised pump wave amplitude and tf is 
the wave front slope, which is taken to be 0.05L/u3 in our cal-
culations. In the case of co-propagating waves (Fig. 1a), the 
boundary conditions then have the form a1(z = 0) = 0 and 
a2(z = 0) = u. Here, u is a small quantity taken to be 10–4a30 
in our calculations. In the case of counter-propagating waves 
(Fig. 1b), phase matching conditions are satisfied because the 
wave vector k1 and Poynting vector S1 have opposite direc-
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Figure 1.  Mutual orientations of the wave vectors kj and Poynting vectors 
Sj for (a) co-propagating and (b) counter-propagating interacting waves.
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tions, as is characteristic of NIMs. This case can be described 
by system (1) after changing the sign of the right-hand side of 
the former equation [8, 9]. It should be taken into account 
that the group velocity appears in this equation with a minus 
sign. The boundary conditions for counter-propagating waves 
then have the form a1(z = L) = 0 and a2(z = 0) = u.

Steady-state solutions are well-known: a2(z = L) µ exp(gL) 
in the case of co-propagating waves and a2(z = L) µ [cos(gL)]–1 
in the case of counter-propagating waves [4, 5]. As seen from 
these solutions, in the case of counter-propagating waves the 
amplitude rises faster than exponentially with increasing gL 
and has a discontinuity for gL ® p/2.

System (1) was solved by numerical simulation techniques 
using the MATLAB software package. The inset in Fig. 2 
shows the solution a2(z = L, t) to a time-dependent problem for 
co-propagating (dashed line) and counter-propagating (dot-
ted line) waves at |u1| = |u2| = |u3| = u and gL = 0.984 p/2. 
It is well seen that, in the case of co-propagating waves, the 
time needed for a steady state to be reached is approximately 
L /u and does not exceed the time it takes for the leading edge 
of a pump pulse to pass through the medium, with allowance 
for its slope tf. In the case of counter-propagating waves, the 
amplitude continues to rise for t > L/u. It is seen from Fig. 2 
that the interaction of counter-propagating waves is charac-
terised by an anomalously long transient time, which depends 
on gL. To demonstrate the advantages of the amplification of 
counter-propagating waves, we present the time dependence 
of a2 (with the vertical scale expanded by a factor of 10) for 
co-propagating waves. Note that qualitatively similar results 
were obtained at various boundary conditions for a2 and at 
|u1| ¹ |u2| ¹ |u3|.

The dependences under consideration were fitted by a curve 
of the form a2(z = L, t)/a30 = (a2/a30)max{1 – exp[(t – tc)/t]}, 
which adequately represents the numerical simulation data 
(Fig. 2). Deviations from the best fit curve become insignifi-
cant by time t = 2L/u, which is the sum of the times needed for 
the fronts of the pump wave and counter-propagating wave 
to pass through the medium. It is seen from Fig. 2 that the 
time constant t of the transient process increases as gL 
approaches p/2, as does a2(z = L, t). The variation of the time 

constant t with gL is shown in Fig. 3, where the data points 
represent calculated t at a number of gL values and the solid 
line represents this dependence by a function proportional to 
1/cos(gL), with a discontinuity at gL = p/2.

Thus, our results are the first to demonstrate that the tran-
sient processes involved in the parametric interaction of coun-
ter- and co-propagating waves differ drastically. The transient 
time for co-propagating waves is equal to the time needed for 
the pump wave front to pass through the medium. In the case 
of counter-propagating waves, the transient process can be 
described by the relation a2(z  = L, t) µ [1 – exp(t/t)], well 
known in pulse engineering, and corresponds to a transient 
process in feedback systems [13] (for example, when an opti-
cal pulse having the resonance frequency of a resonator passes 
through it). The gL product then plays the role of the reso-
nance Q-factor, and the transient time considerably exceeds 
L/u. These distinctions are due to the existence of feedback 
and, hence, to spatiotemporal response nonlocality in the case 
of the parametric interaction of counter-propagating waves.
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Figure 2.  a2(z = L)/a30 as a function of normalised time t/(L/u) for 
( 1 )  co-propagating and ( 2 – 6 ) counter-propagating waves at gL = 
( 1, 2 ) 0.984p/2, ( 3 ) 0.987p/2, ( 4 ) 0.990p/2, ( 5 ) 0.993p/2 and ( 6 ) 0.996p/2. 
The solid line in the inset represents a theoretical fit.
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Figure 3.  Calculated t/(L/u) as a function of gL (data points). The solid 
line represents a theoretical fit.


