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Abstract.  General theoretical approaches to the modelling of 
Coulomb effects in short ion bunches, developed previously by the 
authors, are applied in this paper to the calculation of multireflec-
tion mass-spectrometer systems. A separate module of the MASIM 
3D applied software package is designed. An adaptive computa-
tional procedure for calculating the ‘mirror potential’ induced by an 
ion bunch on the surface of field-forming electrodes is proposed. 
The dynamics of ion bunches in a time-of-flight reflectron-type 
mass analyser is calculated and the limitations on the resolving 
power, caused by resonant Coulomb effects of self-bunching and 
coalescence in the groups of particles with close masses, are 
revealed on the basis of numerical experiments.

Keywords: multireflection mass-spectrometer system, Coulomb 
interaction, perturbation theory, self-bunching and coalescence of 
ion bunches.

1. Introduction

One can outline two major factors that determine the resolv-
ing power of mass spectrometers. The first factor is related to 
the ion bunch flight length in a mass spectrometer, whilst the 
second one is stipulated by the Coulomb interaction of 
charged particles within the bunch.

The first factor is well-studied and represents a subject of 
a considerable number of works and inventions. The prob-
lem of increasing the flight length has been effectively solved 
by means of ion mirrors in which ions multiply oscillate, 
herewith residing within a restricted volume. Mamyrin et al. 
[1] proposed the use of a reflectron-type mass analyser capa-
ble of compensating for the spread of ions in initial energies, 
which ensured a significant advance in the resolving power. 

Subsequently, various variants of multireflection systems 
have been developed, with an ion bunch oscillating between 
two or more electrostatic mirrors. In particular, a multire-
flection mass analyser with two axially symmetric ion mir-
rors separated by a field-free space was designed by the 
authors of [2]. Optimisation of the geometry of mirrors and 
supply voltages provides for the ion motion isochronism, i.e. 
independence of the period of oscillations on the initial 
parameters. As was shown later [3], a special choice of geo-
metric parameters of ion mirrors allows eliminating the 
time-of-flight (TOF) chromatic aberrations up to the third 
order inclusive and at the same time ensures a spatial stabil-
ity of the ion bunch for an arbitrary large number of oscilla-
tions between the mirrors. The authors of [4, 5] proposed a 
new design of a TOF mass analyser with two extended ion 
mirrors being parallel to each other. In this instrument, the 
ion bunch makes multiple isochronous oscillations between 
the mirrors and simultaneously drifts along the mirrors. A 
system of electrostatic einzel lenses prevents the bunch disin-
tegration in the drift direction. A mass-spectrometer system 
comprising a mirror and a set of extended orthogonal mir-
rors was developed in [6]. This design does not require addi-
tional lenses, and the off-axis TOF aberrations are automat-
ically eliminated in this system due to the fourfold symmetry 
of the phase space. An orbital electrostatic trap with a so-
called ‘quadro-logarithmic’ field possessing ideal isochro-
nous properties was proposed in [7]. The same field distribu-
tion was used in the energy analyser [8] and also in the 
Orbitrap Fourier transform mass spectrometer [9]. 
Afterwards, the unique properties of the ‘quadro-logarith-
mic’ field have been used in the multireflection TOF mass 
analyser [10].

The works cited above do not take into account the 
Coulomb effects in their simulation of real mass-spectrometer 
systems. However, even if the ion mirror design is ideal in 
terms of TOF aberrations, the allowable number of ions in 
the bunch turns out significantly limited by space-charge 
effects.

The second factor mentioned above, indicating the need 
of addressing the Coulomb interaction effects between 
charged particles, becomes of particular importance for mod-
ern mass-spectrometer systems based on highly efficient ioni-
sation methods employing laser radiation [11 – 19]. These 
methods include the MALDI method (Matrix Assisted Laser 
Desorption/Ionisation), which is based on desorption and 
ionisation of chemicals compounds by means of pulsed laser 
radiation with the use of an organic matrix and possesses an 
effective ionisation probability of 10–5 – 10–6 [13, 14]; the 
SALDI method (Surface Assisted Laser Desorption/Ionisation), 
which employs the laser desorption of ions from the specially 
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prepared rough surfaces with an ionisation probability of 
10–2 – 10–3 [18]; and the APLPI method (Atmospheric Pres
sure Laser Plasma Ionisation), based on the ionisation of 
organic compounds by means of emission from laser plasma 
at atmospheric pressure, also possessing a high ionisation 
probability [19].

The use of highly efficient laser ionisation methods makes 
very urgent the solution of the problem of allowance for the 
Coulomb effects in dense ion bunches generated by such 
sources, because only in this case we may rely on obtaining a 
reliable knowledge on the limiting resolving power of modern 
mass-spectrometer systems. For example, a remarkable effect, 
which, at a first glance, seems quite paradoxical, is peculiar to 
reflectron-type systems. Subjected to the Coulomb interac-
tion, ions of identical type with identical mass-to-charge ratio 
possess an equal period of oscillations despite the initial 
energy spread and the presence of the field perturbations vio-
lating the isochronism condition. The nature of this synchro-
nisation effect of ion oscillation (self-bunching) is due to the 
resonant nature of the Coulomb interaction, which is inherent 
in the oscillatory motion of an ensemble of charged particles. 
It is worth noting that a manifestation of this synchronisation 
effect in a system of two weakly coupled oscillators was 
known to Christiaan Huygens [20], who called it an “odd 
sympathy”.

Despite the fact that the self-bunching effect reduces the 
spread of particles with the same mass-to-charge ratio, it does 
not contribute to the enhancement of the resolving power 
because the self-bunching effect is always accompanied by the 
effect of charged particle coalescence. From the viewpoint of 
charged particle dynamics, the coalescence effect represents a 
manifestation of the self-bunching effect for the groups of 
ions with close m/z ratios. Indeed, let us consider two ‘mass 
peaks’, each of them comprising a large number of identical 
ions with a mass-to-charge ratio of ions in both peaks being 
very close. If the self-bunching effect prevails over the effect 
of the mass-peaks separation due to the transit time and mul-
tiple reflections, both types of particles will move between the 
mirrors as a single bunch. In this case, the mass-peaks of ions 
could not be resolved even after an arbitrarily large number 
of oscillations. Obviously, from a practical viewpoint, the 
coalescence effect defines a ‘Coulombian’ limit of the resolv-
ing power in a mass spectrometer, and it is extremely impor-
tant to determine a set of conditions responsible for manifes-
tation of this effect.

Mathematical modelling of the above phenomena is very 
sophisticated and requires an accurate enough evaluation of 
the Coulomb interaction contribution to the ion bunch 
motion against the background of external electric fields. A 
vast majority of the known works [21 – 27] have been studying 
these effects either experimentally or using relatively simple 
models capable of clarifying the essence of the phenomena on 
a qualitative level only. These models can hardly be consid-
ered as a reliable basis for the creation of a modern computa-
tional framework for the design and optimisation of mass 
spectrometers with a real complicated geometry.

The computational algorithms for solving the problems of 
Coulomb dynamics as applied to high-resolution mass spec-
trometry, outlined in this paper, represent an integral part of 
our MASIM 3D software package [28]. The approach com-
bines a special procedure for calculating ion trajectories with 
the use of perturbation theory and Barnes – Hut method [29] 
that is borrowed from the celestial mechanics. The essence 
of the approach is to decompose the original system of 

motion equations into two interconnected systems of equa-
tions [30, 31]. One of these systems comprises only external 
(smooth) fields, and, consequently, its solution may be repre-
sented in the form of an aberrational expansion, whilst the 
other one contains explicitly only the Coulomb (non-smooth) 
potential, the electric field of which is commonly several 
orders of magnitude smaller than the external field produced 
by the system of the electrodes. Thus, ‘large’ and ‘small’ field 
items appearing in the original system of the motion equa-
tions turn out separated, which ensures high accuracy and 
stability of the whole process of calculating the trajectories 
with regard to the Coulomb interaction.

Calculations and experiments show that the ion bunch 
may pass near the system boundaries. In that case, to ade-
quately describe the dynamics of the ion ensemble, the ‘mir-
ror-image’ field, which appears due to the interaction of the 
ion bunch with the nearby electrodes, should be necessarily 
taken into account. Below we formulate a special algorithm 
that allows an adaptive solution of a relevant boundary-value 
problem in the course of the bunch motion.

The first part of this work is dedicated to the construction 
of computational algorithms and software for solving numer-
ically the problems of high-resolution mass spectrometry in 
the case of 3D geometry of the field-forming electrodes with 
allowance for Coulomb effects. All the algorithms outlined 
below are implemented as a separate software module being a 
part of the MASIM 3D applied program package. 

In the second part, this software is used for simulation of 
the resonant Coulomb effects of self-bunching and coales-
cence in a TOF reflectron-type mass spectrometer, to assess 
the impact of these effects on the limiting resolving power of 
such instruments.

2. The Coulomb potential calculation  
using the modified Barnes – Hut method 

Direct calculation of the Coulomb potential created by N par-
ticles having charges qp and radius vectors Rp ( p = 1, . . , N ) at 
a fixed point with a radius vector S assumes the summation of 
N terms,
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the calculation of which requires the execution of a great 
number of time-consuming operations. If we want to know 
the Coulomb field of each particle of interest at every step of 
integration of the motion equations, we have to calculate as 
many as N(N – 1)/2 of such terms for all possible pairs of par-
ticles that form a bunch. For sufficiently large N, such a cal-
culation becomes extremely cumbersome even for modern 
computers.

The calculation speed can be increased if we combine the 
particles into groups depending on their position relative to 
the point S, considering each of these groups as a single field 
source.

In 1986, Barnes and Hut [29], with the aim of calculating 
the gravitational fields of stellar clusters in celestial mechan-
ics, proposed a more effective implementation of the general 
idea of grouping the particles. Instead of grouping the indi-
vidual particles with respect to a given point of field calcula-
tions, the Barnes – Hut algorithm suggests ranking of the cells 
of a special tree-like structure which is constructed of the par-
ticles comprising the cloud at every step of integration of the 
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motion equations. Since the mathematical description of the 
gravitational and Coulomb fields has much in common, this 
algorithm turned out very promising in computational 
charged-particle optics. The details of the Barnes – Hut algo-
rithm’s version used in this paper, with a computational com-
plexity of NlogN order, can be found in [31].

3. Allowance for the ‘mirror image’ fields  
in the Coulomb problems with complicated 
geometry of electrodes

In practice, dense ion bunches often pass in immediate prox-
imity of field-forming electrodes, so that the potential induced 
by ions on the conductive surfaces of these electrodes can sig-
nificantly affect the ion bunch dynamics. Within the frame-
work of the nonrelativistic quasi-stationary approximation, 
the total electric potential j(r, t) created by the external 
sources (electrodes) and the Coulomb interaction between the 
charged particles constituting a moving cloud with particle 
density r(r, t) satisfies the Poisson equation

Dj = – 4pr(r, t) 	 (2)

with the given boundary conditions on the electrode surface G

 j|G = j(rP, t),   P Î G.	 (3)

Let us represent the solution of the boundary-value prob-
lem (2), (3) as a sum of three terms:

j(r, t) = j0(r, t) + jC (r, t) + j*(r, t),	 (4)

where j0(r, t) is the external potential defined as a solution of 
the Dirichlet problem for the Laplace equation:

Dj = 0,   j|G = j(rP, t),   P Î G ;	 (5)
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is the space-charge potential induced by the interaction 
between the charged particles; and j*(r, t) is the so-called mir-
ror potential arising from the interaction of charged particles 
with conductive electrodes and defined as a solution of the 
Dirichlet problem:

Dj = 0,  j|G = – jC (rP, t). 	 (7)

Obviously, the function jC* (r, t) = jC (r, t) + j*(r, t) satis-
fies the Poisson equation with zero initial conditions.

As noted above, if a dense bunch of charged particles is 
moving near the field-forming electrodes, the contribution of 
the ‘mirror-image’ potential j*(r, t) can be very significant.

To solve problem (7), the Barnes – Hut method can be 
supplemented by a relatively simple and efficient approach 
for calculating the mirror potential in the form of the har-
monic sum
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Here, (r, f, J ) are the spherical coordinates of the radius vec-
tor drawn from the ion cloud centre to a given point; Ng is the 
maximum order of spherical harmonics; and Ynm(J ) is the 
spherical part of the associated Legendre polynomials. The 
coefficients Anm, Bnm can be found by minimising the qua-
dratic residual (i.e. the squared deviation of the approximat-
ing dependence from the desired function)
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on the finite set M of the boundary points rP Î G. Solution (8) 
exactly satisfies the Poisson equation and approximately sat-
isfies the boundary conditions (7). It is easy to see that equa-
tion (9) produces a set of linear equations for the coefficients 
Anm, Bnm.

To ensure a required accuracy, the set of boundary points 
should adequately reflect the geometry of the electrode sur-
faces. Obviously, the maximal contribution to the mirror 
potential is provided by the charge induced on the boundary 
elements being nearest to the bunch. In this regard, to remove 
the unwanted ‘noise’ arising from taking into account remote 
(and therefore insignificant) boundary points, the set M, 
which is moving with the bunch, only includes the points 
located within a sphere of a radius R, whose centre coincides 
with the geometric centre of the ion cloud, and the value of R 
represents a problem-dependent variable to be determined in 
numerical experiments.

If the system geometry is complicated enough, some ele-
ments of the electrode surface can be shielded (screened) by 
other elements being ‘visible’ from the ion cloud centre. The 
points belonging to such shielded elements are not included 
into representation (9). A special computational procedure 
eliminates such shielded elements. The computational model 
includes six ‘cameras’ with a field of view of 90°, placed at 
the ion cloud centre. In the course of the ion cloud motion, 
each of the ‘visible’ boundary elements is being projected 
onto the image plane of the cameras, thus ensuring the adap-
tive accumulation of the necessary boundary elements to be 
included into the numerical process of finding the coeffi-
cients Anm, Bnm.

4. Numerical solution of the test problems

A pithy problem of the Coulomb dynamics of charged parti-
cles, which admits a quasi-analytical (exact) solution, is the 
problem of expansion of a spherical cloud of charged parti-
cles in free space, considered earlier in [31, 32]. Figure 1 shows 
the density evolution of a spherically symmetric bunch of pro-
tons, which is calculated using the Barnes – Hut algorithm 
and according to the exact solution (shaded area). Initially, 
the protons being in rest are distributed within a sphere of a 
radius r0 = 1 mm. At the initial time moment t = 0, the charged 
particles that form the cloud start to move due to the Coulomb 
repulsion.

Below we consider the cases when the initial distribution 
of the particle density inside the sphere is either uniform 
(Fig. 1a) or highly nonuniform (Gaussian) (Fig. 1b). It is 
clearly seen that, in the case of a uniform initial distribution, 
the particle density remains constant when the sphere expands 
under the action of Coulomb interaction, whereas, in the case 
of the nonuniform initial density, the charged particles form 
density maxima (‘overtaking catastrophes’) at the forefront of 
the expanding cloud. This behaviour of the space-charge den-
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sity is well-consistent with the results obtained in [31, 32] by 
means of analytical methods.

The main goal of solving the problem considered below is 
to determine how the modified Barnes – Hut algorithm, com-
plemented by the technique of the mirror-potential calcula-
tion, describes the Coulomb dynamics of charged particles in 
the presence of conductive surfaces. In this test, a uniformly 
charged sphere with the initial radius R = 1 mm is placed 
inside a cube with a rib length of L = 20 mm, so that, at the 
initial time moment, the sphere centre is distanced by 5 mm 
from the nearest face of the cube. 

At t = 0 the sphere begins to expand due to the Coulomb 
interaction. The difference between the ion cloud motion in a 
close proximity to the conductive surface and in free space is 
stipulated by the presence of the mirror charge induced by the 
ion cloud. As noted above, in the framework of the approach 
applied, the mirror potential generated by the space charge is 
taken into account by adding a finite number of terms of the 
harmonic series (8), whose coefficients are determined by 
minimising residual (9). It should be emphasised that the 
problem of calculating the potential induced by the ion cloud 
surrounded from all sides by conductive electrodes proved to 
be more stable than the problem with an infinite plane. This 
reflects the fact that the internal Dirichlet problem is stable 
(correct) with respect to small variations in the boundary con-
ditions, in contrast to the Cauchy problem for an infinite 
plane.

If the ion cloud is located sufficiently close to one of the 
cube faces, we can compare the solution derived by minimis-
ing residual (9) (hereinafter referred to as the L2 approxima-
tion) with a solution that takes into account the presence of 

two charged clouds – real and imaginary, obtained by the 
mirror reflection of the real cloud relative to the plane con-
taining the corresponding сube face. As above, the latter solu-
tion is called the exact one. Figure 2 shows the potential dis-
tribution on the cube face which at t = 0 is distanced by 5 mm 
from the ion cloud centre. The distributions in Figs 2a, 2b and 
2c correspond to the solutions with the number of Fourier 
harmonics in expansion (8) equal to 3, 5 and 7, respectively. 
The exact solution is shown in Fig. 2d. It can be seen that the 
L2 approximation converges to the exact solution when the 
number of Fourier harmonics grows. Thus, it is shown that 
the proposed algorithm ensures sufficient accuracy in calcu-
lating the mirror potential in the problems with dense ion 
bunches.
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Figure 1.  Evolution of a spherically symmetric cloud of protons with 
(a) initially uniform and (b) initially nonuniform (Gaussian) charge 
density distribution calculated by means of the Barnes – Hut method 
(rectangles) and in accordance with the exact solution (grey area in 
Fig. 1a).
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5. Modelling of the Coulomb effects  
in the TOF reflectron-type mass analyser 

The TOF reflectron-type mass analyser we consider below is 
described in detail in [33]. It consists of two identical axisym-
metric mirrors separated by a region with a constant poten-
tial. As shown in Fig. 3, each of the mirrors is composed of 
four ring-shaped electrodes. Three pairs of external (U2 – U4) 
electrodes have a positive potential for producing a reflective 
field. The inner pair of electrodes (U1) has a smaller diameter 
and a negative potential. These electrodes form an accelerat-
ing electrostatic lens that provides the transverse stability of 
the bunch.

The instrument operation process can be provisionally 
divided into several stages. Originally, the ions derived by 

means of a standard electrospray-type ion source [11] are 
injected into a linear high-frequency trap in the form of a 
low-energy continuous flow. Then, as a result of changing 
the potentials of external electrodes, the ion bunch is 
locked in a multireflection trap. After accumulating and 
cooling of the required amount of ions, the confining 
potential turns off and the applied electric field pulls the 
charged particles. The optimisation process for this sys-
tem is described in [33]. The resolving power m/Dm of the 
instrument, calculated with no regard to the Coulomb 
interaction, amounts to 150 000; however, the self-bunch-
ing and coalescence effects lead to the fact that the real 
resolving power of the instrument does not exceed 
100 000.

To demonstrate the development of the self-bunching 
phenomenon in the oscillation process, the time-energy dia-
grams are presented in Fig. 4, which describe the evolution in 
the central plane of this multireflection system of an ion 
bunch consisting of 1000 ions with  m/z = 190. The initial 
coordinates X0, Y0 of the ion trajectories are uniformly dis-
tributed in the range of – 0.6  . . . 0.6 mm, the initial spread of 
the coordinate Z0 is set equal to zero. The initial energy and 
the energy spread of ions on the principal trajectory at the 
entrance to the injection system where the bunch acquires an 
energy of 500 eV, is also assumed to be zero.

Unlike the diagrams in Fig. 4 (left), where the Coulomb 
interaction is not taken into account, the right-hand diagrams 
indicate that the temporal spread of ion distributions is grad-
ually stabilising in the process of oscillations, which is a man-
ifestation of the self-bunching effect.
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Figure 3.  Structure of electrodes, axial potential distribution (dashed 
line) and ion trajectories (solid line) in the TOF reflectron-type mass 
analyser.
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In order to reveal the phenomenon of coalescence, which 
consists in resonance synchronisation of the ion motion with 
close m/z ratios, the ion bunch has to perform a sufficient 
number of oscillations. Figure 5 shows the TOF distribu-
tions in the reflectron central plane for the ion bunch com-
prising two groups of particles with equal number of parti-
cles and the ratio m/z = 196.00 and 196.02 (100 particles in 
Fig. 5a and 150 particles in Fig. 5b). Herewith, each hori-
zontal row in Fig. 5 corresponds to one, five or nine oscilla-
tions, respectively.

Evolution of the ion bunch with no regard to the Coulomb 
interaction between the particles represents a monotonous 
increase in the time interval between the particles having dif-
ferent m/z ratios. The calculations show that in this case the 
TOF difference (‘divergence’) between the two groups of par-
ticles after nine oscillations amounts to 8 ns.

Figure 5 shows the evolution of the same ion bunch, with 
the total number of charged particles equal to 100, when the 
Coulomb interaction is taken into account. The dynamics of 
the subgroups of ions is here somewhat different from the 
case when the Coulomb interaction is totally ignored; how-
ever, temporal ‘divergence’ of the particles with close m/z 
ratios is still observed.  Since the scale graduation mark in this 
Figure is 2 ns, we may ascertain that the ‘divergence’ of the 
ion groups after nine oscillations constitutes 4 ns (FWHM).

In Fig. 5b the total number of interacting charged parti-
cles is already 150. It can be seen that after the total number 
of particles increased merely by half, the ion motion has radi-
cally changed. Both subgroups of ions are moving as a single 
entity, whilst the ion cloud size remains virtually unchanged. 
That means that the ion masses under consideration have 
become unresolvable. Thus, we see that the coalescence effect 
may significantly reduce the resolving power of the reflectron.

It is important to note that our numerical experiments 
point to the possibility of employing the aberrational meth-
ods in evaluation of the resolving power limitations condi-
tioned by such phenomena as self-bunching and coalescence. 
A relatively small number of elementary charges (only 150) 
required to reveal these effects indicates that, with the use of 
modern ionisation methods, when the ion bunches compris-
ing tens or even hundreds of thousands of charged particles 
are being analysed, the Coulomb interaction becomes a deci-
sive factor in determining the resolving power of mass spec-
trometric instruments. 

6. Conclusions

Theoretical approaches to the modelling of the Coulomb 
effects in short ion bunches, developed previously on the basis 
of the modified Barnes – Hut algorithm and aberration the-
ory, have been adapted to the simulation of multireflection 
mass-spectrometer systems. A computational procedure for 
calculating the mirror potential induced by the ion bunch on 
the field-forming electrodes is elaborated. The algorithm 
determines dynamically the ion cloud location relative to the 
field-forming electrodes, so that only the electrode parts that 
directly affect the temporal and spatial characteristics of the 
ion bunch in the course of its motion are being involved into 
the calculation process.

A totality of the developed specialised computational 
methods and algorithms has been implemented as a separate 
program module of the MASIM 3D applied software pack-
age and passed through an extensive testing on the model 
problems. To illustrate the software efficiency, a simulation 
of the Coulomb dynamics of ion bunches in a TOF reflectron-
type mass analyser has been performed. Numerical experi-
ments have allowed us to reveal and study in detail the resolv-
ing power limitations due to the resonant Coulomb effects of 
self-bunching and coalescence as applied to the groups of 
charged particles with close masses. 

Thus, reliable and versatile software has been created, 
which allows numerical optimisation of the ion optics ele-
ments with regard to the Coulomb interaction and may serve 
as a tool for advancing the resolving power of the modern 
mass-spectrometer instruments.
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