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Abstract.  Three unusual classes of particular analytical solutions 
to a system of four nonlinear equations are found for slowly varying 
complex amplitudes of circularly polarised components of the elec-
tric field. The system describes the self-action and interaction of 
two elliptically polarised plane waves collinearly propagating in an 
isotropic medium with second-order frequency dispersion and spa-
tial dispersion of cubic nonlinearity. The solutions correspond to 
self-consistent combinations of two elliptically polarised cnoidal 
waves whose mutually orthogonal polarisation components vary in 
accordance with pairwise identical laws during propagation. At the 
same time, the amplitudes of the component with the same circular 
polarisation are proportional to two different elliptic Jacobi func-
tions with the same periods. 

Keywords: cubic nonlinearity, spatial and frequency dispersion, 
elliptically polarised cnoidal wave, cross degeneration. 

1. Introduction 

Investigation of peculiarities of multisoliton complexes 
formed due to the interaction of stable single soliton-like non-
linear waves, i.e., self-consistent solutions to nonlinear prob-
lems of different types (solitons, breathers and cnoidal waves 
[1 – 4]), has recently aroused considerable interest [2 – 6], 
which is associated with the possibility of using such com-
plexes for fast transfer of optical information. Moreover, 
these complexes are of interest as electromagnetic field struc-
tures formed by self-organisation processes in nonlinear sys-
tems with many degrees of freedom. The propagation prob-
lems to be solved are always multiparametric and in most 
cases described by nonintegrable systems of nonlinear differ-
ential equations [7 – 10]. An example of such problems is the 
interaction of two mutually orthogonal circularly polarised 
components of an electromagnetic wave propagating through 
a nonlinear medium with frequency dispersion and spatial 
dispersion of cubic nonlinearity [11 – 19]. Peculiarities of their 
possible interaction have been previously analysed on the 
basis of the found exact particular [11 – 13] and approximate 
[14 – 19] solutions, obtained through various approaches (per-
turbation theory [14, 15], adiabatic approximation [16 – 19]). 

In this paper we present for the first time unusual particu-
lar analytical solutions to a system of four nonlinear equa-
tions for slowly varying complex amplitudes of circularly 
polarised components of the electric field, which describes the 
self-action and interaction of two elliptically polarised plane 
waves collinearly propagating in an isotropic medium with 
second-order frequency dispersion and spatial dispersion of 
cubic nonlinearity. These amazing solutions represent self-
consistent combinations of two cnoidal waves for which time-
dependent moduli of slowly varying amplitudes of circularly 
polarised components of two different elliptically polarised 
plane waves A± and и B± change during the propagation in 
accordance with pairwise identical laws (|A±| is proportional 
to |B" |) given by different elliptic Jacobi functions [20]. 
Solutions of this cross-degenerate type are not exotic, but 
form three classes of analytic solutions existing in the rather 
wide range of values of the material parameters of a nonlinear 
medium. 

2. Initial system of equations  
and approximations used 

The system of equations describing the evolution of slowly 
varying complex amplitudes A± (z, t) and B± (z, t) of circularly 
polarised orthogonal components (subscripts ±) of two ellip-
tically polarised waves having the same carrier frequency w 
and propagating almost collinear to the z axis in an isotropic 
gyrotropic medium with spatial dispersion of cubic nonlinear-
ity and second-order group velocity dispersion can be easily 
obtained as a generalisation (frequency dispersion in the case 
of propagation of the waves in the same direction is addition-
ally taken into account) of a system of equations given in 
[21,22]: 
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The right-hand side of the system contains terms describing 
both self- and cross-modulation of all components, as well as 
their parametric four-wave mixing. Here, t is the time in the 
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moving coordinate system; k2 = ∂2k/∂w2 = const characterises 
frequency dispersion; and k is the wave number. The values of 
the parameters s1 = 4

( )
xyxy

2 3pw c /(kc2) and s2 = 2 /( )kc( )
xxyy

2 3 2pw c  
are given by two independent components of the tensor of 
local cubic nonlinearity c(3)(w; – w, w, w), and r0,1 = 2pw2  ´ 
g0,1/c2 are given by pseudoscalar constants g0,1 of linear and 
nonlinear gyration. It is easy to see that systems (1) and (2) 
are completely symmetric: the equations for the ‘+’ and ‘–’ 
components of the field transform into each other during the 
simultaneous substitution r0,1 « – r0,1 and + « – and the 
equations for the waves A± and B± transform into each other 
during the substitution A± « B±. 

We will seek a particular solution to system (1), (2) in the 
form: 
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Here, the constants k ( , )a b
!  and constant phases ja± and jb± 

providing the separation of the variables satisfy respectively 
the conditions k k k k( ) ( ) ( ) ( )a a b b

- = -! " ! " , ja+ – ja– – jb+ + jb– = 
lp (l = 0, ±1, ±2, . . . ,) arising due to the parametric interaction 
of circularly polarised components of the field in system (1), 
(2). Substituting (3), (4) into (1), (2), we obtain the system of 
second-order differential equations for ra±(t) and rb± (t): 
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The subscripts ‘+’ and ‘–’ in this system correspond to even 
and odd l. We emphasise that system (5) – (8) is fully equiva-
lent to (1), (2) to within the above simplifications. 

3. Cross-degenerate solutions 

Consider the case of cross degeneration, at which ra+(t) = 
arb–(t) and rb+(t) = bra–(t). Substituting these relations in 
(5) – (8) we can see that the constants a, b and functions ra–(t) 
and rb–(t) in this case must satisfy the system of equations 
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We will seek its solution in the form: 

ra+(t) = aGcn(gt, m),   ra–(t) = Fdn(gt, m),	
(13)

rb+(t) = bFdn(gt, m),   rb–(t) = Gcn(gt, m),

where g is the scale factor, and m is the modulus of the ellip-
tic Jacobi functions [20]. Substituting (13) into equations 
(9) – (12) transforms the latter into polynomial functions with 
respect to one of the Jacobi functions [in our case sn(gt, m)]. 
By equating to zero the coefficients of these polynomials 
together with the condition k k k k( ) ( ) ( ) ( )a a b b

- = -! " ! " , we form a 
system of nine algebraic equations for g, m, F, a, b, G, k±

(a) and 
k±
(b). Its nontrivial solutions define the relations limiting the 

allowable values of the introduced constants at which cross-
degenerate solutions (13) really exist. Using five equations of 
this system, we can conveniently express k±

(a), k±
(b) and g 

through m, F, a, b, G and material parameters of the medium: 
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The remaining four algebraic equations of the system, 
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relate the quantities m, F, a, b and G and should have non-
trivial solutions. It turns possible under certain restrictions 
and relations between the constants defining problem (1), (2). 
It is convenient to start with equations (19), (20) having the 
simplest form, and then to substitute the quantities found 
during their solution into (21), (22) in order to check them for 
compatibility and to determine additional constraints on the 
values of the problem parameters. Finally, one must make 
sure that the value of g2 found in (15) is positive, i.e., cross-
degenerate solutions (13) do exist. Note that the values m = 1 
and m = 0 are of no interest, because at m ® 1 solutions (13) 
become completely degenerate bright solitons, and at m ® 0 
one of the waves does not change over time [20]. 

This procedure has allowed us to find three families of 
solutions. The first (for free parameters s1,2, m and F) has the 
form 
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In (23), (24) and below all the derived expressions are not 
equal to zero and do not tend to infinity. The relationships 
that ensure these trivial restrictions on the parameters of the 
medium are not additionally written out. The second family 
of solutions (for free parameters s1,2, 01!r , m and F ) is 
given by 
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and the coefficients a and b are the solutions to the system of 
equations 
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The third family of solutions is determined by the relations
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and the coefficients a and b are the solutions to the system of 
equations 
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The parameters s1,2, r1, m and F are thus free ones. 
Verification has shown that the cross-degenerate solu-

tions cannot be constructed both on the basis of two other 
pairs of different elliptic Jacobi functions [dn(gt, m) and 
sn(gt, m), and cn(gt, m) and sn(gt, m)], which was possible for 
one pair of waves [11, 13], and on the basis of fundamental 
solutions of the second-order Lamé equation [6, 20]. There-
fore, the above solutions (13) are unique and form three dif-
ferent classes of cross-degenerate solutions for all admissible 
values of material parameters s1,2 and r1. 

We note here that although at first glance the above anal-
ysis applies only to situations in which m is real and changes in 
the interval [0, 1], at m > 1 and imaginary values of m the ellip-
tic Jacobi functions transform into different combinations of 
the same elliptic functions sn(gt',  m' ), cn(gt',  m' ) and dn(gt',  m' ) 
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with renormalised values of the argument gt' and modulus m' , 
which is in the interval [0, 1] (see Tables 8.151 and 8.152 in 
[20]). Therefore, taking into account the possibility of such a 
renormalisation, the above expressions and conclusions cover 
those situations when m > 1 or is imaginary. 

We emphasise that under conditions (25) – (29) periodic 
cross-degenerate solutions (13) defined on a set of points  
2 2!a b  cease to exist at points a = ±b, since g2 vanishes. 

Therefore, all the points at which a2 = b2 are singular for 
these solutions. The fact that the first of the derived periodic 
cross-degenerate solutions that exists at 02 !g  is not an 
asymptotic for the other two solutions is quite unexpected. In 
the known-to-us cases of existence of several branches of 
solutions the latter are usually ‘sewed’, i.e., under certain con-
ditions they asymptotically transform into each other. 

4. Conclusions 

We have found three unusual classes of particular analytical 
solutions to a system of four nonlinear equations for slowly 
varying complex amplitudes of circularly polarised compo-
nents of the electric field. The system describes the self-action 
and interaction of two plane elliptically polarised waves dur-
ing their collinear propagation in an isotropic medium with 
second-order frequency dispersion and spatial dispersion of 
cubic nonlinearity. The solutions represent self-consistent 
combinations of the components of two elliptically polarised 
plane cnoidal waves whose two pairs of mutually orthogonal 
circularly polarised components vary in accordance with 
pairwise identical laws during propagation. At the same time, 
the amplitudes of the component with the same circular 
polarisation are proportional to two different elliptic Jacobi 
functions with the same periods of change in time: dn(gt, m) 
and cn(gt, m). It is found that these solutions form three dif-
ferent classes, because they exist in some region of variation 
of material parameters and do not transform into each other 
even asymptotically. 

The resulting cross-degenerate solutions with separable 
variables t and z, whose phases vary linearly with respect to z 
and do not depend on t, are constructed on the basis of the 
eigenfunctions of the first-order Lamé equation [6, 20]. 
Therefore, the character of the evolution of elliptical polarisa-
tion of each of the two consistently propagating and interact-
ing cnoidal waves is given by formulas that are similar to 
those expressions that describe the evolution of the polarisa-
tion ellipse of a cnoidal wave and are given earlier in [11]. For 
the solution of equation (23) in the case of "a b= , the polar-
isation states of the two waves determined by the normalised 
Stokes vector [11, 12] differ only in the sign of their zth com-
ponents, while other components of this vector are equal to 
each other (see the character of the evolution of the polarisa-
tion state of a single elliptically polarised cnoidal wave on the 
Poincare sphere shown in Fig. 2 [12]). For cross-degenerate 
solutions (24) – (29) if "!a b , the differences between the 
polarisation states of two propagating waves are more signifi-
cant (all the components of their Stokes vectors are different). 

References 
  1.	 Ablowitz M.J., Segur H. Solitons and the Inverse Scattering 

Transform (Philadelphia: SIAM, 1981; Moscow: Mir, 1987). 
  2.	 Akhmediev N.N., Ankiewicz A. Solitons. Nonlinear Pulses and 

Beams (London: Chapman and Hall, 1997; Moscow: Fizmatlit, 
2003). 

  3.	 Kivshar Y.S., Agrawal G.P. Optical Solitons: From Fibers to 
Photonic Crystals (San Diego: Acad. Press, 2003; Moscow: 
Fizmatlit, 2005). 

  4.	 Chen Zhigang, Segev M., Christodoulides D.N. Rep. Progr. Phys., 
75, 086401 (2012).

  5.	 Kutuzov V., Petnikova V.M., Shuvalov V.V., Vysloukh V.A. 
Phys. Rev. E, 57, 6056 (1998). 

  6.	 Petnikova V.M., Shuvalov V.V., Vysloukh V.A. Phys. Rev. E, 60, 
1009 (1999).

  7.	 Boyd J.P. Phys. D: Nonlin. Phenomena, 21, 227 (1986).
  8.	 Christiansen P.L., Eilbeck J.C., Enolskii V.Z., Kostov N.A. Proc. 

Royal Soc. Ldn A, 456, 2263 (2000).
  9.	 Chow K.W., Nakkeeran K., Malomed B.A. Opt.Commun., 219, 

251 (2003).
10.	 Tsang S.C., Nakkeeran K., Malomed B.A., Chow K.W. Opt. 

Commun., 249, 117 (2005).
11.	 Makarov V.A., Perezhogin I.A., Petnikova V.M., Potravkin N.N., 

Shuvalov V.V. Kvantovaya Elektron., 42, 117 (2012) [ Quantum 
Electron., 42, 117 (2012)]. 

12.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Kvantovaya Elektron., 42, 1118 (2012) [ Quantum Electron., 42, 
1118 (2012)]. 

13.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Phys. Wave Phenomena, 21, 264 (2013).

14.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Laser Phys. Lett., 10, 075404 (2013).

15.	 Makarov V.A., Petnikova V.M., Potravkin N.N., Shuvalov V.V. 
Kvantovaya Elektron., 44, 130 (2014) [ Quantum Electron., 44, 130 
(2014)]. 

16.	 Makarov V.A., Petnikova V.M., Shuvalov V.V. Laser Phys., 24, 
085405 (2014).

17.	 Makarov V.A., Petnikova V.M., Shuvalov V.V. Laser Phys. Lett., 
11, 115402 (2014).

18.	 Makarov V.A., Petnikova V.M., Shuvalov V.V. Opt. Express, 22, 
26607 (2014).

19.	 Makarov V.A., Petnikova V.M., Shuvalov V.V. Kvantovaya 
Elektron., 45, 35 (2015) [ Quantum Electron., 45, 35 (2015)]. 

20.	 Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series and 
Products (San Diego, CA: Academic Press, 2000; Moscow: 
Nauka, 1971). 

21.	 Golubkov A.A., Makarov V.A. Kvantovaya Elektron., 16, 1437 
(1989) [ Sov. J. Quantum Electron., 19, 927 (1989)]. 

22.	 Golubkov A.A., Makarov V.A. Izv. Ros. Akad. Nauk, Ser. Fiz., 56 
(4), 41 (1992). 


