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Abstract.  We have theoretically investigated waveguide modes 
propagating in a planar waveguide formed by a layer of an isotropic 
dielectric surrounded by hyperbolic media. The case, when the opti-
cal axis of hyperbolic media is perpendicular to the interface, is 
considered. Dispersion relations are derived for the cases of TE and 
TM waves. The differences in the characteristics of a hyperbolic 
and a conventional dielectric waveguide are found. In particular, it 
is shown that in hyperbolic waveguides for each TM mode there are 
two cut-off frequencies and the number of propagating modes is 
always limited. 

Keywords: metamaterials, hyperbolic dispersion, waveguide modes, 
TE and TM waves. 

1. Introduction 

Currently, metamaterials and their optical properties are in 
the focus of attention of many researchers. Metamaterials are 
artificially created media that consist of components of 
micrometer or nanometer (subwavelength) size and demon-
strate as a rule an unusual, not found in nature, interaction 
with electromagnetic radiation. The most famous are nega-
tive index metamaterials [1 – 6], which in a certain frequency 
range exhibit simultaneously a negative permittivity and per-
meability [7, 8]. 

The authors of Refs [9 – 13] have shown that a negative 
refractive index and its related phenomena may occur in 
anisotropic media. It should be noted that uniaxial anisot-
ropy, as a rule, is a typical property of metamaterials. 
Anisotropy of metamaterials can manifest itself in very 
unusual electrodynamic characteristics of these media. For 
example, they can demonstrate negative refraction in one 
direction and positive refraction in the orthogonal direction. 

We assume that in an infinite uniaxial anisotropic medium, 
the coordinate axes X, Y and Z are chosen to coincide with 
the principal axes of the permittivity tensor in such a way that 
relations exx = ee and eyy = ezz = eo are satisfied for principal 
permittivities. The dispersion relation for an extraordinary 

wave between the frequency and Cartesian components of the 
wave vector k has the form: 
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One can see from this relation that in the case when the value 
of ee or eo is negative, isofrequency contours defined by 
expression (1) are single-sheeted (at ee > 0, eo < 0) and two-
sheeted (at ee < 0, eo > 0) hyperboloids [14 – 18]: 
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Accordingly, these anisotropic media are called hyperbolic. 
Hyperbolic media are typically represented by structures 

composed of alternating planar layers of a conductor and a 
dielectric [14, 19, 20], or an array of conductive wires inside a 
dielectric [15, 21, 22]. 

Unlimited values of the wave vector are possible in (2). 
The result is a giant Purcell factor [23 – 26], which determines 
an increase in the spontaneous emission intensity, and the 
effect of superresolution [14, 27]. The attention of researchers 
is also drawn to optical phenomena at the interface of a con-
ventional dielectric and a hyperbolic medium. Zapata-
Rodriguez et al. [28] have considered surface waves. The 
Goos – Hänchen shift, significantly greater than an analogous 
shift for ordinary media, has been discussed by Jing Zhao et 
al. [29]. The authors of Refs [30, 31] have considered and 
studied a planar waveguide, whose core is a conventional iso-
tropic dielectric, whereas a substrate and coating layer are 
hyperbolic media (Fig. 1). The properties of this waveguide as 
a guiding structure for surface plasmons have been examined. 

Apart from surface waves, guided (waveguide) waves, 
whose electromagnetic field is concentrated mainly in a dielec-
tric layer and held there due to total internal reflection from 
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Figure 1.  Scheme of a planar waveguide in question. 
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the boundaries of the surrounding media (the substrate and 
the coating layer) can propagate in a waveguide. In this paper, 
we investigate theoretically the propagation of linear guided 
waves in a planar waveguide discussed earlier in [30]. The axis 
of anisotropy of the substrate and the coating layer is perpen-
dicular to the surface between the media (along the X axis) 
(see Fig. 1). For this geometry, Maxwell’s equations are sepa-
rated into two uncoupled systems, which describe differently 
polarised waves, called TE and TM waves [32]. Analysis of 
the modes of TE- and TM-type waves has been performed 
independently. In each case, we have analytically obtained 
dispersion relations between the effective refractive index of 
the waveguide and the frequency of a guided wave. The case 
of a symmetric waveguide has been investigated in detail. 

2. Field distributions for guided TE  
and TM waves 

We consider a planar waveguide (Fig. 1), the core of which is 
an isotropic dielectric with permittivity ei and permeability mi. 
The thickness of the dielectric layer is equal to h. The sub-
strate and the coating layer are hyperbolic media character-
ised by principal permittivities eo(1), ee(1) and eo(3), ee(3) and per-
meabilities m1 and m3. All the permeabilities are positive. The 
axis of anisotropy of hyperbolic media is perpendicular to the 
surfaces of the interface between the media, i.e. along the X 
axis (see Fig. 1). The axes Y and Z are parallel to the interface. 
The Z axis can be selected directed along the direction of the 
wave propagation. In this case, Maxwell’s equations are 
invariant with respect to the shift of the system of coordinates 
along the Y axis. Thus, the electric and magnetic field 
strengths of a guided wave do not depend on the variable y; as 
a result, Maxwell’s equations are decoupled into two indepen-
dent systems of equations describing TE and TM waves [32]. 

The TE wave is specified by the components of the electric 
(Ey) and magnetic (Hx, Hz) field strengths. The strengths are 
assumed to be harmonic functions of time. The wave equa-
tion for the complex field amplitude E = Ey(x, z, w) has the 
form 
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where k0 = w/c, and w is the radiation frequency. Permittivity 
and permeability are given by piecewise continuous functions 
(see Fig. 1):
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Magnetic field components can be obtained from the rela-
tions 

¶
¶

¶
¶

( )
,

( )
i iH

k x z
E H

k x x
E

x z
0 0m m= =- .	 (3)

For the selected direction of the optical axis, the TE waves 
are ordinary, and therefore the case eo > 0 is reduced to the 

well-known problem. However, in hyperbolic media the case 
eo < 0 can be of interest. 

Because the waveguide is uniform along the Z axis, the 
solution of the wave equation can be found in the form
( , ) ( ) ( )exp iE x z E x zb= u , where the parameter b is the propa-

gation constant. The solution of the wave equation describing 
localised waves should be sought for by taking into account 
the boundary condition E ® 0, H ® 0 for |x| ® ¥. The solu-
tion procedure is known and described, for example, in [32]. 
The distribution of the electric field strength is given by the 
expressions: 
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With their help, we defined phase shifts fq and fp: 
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The normalised electric field amplitude A at x = 0 is arbitrary. 
The TM wave is specified by the components of the mag-

netic (Hy) and electric (Ex, Ez) field strengths. The wave equa-
tion for the complex field amplitude H = Hy(x, z, w) has the 
form 
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The electric field components can be obtained from the rela-
tions 
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The principal permittivities and permeabilities are piece-
wise continuous functions, considered previously for TE 
waves. 

Solving in a standard way the wave equation (5), we can 
see that in hyperbolic media, if ee(a) < 0, eo(a) > 0 (a = 1, 3), 
there are no solutions decreasing at infinity. Hence, there are 
no waves localised in the waveguide. If ee(a) > 0 and eo(a) < 0, 
when the conditions 

k02 m1ee(1) > b2,    k02 m3ee(3) > b2	 (7)

are met, the wave equation allows for the solutions describing 
the waves confined by the waveguide. The magnetic field dis-
tribution is described by the functions:

H (1) = Aexp( px + ibz) + c.c.,   x < 0,

H (2) = A
2
[(1 + ixp)exp(ikx + ibz) +
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	 + (1 – ixp)exp(– ikx + ibz)] + c.c.,   0 £ x £ h,	 (8)
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and use the expression for the phase shifts fq and fp. 

3. Dispersion relations 

Given that the electric and magnetic fields disappear at |x| ® ¥, 
solutions to Maxwell’s equations describe waves confined by 
the waveguide. We must distinguish two cases: a coupled pair 
of surface waves and waveguide modes. In a linear wave-
guide, the amplitude of surface waves is maximal at the inter-
face between a dielectric layer and surrounding media. In the 
case of a dielectric – metal – dielectric or metal – dielectric – 
metal waveguide, the coupled surface wave is said to be a 
plasmon polariton wave. A guided wave in the form of a cou-
pled pair of surface waves at the interface between a dielectric 
and a hyperbolic material was considered in [30, 31]. It can be 
obtained from the above expressions, if we replace  k2 by k2 = 
b2 – k02 mi ei. A planar waveguide, apart from surface waves, 
can confine a set of waves, called guided modes [32]. 

Localised waves are characterised by a relationship 
between the propagation constant b and the frequency w, 
which is called the dispersion relation. Dispersion relations 
for the waveguide considered here follow from the require-
ment of continuity of the tangential components of the elec-
tric and magnetic fields at interfaces between media. It is con-
venient to obtain dispersion relations separately for TE and 
TM waves. 

3.1. The case of a TE wave 

The distribution of magnetic fields in a waveguide can be 
derived from the expressions found for the electric fields (4) 
using equations (3). The condition of continuity of tangential 
components of the vectors of the electric and magnetic fields 
leads to the relationship: 
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Using the expression for the phase shifts, we can write the 
dispersion relation in a form having a clear physical meaning: 

2kh + fp+ fq = 2pm,   m = 0, 1, 2, . . .	 (9)

If we introduce the effective refractive index neff, following the 
formula b = k0 neff, then (9) can be rewritten as 
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Here, n1, ni  and n3 are the refractive indexes of media that 
form the waveguide ( | | , | | ,n n n( ) ( )

o o i i
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The dispersion relation shows that the effective refractive 
index is limited by the condition 0 £  n 2eff < ni

2. In the case of 
conventional dielectric media surrounding the waveguide core, a 
similar restriction has the form max(n1

2, n3
2) £ n 2eff < ni

2. The dif-
ference between these inequalities is due to the fact that when the 
waveguide is surrounded by hyperbolic materials, TE waves do 
not propagate in the surrounding hyperbolic media: total inter-
nal reflection occurs at any angle of incidence, as if the core of the 
waveguide were a dielectric core surrounded by a metal. 

Further analysis of the dispersion relation will be made 
for the case of a symmetric waveguide when n1

2 = n3
2. This 

dispersion relation takes the form
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We rewrite relation (10) in a normalised form. We introduce the 
parameter b as follows: n1

2 + n 2eff = bD, where D = n1
2 + ni

2. Then, 
the normalised waveguide thickness is ,V k h n n0

2 2
= +i 1  and 

relation (10) transforms to the form 
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This relationship specifies the dispersion dependence 
b(V, m) and its form coincides with a similar expression for 
uniaxial anisotropic dielectrics with positive components of 
the permittivity tensor. However, the normalised effective 
refractive index b lies in the interval [b0, 1), wherе b0 = 
/( )n n n i
2 2 2

+1 1 , whereas in a standard situation b lies in the 
interval [0, 1). The dependences b(V, m) at mi /m1 =1.2 and b0 = 
0.2 are shown in Fig. 2. The fact that unlike a conventional 
waveguide, b0 > 0, means that the cut-off frequency Vc0 for 
the TE0 mode is nonzero. By setting b0 = 0 in (11), we obtain 
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In a conventional dielectric waveguide Vc0 = 0. 

3.2. The case of a TM wave 

Using expression (8) and relations (6) we find the electric field 
strengths. Then, the condition of continuity of tangential 
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Figure 2.  Dispersion curves for a TE wave in a planar waveguide with a 
hyperbolic medium ( mi /m1 = 1.2, b0 = 0.2, m = 0 – 5). 
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components of the vectors of the electric and magnetic fields 
allows us to obtain the dispersion relation for TM waves: 
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Using the phase shifts fq and fp, the dispersion relation can 
be written in the form 

2kh + fp + fq = 2pm,   m = 0 , 1, 2, . . .	 (13)

If we return to the original variables, expression (13) will take 
the form 
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Restricting our consideration to the case of a symmetric 
waveguide (n n2 2

=1 3 ), the dispersion relation can be rewritten 
as 
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where ni
2 = mi ei for an isotropic dielectric and ne

2 = m1 ee for an 
extraordinary wave in a hyperbolic medium. 

Equation (14) implies that the effective index must meet 
the conditions 

0 , 0n n n neff eff e
2 2 2 21 1G Gi . 

In the case of conventional dielectrics, this condition is differ-
ent: n £ neff < ni, where n is the refractive index of a substrate 
(or a coating layer). 

The transition to normalised variables in (14) is performed 
as follows: 0n n be eff

2 2 2D- = , where b is the normalised 
effective index of the waveguide, n ni e

2 2D = -  and the nor-
malised thickness of the waveguide is defined as V = 
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As a result of this substitution of the variables we obtain
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In this case, the parameter b belongs to the interval [0, b0], 
where b0 = b(neff = 0) = ne2/(ni

2 – ne2). 
The dispersion curves corresponding to equation (15) are 

presented in Fig. 3. Here, /(| | ) 1.2( ) ( )
i o e
2 1 1e e e = , b0 = 2. For com-

parison, Fig. 4 shows the dispersion curves for a waveguide 
consisting of dielectrics with positive values of permittivity 
and permeability, satisfying the equation 

2 , , , , ,arctanV b u
b
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1

0 1 2 fp- =
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where for the anisotropic environment of the waveguide core 
we use the parameter u = ei

2/(eo ee) (for the curves in the figure 
u = 1.2). 

Figures 3 and 4 show that for a TM wave of a hyperbolic 
waveguide the number of modes of a guided wave is always 
finite: with increasing thickness of the waveguide layer (or the 
radiation frequency) some modes disappear from the wave-

guide, while others appear. In such a waveguide there does 
not exist a zero mode (m = 0). In waveguides made of conven-
tional dielectrics (Fig. 4) the number of modes increases with 
increasing thickness h, and none of the waveguide modes dis-
appears. Thus, for each TM mode of a hyperbolic waveguide 
there are two cut-off frequencies: the frequency at which the 
mode appears in the waveguide, i.e., at b(Vc m

(2)) = b0, and the 
frequency at which the mode disappears from the waveguide, 
i.e., at b(Vc m

(1)) = 0. For modes of a conventional dielectric 
waveguide, the second cut-off frequency Vc m

(2) does not exist. 

4. Conclusions 

We have considered a planar waveguide in the form of an iso-
tropic dielectric surrounded by a hyperbolic medium, the 
anisotropy axis of which is perpendicular to the interface 
between the media. We have shown that for a hyperbolic 
medium with eo < 0, ee > 0 the propagation of guided modes 
is possible. In the geometry in question, the TE wave is ordi-
nary and the TM wave is extraordinary. At eo > 0, ee < 0, in 
the case of a TM wave, radiation is emitted from the wave-
guide, and in the case of a TE wave the situation does not 
differ from that in a conventional dielectric waveguide. For 
this reason, attention has been paid only to the case of a 
hyperbolic medium with eo < 0, ee > 0. 

The effective refractive index of a TE wave in the wave-
guide layer satisfies 0 £ neff < ni. In the case of a TM wave the 
effective index varies in the interval 0 £ neff < ne (it is assumed 
that ne < ni). Thus, in both cases, the effective index may be 
zero, which corresponds to small values of the projection of 

0
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5 10 15 V

m = 654321 TM

Figure 3.  Dispersion curves for a TM wave in a planar waveguide with 
a hyperbolic medium [ei

2/(|eo(1)| ee(1)) = 1.2, b0 = 2, m = 1 – 6]. 
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Figure 4.  Dispersion curves for a TM (TE) wave in a conventional pla-
nar dielectric waveguide [ei2/(eo ee) = 1.2, m = 1 – 5].
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the Poynting vector on the z direction or the group velocity of 
waves in hyperbolic waveguides of this type. In the case of a 
standard (elliptical) anisotropic dielectric waveguide, the 
effective index lies in the interval ne £ neff < ni for a TM wave 
and in the interval no £ neff < ni for a TE wave. 

We have found the dispersion relations for TE and TM 
waves and plotted the corresponding dispersion curves. It is 
shown that for a TM wave the number of guided modes is 
always finite. For each mode, there are two cut-off frequen-
cies: one corresponds to the appearance of a mode in the 
waveguide, and the other – to its disappearance. For the first 
several modes there are intervals of the waveguide layer thick-
nesses at which only this mode propagates. Such phenomena 
do not occur in conventional dielectric waveguides, in which 
the number of modes increases continuously with increasing 
thickness of the waveguide layer or the emission frequency. 

With regard to the application of the results obtained, we 
note the following. The authors of Refs [30, 31] have studied 
experimentally a plasmon waveguide (a dielectric surrounded 
by hyperbolic media) in the range of wavelengths from 800 to 
1500 nm. In the visible range, transparent metamaterials are 
still absent. However, this does not mean that we will not 
have them in the future. Compensation for losses or creation 
of metamaterials without metal inclusions is two obvious 
ways to produce transparent metamaterials in the visible 
range. Nonetheless, the results presented are valid in the fre-
quency range, in which losses are negligible and it is accept-
able use of macroscopic electrodynamics.
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