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Abstract.  This paper considers interaction between two fundamen-
tal optical solitons in an optical fibre with a periodically varying 
dispersion. Numerical simulation results indicate that, by properly 
adjusting the modulation period, one can change the type of interac-
tion between solitons. We consider three particular cases: the fission 
of a soliton pair into two separate pulses, the generation of an intense 
pulse as a result of the fusion of two solitons and the formation of a 
coupled state of two solitons (soliton molecule). The present findings 
demonstrate the possibility of controlling the number and group 
velocity of solitons using passive single-mode optical fibres.

Keywords: optical solitons, inelastic interaction, nonlinear Schrödinger 
equation with variable coefficients.

1. Introduction

A resonance effect of a periodic perturbation on the dynamics 
of soliton solutions to the nonlinear Schrödinger equation 
(NLSE) was first described by Hasegawa and Kodama [1]. 
Their results indicate that, if the perturbation modulation period 
is comparable to the oscillation period of a multisoliton pulse, 
it breaks up into several fundamental solitons. Experimental 
demonstration of this effect has become possible due to 
advances in the fabrication of optical fibres with a diameter 
varying along their length. More than 15 years after the report 
by Hasegawa and Kodama [1], Sysoliatin et al. [2] provided 
experimental evidence for a resonance effect of perturbations 
on soliton dynamics. They used an optical fibre of periodi-
cally varying diameter to break up a two-soliton pulse into 
two fundamental solitons. Varying the modulation period, 
one can control the group velocity, centre frequency and peak 
power of such solitons.

Optical solitons propagating in fibres with a diameter 
varying along their length [2] satisfy a nonautonomous NLSE 
with variable dispersion and nonlinearity coefficients. At a 
certain relationship between the coefficients, one can obtain 

analytical expressions for single-soliton and multisoliton 
solutions to the nonautonomous NLSE. A review of such 
studies was given by Maimistov [3], who pointed out that a 
collision between solitons does not cause them to decay. This 
type of interaction is, however, observed at modulation fre-
quencies far from resonance. As shown below, if the modula-
tion period of the dispersion coefficient and/or nonlinearity 
coefficient in the NLSE is comparable to the oscillation 
period of a soliton, interaction between solitons is essentially 
inelastic. Such interaction between NLS solitons in a nonlinear 
medium with varying dispersion was reported by Liu et al. [4]. 
Using analytical solutions, interaction between solitons was 
shown to be accompanied by the formation of periodic field 
structures [4]. Varying the modulation parameters, one can 
change the nature of interaction between solitons from attrac-
tion to repulsion.

Yan and Dai [5] considered a generalised NLSE with vari-
able coefficients. Dispersion, nonlinearity and gain coeffi-
cients varying in a certain way may lead to the formation of 
a  rogue wave, with a periodic potential as a trigger mecha-
nism [6].

In an NLSE model with a harmonic potential [7], a peri-
odic variation in the potential leads to decay of coupled soli-
ton states. At the same time, decay of a soliton pair can be 
followed by its recovery. Sysoliatin et al. [8] examined the 
fission of an optical two-soliton breather in the case of peri-
odic variations in dispersion and nonlinearity and spontaneous 
Raman scattering.

A number of approaches for finding analytical solutions 
to the NLSE with periodically varying coefficients (see e.g. 
Refs [3 – 5]) do not take into account the resonance nature of 
soliton propagation in a medium with oscillating dispersion 
(and/or nonlinearity). At resonance, the amplitudes of soli-
tons, their velocities and even their number may change. In 
this study, the main tool is numerical calculation. We examine 
propagation modes corresponding to fission of a soliton pair, 
fusion of two solitons into a single intense pulse and formation 
of a coupled state of two solitons. These effects were described 
previously in systems obeying the complex Ginzburg – Landau 
equation ([9], ch. 13). The use of spectral filtration and a spe-
cial type of loss, amplification, nonlinearity or dispersion was 
proposed for soliton pair management. Special conditions 
imposed on a medium or pulses are often difficult to realise in 
practice. In this paper, we discuss the feasibility of controlling 
soliton pulses using passive single-mode optical fibres with 
dispersion varying along their length, which is ensured by 
varying the fibre diameter. There are mature processes for the 
fabrication of such fibres [10], which allows the effects consid-
ered below to be brought about experimentally.
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2. Calculational approach

Soliton dynamics in a fibre of periodically varying diameter 
obey the NLSE with variable coefficients [2, 3]:
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where A(z, h) = (cne0 Seff /2)1/2E(z, h); c is the speed of light in 
vacuum; n is the refractive index; e0 is the electric constant; 
Seff is the effective area of the fundamental mode of the fibre 
[11, 12]; E(z, h) is the complex electric field amplitude; z is the 
propagation distance; h is the retarded time (z = z, h = t – z/u) 
[11]; u is the group velocity of the pulse; and the parameter h 
determines the time interval between a pulse propagating at a 
velocity u and the pulse under investigation. In Eqn (1), the 
parameter g(z) is the Kerr nonlinearity coefficient and b2(z) is 
the second-order dispersion coefficient. The optical fibre used 
for soliton fission [2, 8] had the following parameters: g(z) = 
ágñ [1 – 0.028 sin(2pz/zm)] (where zm is the modulation period), 
ágñ  = 8.2 W–1 km–1, b2(z) = áb2ñ [1 + 0.2 sin(2pz/zm)] and 
áb2ñ  =  –12.76 ps2 km–1. These values were used in our cal
culations. Since the dispersion modulation amplitude áb2ñ far 
exceeds the nonlinearity modulation amplitude ágñ, in what 
follows we address soliton dynamics in the case of a periodi-
cally varying dispersion.

In the numerical scheme, we used the split-step Fourier 
method [13]. Relative uncertainty did not exceed 10–9. To sup-
press the waves reflected from the boundaries of the calcula-
tion window, we used absorbing boundary conditions. The 
results of previous calculations [2, 8] by a similar procedure 
were in good agreement with experimental data.

The initial field can be represented as a superposition of 
two single-soliton pulses,

E(0, h) = A0 sech(h/h0 – T) + A0 sech(h/h0 + T),	 (2)

where h0 = 1.13 ps is the initial pulse duration; A0  = h0–1´
| | /2b g  is the initial single-soliton pulse amplitude [9, 11]; 

and the dimensionless parameter T = 6 determines the separa-
tion between the peaks of the initial pulses.

To analyse the numerical solution to the NLSE with vari-
able coefficients (1), we use the inverse scattering method 
([12], Sect. 5.8). The algorithm for evaluating parameters of 
solitons comprises three steps:

(1) We find a solution to Eqn (1) in the zs plane: E(h) = 
E(zs, h).

(2) For the function E(h), we calculate the scattering 
matrix of the NLSE with fixed dispersion and nonlinearity 
coefficients: b2 = b2(zs) and g = g(zs).

(3) Using Newton’s method, we find complex numbers 
(spectral parameters) lj that correspond to zero coefficient of 
the scattering matrix: a*( lj) = 0.

The steps are then repeated at a new value z = zs. As a 
result, we obtain spectral parameters of solitons as functions 
of their path length: lj = lj(z). To compare the parameters lj 
to physical parameters, note that, if all solitons have different 
velocities, the soliton component As of the function A(h) for 
z >> 1 is determined by the superposition [11]
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where N is the number of solitons; Rj is the soliton amplitude; 
Zj is the inverse soliton duration; tj and jj (z, h) are the coordi-
nate and phase of the maximum; and uj determines the change 
in the group velocity of the soliton: ug = (1/u + uj)–1. The 
amplitude, duration and group velocity of the soliton can be 
expressed through the spectral parameters lj:

| | / ,ImR 2j j0
1

2t b g l= -   Zj = t0–12Im lj,  

uj = b2t0–12Re lj,	
(4)

where t0 = h0 (|b2|/g)(|á b2 ñ|/ágñ)–1 corresponds to the single-
soliton pulse duration in a waveguide with adiabatic (zm >> 1) 
variations in the parameters b2(z) and g(z). With this choice 
of  the parameter t0, the energy of an individual soliton is 
given by

J = 
3

3

-
y |Rj sech(Zj h – tj – uj z)|2 dh = 2Rj

2 Zj
–1 = J0 2Im lj ,	 (5)

where J0 = 2A0
2 h0 = 2h0–1(|á b2 ñ|/ágñ) is the initial single-soli-

ton pulse energy in (2). If we consider a pulse with a carrier 
frequency shift DW, it can be noticed that substitution of the 
expression A(z, h) = A

~
(z, h) exp(–iDWh) into Eqn (1) allows us 

to find a relationship between the pulse carrier frequency shift 
and the change in the group velocity of the pulse in the form 
uj = b2DW. According to (4), the soliton carrier frequency shift 
is given by

DW = t0–1 2Re lj.	 (6)

Strictly speaking, (3) and (4) are not a soliton solution to 
the NLSE (1) with variable coefficients. Parameters (4) were 
found under the assumption that, after passing through a 
fibre with a periodically varying dispersion, the light propa-
gates in a fibre with constant dispersion and nonlinearity 
coefficients. In fact, this means that, at each z step, the 
numerical solution A(z, h) is analysed using data of an inverse 
scattering problem formulated for the NLSE with fixed dis-
persion ( b2) and nonlinearity ( g) coefficients. This approach 
was used previously to analyse soliton dynamics in the case 
of two-soliton breather fission [8].

The pulse amplitude, group velocity and duration can be 
directly calculated for a given A(h) field. However, these 
parameters can only be calculated for pulses whose fields do 
not overlap in time. The main advantage of the above method 
is the possibility of gaining insight into the dynamics of inter-
acting solitons. The use of data of an inverse scattering problem 
makes it possible to clearly illustrate the effect of perturbing 
factors on the parameters of breathers and individual solitons 
[8]. For solitons that are sufficiently well separated in time, 
estimates of the amplitude, group velocity and duration directly 
from the A(h) distribution and from data of the inverse scat-
tering problem (3) and (4) yield identical results.

3. Interaction between solitons

For modelling, the initial pulse separation was taken to be 
sufficiently large (T = 6). With this condition, for a soliton 
pair (2) propagating in a constant-diameter fibre (zm = ¥) 
there exists an analytical solution in the form of semi-infinite 
pulses [14]. For T ® ¥, we have l1 = l2 = i·0.5, which corre-
sponds to noninteracting solitons. At T = 6, l1 = i·0.49753 
and l2 = i·0.50249. In-phase solitons (2) attract and, after 
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collision, separate (Fig. 1). The distance after which the pulses 
collide is given by [14]

zc = z0 ( l1
2 – l2

2 )–1,	 (7)

where z0 = (p/2) h02|á b2 ñ|–1 is the soliton period in a constant-
diameter fibre (zm = ¥). The oscillation period of the soliton 
pair is 2zc. In our case, zc = 31.7 km (Fig. 1). In the case of the 
NLSE with constant coefficients (zm = ¥), solitons interact 
elastically and their parameters lj remain unchanged. If there 
is dispersion modulation, interaction between solitons may 
have an inelastic nature, and the parameters lj vary under 
such conditions.

3.1. Fission of a soliton pair

Using a periodic variation in dispersion, a soliton pair 
(Fig. 1) can be separated into two individual pulses propagat-
ing with different group velocities (Fig. 2). The starting pulses 
gradually attract in the initial stage and then approach each 
other very rapidly (Fig. 2a). After the fusion (z = 25.92 km), 
the solitons repel and diverge with different group velocities. 
The change in the group velocity of the pulse is caused by the 
shift of its carrier frequency (6). It is convenient to assess the 
behaviour of individual solitons using the parameters Re l 
and Im l. These parameters separately determine the energy 
(5) and frequency shift (6) of each soliton (Figs 2b, 2c). During 
the transient process (0 < z < 25.92 km), the energy and fre-
quency shift of the solitons oscillate with a small amplitude. 
After the transient process (z > 25.92 km), the two solitons 
have the same energy J /J0. In the range 27.6 km < z < 63.6 km, 
the average frequency shift of one soliton is DWt0 = 0.137 and 
that of the other is DWt0 = –0.137. This symmetry of the shifts 
is dictated by the law of conservation of momentum [9]. The 
net frequency shift, related to the total momentum of the soli-
tons, should remain zero. After the change in the group velocity 
of the pulses (z > 25.92 km), the soliton energy gradually 
decreases. The decrease in soliton energy and the irregular 
character of the function J = J(z) are due to the generation of 
dispersive waves in the case of periodic variations in disper-
sion and nonlinearity [1].

The fission of a soliton pair into two solitons having dif-
ferent velocities is observed in a wide zm range. A change in 
zm  leads to a change in the distance over which a collision 
between solitons occurs and their group velocities change. 
However, the behaviour of the spectral parameters l1,2 remains 
unchanged: after some transient process, the parameters Im  l1 
and Im  l2 become equal. Both l1 and l2 acquire nonzero real 
parts such that Re  l1 = –Re  l2. Note that the fission of a 
second-order soliton into two fundamental solitons follows 
a similar scenario [8].

3.2. Fusion of two solitons

Figure 3 illustrates soliton dynamics at a fibre modulation 
period zm = 2 km, which leads to soliton fusion a distance z = 
15.1 km from the input fibre end. Next, the pulse breaks up 
into a central, intense soliton and two associated solitons 
(Fig. 3a). At z = 63.4 km, the peak power of the central pulse 
is nine times that of the side pulses. The energy of the central 
pulse is a factor of 2.7 higher than that of each side pulse, 
which are equal to each other (Fig. 3b).

An inelastic collision may change the number of solitons. 
After the soliton fusion, an additional, third solution, l3, 
emerges at z = 15.46 km. This solution appears in the vicinity 
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Figure 1.  Propagation of two in-phase solitons in a constant-dispersion 
fibre (zm = ¥). Shown in the (z, h) plane are peak intensity trajectories 
subject to the initial conditions (2).
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Figure 2.  Fission of a soliton pair in a fibre with a periodically varying 
dispersion (zm = 2.4 km): (a) peak intensity trajectories, (b) normalised 
soliton energies J/J0 [calculated by formula (5)] and (c) normalised spec-
tral shifts of the soliton carrier frequency [formula (6)] for both solitons. 
The other parameters are the same as in Fig. 1.
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of Re  l = 0 and Im  l = 0. The magnitude of Im  l3 rapidly 
increases, which corresponds to an increase in the energy of 
the additional soliton in the range 15.46 km < z < 16.63 km 
(Fig. 3b). The transient process is followed by the formation 
of two weak pulses, with a shifted carrier frequency, and one 
intense pulse. During subsequent propagation, only a reduc-
tion in pulse energy due to the emission of a dispersive wave is 
possible. In the case of single-soliton pulses, the dispersive 
wave has the highest intensity when the dispersion variation 
period coincides with the soliton period [1]. We determine the 
soliton period as z0u  = (p/2) á hjñ 2|á b2 ñ|–1, using the average 
soliton duration á hjñ = h0 (2 Im  lj) –1. The variable soliton 
duration is given by (4). At z = 100 km, we have z0u  = 0.134 km 
for the central soliton and 1.38 km for the side solitons. The 
dispersion variation period, zm = 2 km, does not coincide with 
the period of these solitons, so the energy loss due to the emis-
sion of a dispersive wave is a rather slow process.

The relationship between the peak power of the central 
soliton and that of the side solitons depends on the time sepa-
ration between the starting pulses and the modulation period. 
In our simulations, we obtained a number of regimes in which 
side solitons were essentially missing. The effect considered 

above can be thought of as fusion of two solitons into a pulse 
with high peak power.

3.3. Formation of a coupled state of two solitons

In a constant-dispersion fibre, two solitons attract and repel 
cyclically (Fig. 1). In a fibre with a periodically varying dis-
persion, a regime can be obtained in which solitons propagate 
essentially without attraction. At a dispersion modulation 
period zm = 0.1 km, the soliton separation remains unchanged 
(Fig. 4a), and there is a coupled state of two solitons: a soliton 
molecule. As a result of dispersive wave emission, the ampli-
tude of the solitons gradually decreases and their duration 
increases. This effect leads to a reduction in the initial magni-
tude of the imaginary part of the spectral parameters Im  l1 
and Im  l2, whereas the real parts Re  l1 and Re  l2 remain zero. 
It seems likely that an important role in the formation of a 
coupled state of solitons is played by their interaction through 
the field of dispersive waves [15]. The decrease in pulse peak 
power as a result of dispersive wave emission is illustrated in 
Fig. 4b. In the case of modulation (0 < z < 100 km), the pulse 
peak power decreases on average linearly with increasing path 
length z. If at a certain instant in time (z = 100 km) periodic 
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Figure 3.  Fusion of two solitons (zm = 2 km): (a) peak intensity trajec-
tories [the inset shows the time variation of the instantaneous field 
power P = P(h) at z = 63.4 km; P is normalised to the initial pulse peak 
power P0 (2); the graph in the inset has a logarithmic scale]; (b) nor-
malised energy distributions J/J0 (5) and (c) normalised spectral shifts of 
the carrier frequency DWt0 (6) for both solitons; (1 – 3) solitons obtained 
after interaction between the starting pulses. The other parameters are 
the same as in Figs 1 and 2. 0 50 100 150 z/km
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Figure 4.  Coupled state of two solitons in the case of modulation (zm = 
0.1 km in the range 0 £ z £ 100 km) and transition to a periodic solu-
tion after elimination of the modulation (zm = ¥ for z > 100 km): 
(a) peak intensity trajectories and (b) ratio of the pulse peak power Ppeak 
to the initial pulse peak power P0 (2). The vertical dashed line separates 
the dispersion modulation region from the constant dispersion region. 
The other parameters are the same as in Fig. 1.
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dispersion modulation is eliminated, the two pulses begin to 
propagate as a soliton pair whose shape experiences periodic 
changes (Fig. 4). The dispersive wave then disappears. The 
soliton pair period is given by (7).

Note that the modulation period zm needed for a particular 
regime is not unique. There are several resonance frequencies 
2p/zm for each of the effects considered above. Additional 
work is needed to determine these frequencies.

4. Conclusions

Periodic fibre diameter modulation has been proposed as a 
means of controlling soliton interaction. A particular regime 
can be ensured by adjusting the modulation period. Three types 
of regimes have been considered, which can find practical 
application in controlling laser pulses and optical information 
processing. The fission of a soliton pair in a fibre with a peri-
odically varying dispersion makes it possible to produce a 
sequence of picosecond pulses with two carrier frequencies. 
Such pulses can be used for creating terabit communication 
systems with frequency division multiplexing and in terahertz 
spectroscopy. The fusion of two solitons allows one to obtain 
a pulse with a relatively high peak power. This effect can be 
used for converting a sequence of closely spaced pulses (pulse 
train) into new pulses with increased peak power.

In the case of data transfer in optical communication sys-
tems, attraction between in-phase solitons may lead to infor-
mation loss. For solitons propagating at a small distance 
from each other, a fibre with a periodically varying dispersion 
can be used to increase the distance over which a collision 
between solitons occurs. Coupled states of two solitons might 
prevent collisions between them.

Note that all the effects in question occur in a passive 
single-mode optical fibre without using additional controlling 
pulses or a special type of nonlinearity, dispersion or loss.
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