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Abstract.  The behaviour of a colloidal solution of gold nanopar­
ticles irradiated by a repetitively pulsed laser with a pulse duration 
of a few nanoseconds is investigated theoretically and experimentally. 
A mathematical model is constructed, which allows the behaviour 
of the nanoparticle distribution function to be described. The model 
is based on the transport equation in the ‘space’ of particle sizes. The 
proposed model allows for a relatively simple study and makes it 
possible to establish some common patterns in the behaviour of an 
ensemble of nanoparticles under various conditions. The results obtained 
are in satisfactory agreement with the available experimental data. 

Keywords: laser ablation, nanoparticles, fragmentation, mathema­
tical model. 

1. Introduction 

The behaviour of metal nanoparticles in different conditions 
is being actively investigated in a number of laboratories in 
the world due to considerable interest in connection with pos­
sible various applications of nanoparticles in physics, engi­
neering, medicine, etc. 

One of the directions is to study the behaviour of nanopar­
ticles in a liquid under the action of laser radiation [1 – 8]. 
Under these conditions, particles are heated and subsequently 
ablated. In the experiments, the dynamics of the process can 
be monitored by measuring the absorption spectra of the 
solution and the distribution function of the particle size (or 
weight) at successive moments of time. However, the under­
standing of the properties governing the behaviour of par­
ticles requires the establishment of basic mechanisms and 
construction of mathematical models that allow for a fairly 
complete study. In addition, the model should be simply 
modified in view of the changing conditions, i.e., laser radia­
tion parameters, solution concentration and use of other 
means of interaction. 

The authors of Refs [8 – 10] proposed a model based on 
the integral-differential kinetic equation for the distribution 

function. This model, under some natural assumptions regard­
ing the ablation mechanism, has allowed one to satisfactorily 
describe a number of experimentally observed common pat­
terns in the behaviour of nanoparticles in a solution. It has 
been shown that the ablation dynamics of particles in a solu­
tion and in a vacuum (gas) at the same irradiation conditions 
varies considerably. In particular, in a liquid irradiated by 
pulses of duration of about 10 ns relatively large fragments 
are formed with a high probability, while in vacuum under 
the same conditions ablation products have dimensions close 
to monatomic. However, this model is not flexible enough to 
perform studies for a wider range of radiation and solution 
parameters, as well as to take into account other factors: 
transport processes, external fields, etc. In this regard, in this 
paper we propose a simplified but more flexible model which 
allows one to calculate the distribution function by solving 
the transport equation in the phase ‘space’ of sizes. Similar 
equations are used in solving various problems of the distri­
bution of particles in a substance, for example in determining 
neutron fluxes in a reactor (the “age equation” [11]), thermal 
conductivity in gases and so on. On the basis of the developed 
model, we consider the ablation dynamics of nanoparticles in 
a solution exposed to repetitively pulsed radiation with dura­
tion of about 10 ns and compare the obtained results with the 
experimental data. 

2. Experimental 

The initial colloidal solution of gold nanoparticles was obtained 
by laser ablation in a liquid [7]. As a radiation source we 
used  an ytterbium fibre laser with a pulse width of 70 ns, 
repetition rate of 20 kHz and energy of 1 mJ at a wavelength 
of 1060 – 1070 nm. The laser beam was focused on the surface 
of a gold target by an F-Theta lens (focal length f = 207 mm). 
The working liquid was water purified by reverse osmosis. 
The laser fluence on the target surface was about 13 J cm–2 
(according to the estimates based on the size of the melted 
surface region of the target). The laser beam was scanned with 
a galvo-optic system. The concentration of the resulting col­
loid of gold nanoparticles was 1014 – 1015 cm–3. This quantity 
was estimated based on a particle size distribution function 
with allowance for the target mass defect [8]. The typical rate 
of generation of nanoparticles (0.5 mg min–1) decreased with 
time due to the increasing absorption and scattering of light 
by particles in a colloidal solution. To stabilise nanoparticles 
after their production in the colloidal solution we added a cer­
tain amount of polyvinylpyrrolidone (0.5 mg mL–1). 

Subsequent irradiation of the colloidal solution of gold 
nanoparticles in the absence of the target was conducted using 
a SOL Nd : YAG laser (Bright Solutions) as a laser radiation 
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source (wavelength of 1064 nm, pulse duration of 10 ns). The 
laser radiation was focused through the transparent bottom 
of the cooled cell by a lens with a focal length of 25 mm. The 
laser pulse repetition rate was 10 kHz, the pulse energy – 2 mJ, 
the energy density in the beam waist – about 6 J cm–2. The 
volume of the irradiated portion of the colloidal solution was 
2 mL. The experimental setup is shown in Fig. 1. 

The morphology of the nanoparticles was studied by 
transmission electron microscopy (TEM). The nanoparticle 
size distribution was measured by using a CPS 24000 disc 
centrifuge. 

3. Experimental results 

Laser ablation of a gold target by nanosecond laser pulses in 
water usually produces nanoparticles having a wide size distri­
bution. A TEM image of these nanoparticles is shown in Fig. 2. 

According to the TEM image, the transverse size of the 
nanoparticles can be up to 100 nm. To reduce the average  
nanoparticle size, as well as to narrow the maximum of their 
size distribution, the nanoparticles can be further subjected to 
laser irradiation in the absence of the target. 

To study the process of fragmentation of gold nanopar­
ticles under the action of nanosecond laser radiation, we per­
formed a series of experiments in which the exposure time 
varied from 5 to 30 min. The evolution of the nanoparticle 
size distribution function is shown in Fig. 3. 

In exposing the colloidal solution to laser radiation the 
maximum of the nanoparticle size distribution is shifted from 
30 nm (initial position) to 7 nm. It should be noted that the 
final form of a smaller size maximum (its position and effec­
tive width) is achieved in 5 min after the onset of irradiation. 
Later on, there occurs only a decrease in the amplitude of the 
initial maximum. 

4. Bifractional model of ablation of particles  
in a liquid 

The results of theoretical and experimental studies [9, 10] per­
formed under different conditions of irradiation of a colloidal 
solution of nanoparticles of some metals indicates that frag­
mentation in vacuum under typical experimental conditions 
mostly leads to the formation of monoatomic particles. In a 
liquid the size of emerging ablation products of nanoparticles 
is much greater. The reason is as follows. 

The flux density of ablation products W according to the 
Clapeyron – Clausius law is given by the expression [9] 

W µ exp[–mL1 /(kBT)],	 (1)

where L1 is the specific heat of evaporation; m is the mass of 
the cluster separated from the particles; and T is the tempera­
ture. This relation can be rewritten in the form 

W µ exp(–v/v0),   v0 = kBT/(rL1),	 (2)

determining the probability of separation of a cluster of 
volume v. Here, r is the density of the particles. Estimates [9] 
show that, for example, in the case of gold at temperatures of 
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Figure 1.  Experimental setup for the fragmentation of gold nanopar­
ticles: 	
( 1 ) laser light source; ( 2 ) galvo-optic scanning head; ( 3 ) dielectric mir­
ror; ( 4 ) cell with a working substance; ( 5 ) focusing lens ( f = 25 mm). 

100 nm

Figure 2.  TEM image of initial gold nanoparticles obtained by laser 
ablation in water. The laser wavelength is 1060 – 1070 nm, the pulse du­
ration is 70 ns and the fluence is 13 J cm–2. 
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Figure 3.  Evolution of the distribution function of gold nanoparticles 
by diameters D under the action of laser radiation with a wavelength 
of 1064 nm, a pulse duration of 10 ns and a fluence of about 6 J cm–2. 
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about 3000 K the characteristic size of separated particles is 
v0
1/3 » 0.3 nm. This means that the separation of the clusters 
containing many atoms is unlikely, and mainly atoms of the 
substance are transferred to the environment. In a liquid, the 
ablation dynamics is strongly affected by the environment, in 
particular the emerging vapour – gas shell. When a particle 
undergoes a transition into a completely or partially molten 
state, the movement of a dense medium facilitates separation 
of not only fine particles but also of relatively large fragments. 
According to the experimental data given in [9], the character­
istic size of ablation products increases up to v2

1/3 » 10 nm. In 
this case, the size distribution is described by a relation similar 
to (2): 

W µ exp(–v/v2).	 (3)

Due to this fact, Kirichenko et al. [9] proposed a mathemati­
cal model that allows one to calculate the time evolution of 
the particle size distribution. 

We introduce the distribution function of particles by 
volume, n, such that n(v, t)dv is the number of particles of 
volume v in the range dv at time t. To describe the evolution 
of this function the authors of [8 – 10] used the kinetic equa­
tion

3 v
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The first term in the right-hand side of (4) describes an 
increase in the number of particles of volume v in the process 
(x) ® (v) + (x – v), and the second – a decrease in the number 
of particles in the process (v) ® (x) + (v – x). The coefficients 
B(v, x) determine the probabilities of the corresponding pro­
cesses. 

This approach faces difficulties both in determining the 
common properties of the process and in attempts to estimate 
either additional factors affecting the dynamics of the system. 
In this connection it is of interest to construct a more simple, 
convenient for different applications and generalisation, 
model. 

Let the concentration of nanoparticles in the solution be 
small, so that the frequency of their collisions is small. Then, 
the main factor determining the evolution of the distribution 
function is the ablation of available particles. The number of 
particles can vary with time. However, if we neglect the pro­
cesses of deposition of particles on the walls of the vessel, 
their total mass M per unit volume in a medium remains 
unchanged: 

3
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To set up the transport equation, we take into account the 
fact that according to Fig. 3, there are two groups of particles: 
‘small’ and ‘large’. The available experimental data and calcu­
lations based on equation (1) show [9] that in a wide range of 
laser radiation parameters and initial particles, ‘small’ frag­
ments have a distribution function localised in the vicinity of 
a certain volume of diameter 5 – 10 nm. The specific value of 
this volume is close to the value v2 in equation (3). There is 
also a scatter of ‘small’ particle in their size, which determines 
the width of the distribution function that varies slightly in 
the process. The latter factor can be considered separately. 

Note also that, since the probability of formation of par­
ticles with the size on the order of atomic ones is nonzero, the 
number of the latter increases, resulting in a complete dissolu­
tion of particles in a liquid after a sufficiently long time; the 
reverse process – coagulation or agglomeration – is unlikely 
due to the low concentration of particles in the solution and 
low frequency of their collisions. 

We denote the volume distribution function of ‘large’ par­
ticles by n1(v, t). This means that the number of ‘large’ parti­
cles having volumes in the range from v to v + dv is 

dN1 = n1(v) dv.	 (6)

The number of ‘small’ particles is denoted by N2(t). If during 
ablation, jabl ‘small’ particles of volume v2 each are separated 
per unit surface of a ‘large’ particle per unit time, the position 
of ‘large’ particles on the v axis over the same time is shifted 
in  the direction of ‘small’ volumes by the value of jablSv2, 
where S = S(v) µ v2/3 is the area of the particle surface. In 
other words, the specified value is the speed of motion uabl = 
–jablS(v)v2 along the v axis. Introducing the particle flux 
density qabl = n1uabl, we write the law of conservation of mass 
(continuity equation): 
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The sign of the derivative in the right-hand side of the equa­
tion is determined by the fact that the fragmentation leads to 
a shift in the direction of smaller values of the volumes. 

The rate of change in the number of ‘small’ particles is 
given by the equation 

3
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In equations (7) and (8) we formally assume that the function 
n1(v, t) is defined in the range v2 £ v < ¥. The second term in 
the right-hand side of (8) takes into account the fact that a 
particle of volume v2 becomes a ‘small’ particle. The number 
of such particles is approximately n1(v2, t)v2. 

We define the boundary and initial conditions: 

n1(¥, t) = 0,   n1(v, 0) = n0(v),   N2(0) = 0.	 (9)

Equations (7) and (8), together with conditions (9), ensure 
the fulfilment of the law of conservation of total mass (5) of 
all particles in the system. Indeed, assuming 
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from the transport equation (7) we have 
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which implies that M = M1 + M2 = const. 
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Equation (7) has a general solution
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Here, f0(y) is a function, the type of which is determined from 
the initial condition. 

Analysis of experimental data (Fig. 3) shows that the form 
of the distribution function of ‘small’ particles (position of 
the maximum and width) hardly changes during the process. 
Consequently, the ablation rate of some ‘large’ particles per 
unit area of their surface is almost constant. This allows us to 
conclude that 

u(v) º jablS(v)v2 = 3av2/3,	 (12)

where a is a constant. Then, the solution of (11) can be writ­
ten as 

n1(v, t) = v–2/3j(at + v1/3).	 (13)

The specific form of the function j(z) is determined by the 
initial condition from (9), which gives 

 j(z) = z2n0(z3).	 (14)

Finally, we obtain 
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If we pass from the particle volume v to its diameter D, v = 
pD3/6, then the solution can be rewritten in the form: 
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where b = (6/p)1/3 » 1.24. 
In experiments we obtained size distribution functions m 

of the mass m of the particles: 

dm(D, t) = m(D, t) dD.	 (17)

Therefore, instead of (16) we will use the distribution m1(D): 

dM1 = m1(D, t) dD,	
(18)

m1(D, t) = ( , )D n D t D
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Accordingly, the initial distribution of the particles by volume 
n0(v) is expressed through m1(D, 0): 
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To construct a complete distribution function that takes 
into account ‘large’ and ‘small’ particles, we can use a super­
position composed of distribution functions of particles from 
each group. The first ( m1) is described by formula (18). To 
construct the second one ( m2), we take into account the 
fact that being produced in ablation ‘small’ particles have a 

standard distribution function f2(D). Considering that it is 
normalised by the condition 

3
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0
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we assume 

dM2(D, t) = m2(D, t) dD = M2(t) f2(D) dD.	 (20)

Here, M2(t) is the total mass of ‘small’ particles produced by 
the instant of time t. It can be found by using the constancy of 
the total mass M of all particles:

M2(t) = M – M1(t),   M1(t) = 
D

3

( , )dD t D1
2

my .	 (21)

Here, D2 = (6v2 /p)1/3 is the diameter of a ‘small’ particle. 
Accordingly, the observed distribution can be written as 

m(D, t) = m1(D, t) + m2(D, t).	 (22)

5. Numerical modelling 

In the calculations, we used an experimentally found initial 
distribution function m(D, 0), which, with the help of formula 
(19), was used to find the form of the function n0(v). Then, 
using relations (16) and (18) we found the distribution func­
tion of ‘large’ particles, m1(D, t).

To construct the distribution of ‘small’ particles, m2(D, t), 
we approximated the distribution function f2 in the region of 
small sizes: 
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where q » 1.2; g » 1.5; and D2 » 10.5 nm. The diameter Dmin » 
0.8 nm determined the lower boundary of the distribution, 
when the particles become almost monoatomic and their fur­
ther ablation terminates. The coefficient A2 was found from 
the normalisation condition 

3

( ) .df D D 12
0

=y

For the selected points in time, we used formula (21) to 
determine the total mass of ‘small’ particles M2, which made 
it possible to obtain the required distribution (20). 

The problem contains the parameter a, introduced in (12) 
and associated with a single particle ablation rate: a  = 
(4p/3)1/3 jabl v2. It defines the time scale of the process. Figure 4 
shows the theoretically calculated distribution functions for 
several moments of time. Their comparison with the experi­
mental data (Fig. 3) yields a » 5.5 ́  10–4 mm min–1. Herewith, 
there is good agreement between the simulation results and 
the experiment. One can see from Fig. 4 that the maximum of 
the distribution in the region of small sizes is formed in about 
5 min after the onset of irradiation, which is consistent with 
the experimental data. 
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It is also interesting to see how the total mass of ‘large’ 
and ‘small’ particles changes with time. This is illustrated in 
Fig. 5, which shows that after about 15 min, half of the mass 
is concentrated in ‘small’ particles. 

6. Conclusions 

We have proposed an effective mathematical model for the 
investigation of the dynamics of the distribution function of 
irradiated nanoparticles. The model is based on the transport 
equation in the ‘space’ of particle sizes. Comparison of theo­
retical and experimental results (Figs 3 and 4) shows good 
agreement. The constructed model makes it possible to take 
into account various factors that could affect the dynamics of 
the process, such as the external field, spatial inhomogeneity 
of the field of laser exposure, etc.  
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Figure 4.  Distribution functions of gold nanoparticles by diameters D 
at different times, resulting from mathematical modelling. 
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Figure 5.  Time dependences of normalised total masses of ‘large’ and 
‘small’ particles.


