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Abstract.  High-order surface diffraction gratings acting as a dis-
tributed Bragg reflector (DBR) in mesa stripe semiconductor lasers 
(l = 1030 nm) have been studied theoretically and experimentally. 
Higher order interfering radiation modes (IRMs), which propagate 
off the plane of the waveguide, have been shown to have a crucial 
effect on the reflection and transmission spectra of the DBR. The 
decrease in the reflectivity of the DBR in response to the increase in 
the diffraction efficiency of these modes may reach 80 % and more. 
According to theoretical analysis results, the intensity of the higher 
order IRMs is determined by the geometry of the DBR groove pro-
file. Experimental data demonstrate that the noncavity modes are 
responsible for parasitic light leakage losses in the laser cavity. It 
has been shown that, in the case of nonoptimal geometry of the 
grating groove profile, the overall external differential quantum 
efficiency of the parasitic laser emission may exceed 45 %, which is 
more than half of the laser output power. The optimal geometry of 
the DBR groove profile is trapezoidal, with the smallest possible 
lower base. Experimental evidence has been presented that this 
geometry considerably reduces the power of the higher order IRMs 
and minimises the parasitic light leakage loss.

Keywords: semiconductor lasers, distributed feedback, Bragg 
gratings.

1. Introduction

A semiconductor laser with a distributed Bragg reflector 
(DBR) or distributed feedback (DFB) is a key element of inte-
grated optoelectronics. Basic to such a laser is a distributed 
dispersive component – Bragg diffraction grating (BDG). The 
fabrication of a buried integrated BDG complicates the pro-
cess of making a semiconductor laser [1], because BDG for-
mation and epitaxial overgrowth are processes of increased 
complexity. Therefore, the necessity of raising the spectral 
density of the emission from semiconductor light sources, 
especially in the case of high-power semiconductor lasers, 
requires a search for novel technological approaches. The 
modern principle of making BDGs is to produce surface dis-
persive elements for both single-mode [2] and multimode [3, 4] 
semiconductor lasers. This allows one to pass to a simpler 

technology and extend the possibilities of the topology of a 
semiconductor laser as an integrated element. Another com-
ponent of the concept of a surface BDG is the use of high 
orders of diffraction, which significantly facilitates the grat-
ing fabrication process and reduces its cost [5, 6]. At the same 
time, the use of high-order surface BDGs gives rise to new 
distinctive features, both positive and negative.

In this paper, we present a theoretical and experimental 
study of the properties of a high-order Bragg diffraction 
grating produced by reactive ion etching on the surface of 
a separate-confinement laser heterostructure based on 
AlGaAs/GaAs/InGaAs solid solutions.

2. Calculational model for a high-order surface 
BDG

The basic characteristics of a surface diffraction grating act-
ing as a DBR are its reflection and transmission spectra, 
whose shape and behaviour depend on the waveguide design; 
diffraction order N, which appears in the Bragg condition

L = Nl/2neff 	 (1)

(where L is the DBR period; neff is the effective refractive 
index of the dielectric medium; and l is the incident light 
wavelength); and the geometry of a single DBR groove.

Here we consider a planar dielectric waveguide with a 
periodically varying refractive index in one of its cladding lay-
ers (Fig. 1). The waveguide is a component of a laser hetero-
structure based on AlGaAs/GaAs/InGaAs solid solutions. 
The periodic variation in refractive index is produced in the 
top emitter layer of the heterostructure by reactive ion etch-
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Figure 1.  Schematic of a planar dielectric waveguide with a surface 
DBR.
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ing. The inhomogeneity period is ~1 mm, which allows a stan-
dard photolithography process to be used. This period ensures 
a high order of diffraction (N >> 1) at a light wavelength  l . 
1.06 mm, corresponding to the laser heterostructure. The dif-
fraction grating region is passive and electrically isolated 
from the region where the current flows. Thus, the Bragg dif-
fraction grating is a passive DBR only due to the periodicity 
of the real part of the refractive index.

The calculational model presented below allows one to 
analyse systems with a nonuniform refractive index and gain 
for various resonator configurations (DBR or DFB).

Characteristically, in the case of an electromagnetic wave 
propagating in a planar dielectric waveguide with a periodi-
cally varying refractive index, there are preferential directions 
for the interference of the light that has diffracted from each 
boundary of the inhomogeneity [7]. The spatial propagation 
direction of the jth beam is determined by the relation

c 2arcsin(90jF = + / )j N 1- ,	 (2)

where |2j/N – 1| G 1. Thus, for first-order diffraction (N = 1) 
there are two beams propagating in the plane of the wave-
guide in the ±z directions [A(z) and B(z) resonator modes in 
Fig. 1]. In the case of a Bragg element with an order of diffrac-
tion N > 1, electromagnetic radiation can propagate in direc-
tions that lie out of the plane of the waveguide [interfering 
radiation modes (IRMs) of higher order diffraction: En(x, z) 
in Fig. 1]. Note that there are always two modes parallel to 
the z axis. The reflection spectrum of a DBR is determined by 
the ratio of the amplitudes of the reflected (F = 180°) and inci-
dent (F = 0) waves:  B(z)/A(z).

Coupled-mode theory, which describes the distribution of 
an electromagnetic wave in a periodic waveguide, was first 
proposed by Kogelnik and Shank [8] and Yariv [9]. We will 
use this theory in the following approximations: the electro-
magnetic radiation has only a TE polarisation and the E vec-
tor lies in a lateral plane along the y axis (hereafter, the sub-
script y will be omitted). The structure is taken to be infinite 
in the lateral direction, which is due to the large width of the 
stripe contact, W (W >> l/neff), i.e. Ey(x, y, z) º E (x, z).

The coupled-mode problem reduces to finding a solution 
to the steady-state wave equation

[ ]( , ) ( ) ( , ) ( , )E x z k x x z E x z 00
2 2d Te e+ + = ,	 (3)

were k0 is the wave vector in vacuum; e(x) is the effective 
dielectric permittivity of the waveguide; and De(x, z) is a peri-
odic dielectric permittivity nonuniformity. The following 
relations are valid for the nonuniformity under examination:

( , )x z L+( , )x z eD=eD ,
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(4)

The terms in the expansion of the periodic dielectric permit-
tivity function are determined by the geometry of a single 
BDG groove:
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Here, the functions w1(x) and w2(x) describe the shape of the 
left- and right-hand faces of the grating grooves, respectively, 
and  n1 and n2 are the respective refractive indices (Fig. 2).

The solution to Eqn (3) is the function [10]
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L
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c m/ ,	 (6)

where U(x) is the electromagnetic field distribution along the 
normal to the plane of the waveguide (guided mode configu-
ration; TE0 in our case); A(z) and B(z) are the electromagnetic 
radiation amplitudes along the resonator axis (resonator 
modes); and b0 = pN/L is the wave vector of the Bragg grat-
ing. The last term in (6) describes higher order IRMs which 
propagate beyond the waveguide at their own angles to the 
resonator axis according to (2). The number of such modes is 
N – 1.

Substituting (6) into (3) and taking into account that A(z), 
B(z) and En(x, z)  vary little along the z axis [ /( , , )d dA B E z 0n

2 2
= ], 

we obtain a system of coupled differential equations in the 
amplitudes A(z) and B(z):

,( ) ( )
d
d i i i i
z
A A BA BA

coupTb k k k= - + +b

B( ) ( )
d
d i i i i
z
B AB AB

coupTb k k k- = - + +b ,	

(7)

where [( / ) ] /in N2 eff0T p pb b b l a L= - = + -  is the differ-
ence of the wave vectors of the light and DBR; a > 0  is the 
internal optical loss in the laser heterostructure; and
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Figure 2.  Schematic diagrams of DBRs with (a) rectangular and (b) 
trapezoidal groove profiles.
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is referred to as the coupling coefficient. In the Fourier series 
(4), a major contribution to exchange interaction is only made 
by the term whose number corresponds to the order of dif-
fraction, N, in the Bragg condition. It is this constant that 
determines the magnitude of direct interaction between the 
resonator modes A(z) and B(z).

The correction coefficients , , andcoup coup
A B AB BAk k k kb b  are 

determined by the solution to the wave equation in En(x, z). 
In the case of purely real coupling (κ = κ* and, hence, there is 
no periodic gain nonuniformity) and a symmetric profile of 
the DBR grooves [w1(x) = w2(–x) in (5)], the following rela-
tions are valid:   and coup coup coup

A B AB BA/ /k k k k k k= =b b b .
Shams-Zadeh-Amiri et al. [11] determined these constants 

using the Green’s function for the solution to the wave equa-
tion in En(x, z):

, , iK
n
k
2N ( , )( , ) ( , )n n n ncoup

effn

N

n

N

u v
1

1

1

1
0
3

k kK K= = =b - -

=

-

=

-

/ /

	 ´  ( ) ( ) ( ) ( ) ( , )d dx x U x U x G x x x xu v ve eD D l l l lyy ,	 (9)

where Gt(x, x’ ) is the Green’s function for the equation
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The coefficient κb characterises the effect of the A(z) and 
B(z) modes on the En(x, z) higher order noncavity IRMs, with 
Re (κb) < 0 determining the light leakage loss, i.e. the fraction 
of the power brought away from the laser cavity by the higher 
order IRMs, and Im (κb) being the shift of the peak in the 
reflection spectrum with respect to the Bragg condition (1). 
The coefficient κcoup characterises the indirect exchange inter-
action between the A(z) and B(z) modes through the higher 
order IRMs.

It is important to note that the presence of the coefficients 
κb and  κcoup is the result of taking into account the higher 
order IRMs. To perform a comparative analysis, below we 
present numerical calculation results for two cases. In one 
case, we neglect the higher order IRMs in solving (6), i.e. 
we take En(x, z) = 0 and, accordingly, κb = κcoup = 0. In the 
other case, we find a solution to the wave equation with 
En(x, z) ¹ 0.

Relations (8) and (9) include terms form the Fourier series 
(4), which depend on the geometry of the DBR grooves. 
Therefore, the groove profile has a direct effect on both the 
rate of energy exchange between resonator modes and the 
energy loss from the resonator through the higher order 
IRMs.

A detailed solution to system (7) was presented previously 
[10 – 12], so we here determine only the reflectivity of the DBR 
subject to the following boundary conditions: (1) a wave is 
incident on the DBR at point z = 0 and has an amplitude 
A(0); (2) the length of the DBR is L and there is no reflection 
from the end facet at z = L. Thus, the B(z) mode is only due to 
exchange interaction [B(L) = 0]. Under these boundary con-
ditions, the reflectance and transmittance of the DBR are 
given by

rDBR = B(0)/A(0),    RDBR = |rDBR|2,	

(10)

tDBR = A(L)/A(0),    TDBR = |tDBR|2.

3. Properties of a high-order surface BDG

Calculations were performed in the above model for an 
Al0.25Ga0.75As/Al0.1Ga0.9As/Al0.25Ga0.75As waveguide 1.7 mm in 
thickness. The DBR period L was 2.4 mm, which corresponds 
to N = 16 at a wavelength l  .  1030 nm. The grating depth 
was 0.1 mm less than the emitter thickness. The choice of the 
geometry of the grating was dictated by grating fabrication 
process conditions. Given the potentialities of reactive ion 
etching, we chose rectangular and trapezoidal groove profiles 
(Fig. 2).

Figure 3a shows typical reflection and transmission spec-
tra of DBRs with no allowance for higher order IRMs. The 
maximum reflectivity is only limited by the internal optical 
loss in the heterostructure (at a sufficient grating length). The 
peak-reflection wavelength coincides with the Bragg reso-
nance wavelength in (1). Analysis with allowance for higher 
order IRMs (Fig. 3b) leads to changes in the shape of the 
spectra and their extreme values. In this case, the peak-reflec-
tion wavelength shifts with respect to the Bragg wavelength, 
and the intensity of light in the transmission spectrum 
decreases. These features are the result of taking into account 
the external optical energy loss in the higher order IRMs. This 
contribution is well illustrated by the optical loss in the DBR 
(1 – R – T ) (Fig. 3c). With no allowance for higher order 
IRMs, there is no loss in the DBR and R + T = 1 (Fig. 3c, solid 
line). When noncavity modes are taken into account, we have 
1 – R – T > 0 (Fig. 3c, dashed line), which can be accounted for 
by the external optical power loss.

As pointed out above, the defining factor of the exchange 
interaction of higher modes with the A(z) and B(z) resonator 
modes is the geometry of the grating grooves. To assess this 
effect, we calculated the reflectivity of rectangular and trape-
zoidal DBRs with different geometric parameters.

Figure 4a shows the peak reflectivity in the spectrum of a 
DBR as a function of the grating duty cycle D = L1/L (see 
Fig. 2a) in the case of a rectangular groove profile. The dashed 
line represents calculation results obtained with no allowance 
for higher order IRMs. The spectrum has zero-reflectance 
points, which correspond to the maximum transmission of 
the DBR. Note that the maximum attainable reflection peaks 
(maxima in this graph) are identical in height. The number of 
peak-reflection points corresponds to an order of Bragg dif-
fraction N = 16. The solid line in Fig. 4a represents analogous 
data obtained with allowance for higher order IRMs. In addi-
tion to zero-reflectance points, we observe a decrease in the 
reflectivity of the DBR, especially in the vicinity of D = 50 %. 
The maximum R corresponds to the maximum grating duty 
cycle and is determined by the window in the photoresist 
mask. The calculation results suggest that, to obtain a high-
reflectivity DBR, one should control the groove profile and 
reduce the size of the etch region. A photolithography process 
is incapable of producing a window ~100 nm in size, which 
makes it impossible to achieve the maximum reflectivity. In 
view of this, we performed calculations for a trapezoidal 
groove profile in a DBR (see Fig. 2b).

Figure 4b shows the peak reflectivity as a function of the 
base width d of the etch region for a trapezoidal groove pro-
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file. The number of peaks is here a factor of 2 smaller. When 
the higher order IRMs are taken into account, at a given 
length L1 of the upper base of the groove profile (which is 
determined by the photoresist mask) changing the geometry 
of the groove walls from sawtooth (d = 0) to vertical (d = L 
– L1) reduces R. Thus, to obtain a high-reflectivity DBR by a 
standard fabrication process, one should use a trapezoidal 
groove profile and minimise the length of the lower base, d, of 
the groove profile.

The reduction in the reflectivity of DBRs is related to the 
power of the higher order IRMs, En. An increase in it leads to 
an increase in light leakage from the resonator. Figure 5 
shows the light leakage loss due to the higher order IRMs 
[–2Re (κb)] as a function of grating duty cycle D for a rectan-
gular groove profile. At L1 = L/2 (D = 50 %), the loss has a 
maximum and, accordingly, the reflectivity of the DBR has a 
minimum (Fig. 4a). The reduction in R is caused by the 
increase in the diffraction efficiency of the DBR for the inter-

fering modes, so optical power predominantly leaks from the 
resonator off the plane of the waveguide.

Calculation results demonstrate that the shape of the 
DBR groove profile determines the power distribution 
between all (cavity and noncavity) modes. Thus, at a given 
DBR period and given waveguide parameters, varying the 
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shape of the groove profile allows one to control the optical 
power at the resonator output.

4. Experimental study of the properties 
of a high-order surface BDG

Experimental samples had the form of a DBR laser. The laser 
was based on a separate-confinement double heterostructure 
in the AlGaAs/GaAs/InGaAs solid-solution system and com-
prised two sections. The gain section had a standard mesa 
stripe design with an Ohmic contact. The width of the gain 
region was W = 100 mm and its length was 3 mm. The reflec-
tion section was electrically passive and its length was 1 mm. 
The end facets of the resonator were naturally cleaved. The 
samples were mounted on copper heatsinks using both p- and 
n-contacts. The grating had a trapezoidal groove profile with 
a base width d = 0.35 mm (Fig. 6a). We examined lasers with a 
DBR period of 2.4 and 3.5 mm.

We measured emission spectra and light – current charac-
teristics of the end facet of the resonator on the side of the 
gain region. In addition, we assessed the internal optical loss 
in the laser heterostructure, which was determined to be 
0.5  cm–1. The laser output spectrum corresponded to the 
Bragg condition for l . 1032 nm, with a bandwidth dl < 
0.2 nm. The external differential efficiency of the lasers was 
25 %.

To investigate higher order IRMs, we measured the radia-
tion pattern in a wide angular range. Figure 7 shows a far-

field pattern of DBR lasers mounted with their p-emitter up, 
with N = 16 (L = 2.4 mm). The broad peak at Ф = 0 corre-
sponds to emission from the end facet of the laser on the side 
of the gain region. On the opposite side of the laser (Ф = 
180°), emission is negligible. The sharp peaks correspond to 
emission of higher order interfering modes from the DBR 
surface. Figure 8 schematically illustrates light propagation 
according to Eqn (1) at N = 16 across the p-emitter/air inter-
face of a laser heterostructure. The dashed line represents the 
angle of total internal reflection. Comparison of Figs 7 and 8 
indicates that only those rays propagating at an angle smaller 
than acr were observed in our experiments, i.e. only some of 
the higher order IRMs were observed.

The far-field measurement results presented in Fig. 7 are 
characteristic as well of the light passing through the sub-
strate. Therefore, the optical energy is brought away from the 
laser cavity by 2(N – 1) rays that characterise the higher order 
IRMs. Similar experimental data were obtained for an N = 23 
(L = 3.5 mm) DBR.

The measured spectrum of the higher order modes coin-
cided with the emission spectrum of the end facet of the laser. 
Figure 9 shows light – current characteristics of the higher 
order modes (N = 16). The external differential quantum effi-
ciency hdif of each mode is about 1%. Since experimental data 
(Fig. 7) demonstrate that light undergoes refraction on the 
air – emitter interface, light – current measurements detect 
only part of the optical power of an interfering mode. The 
fraction of the interfering mode power reflected from the 
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Figure 6.  Electron-microscopic images of surface DBRs: (a) grating pe-
riod L = 2.4 mm, base width d = 0.35 mm; (b) L = 3.5 mm, d < 0.05 mm.
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interface between the two media reaches 30 % to 50 % (accord-
ing to the Fresnel formulas it depends on the angle of inci-
dence). The estimated overall external differential quantum 
efficiency of all the higher order IRMs is about 45 %. Thus, a 
laser with a trapezoidal DBR groove profile and a base width 
d = 0.35 mm has a light leakage loss above 45 %.

Far-field measurements in the lateral direction in the 
plane of the waveguide showed that there were higher order 
IRMs propagating in the same direction. Emission in the lat-
eral direction is due to edge effects on the end facets of the 
DBR grooves on the boundary of the mesa structure. Light 
propagating in the plane of the waveguide is absorbed in the 
active region, which makes it impossible to measure its power. 
It is clear however that the optical power loss in the resonator 
only increases.

Experimental data for DBR samples with a trapezoidal 
groove profile and a base width d < 0.05 mm (Fig. 6b) demon-
strate that far-field patterns of such samples contain charac-
teristic narrow emission bands of the DBR surface. The opti-
cal power of the higher order IRMs is comparable to the level 
of spontaneous emission observed through the grating sur-
face, which makes it impossible to experimentally determine 
the external differential quantum efficiency of such modes but 
points to a considerable decrease in the optical loss due to the 
parasitic emission of the higher order IRMs.

5. Discussion

The experimental data and theoretical results obtained in this 
study demonstrate that the main cause of losses in the cavity 
of a DBR laser is the parasitic output emission due to higher 
order IRMs. The parameter that determines the optical power 
distribution between the cavity and noncavity modes is the 
geometry of the grating groove profile. In the case of a rectan-
gular groove profile, high reflectivity (R > 90 %) can only be 
reached by minimising the width of the etch region, which 
limits the applicability of the photolithography process. A 
trapezoidal DBR groove profile allows one to reach high 
reflectivity by minimising the groove base width deep in the 
etch region for a micron-scale photoresist mask. For this rea-
son, it is a triangular shape of the etch region which is optimal 
and minimises parasitic light leakage losses.

Experimental power measurements for the higher order 
IRMs of a DBR with a trapezoidal groove profile and d = 
0.35 mm showed that these modes accounted for more than 
half of the laser output power and were responsible for para-
sitic light leakage losses. It is important to note that the DBR 
does not increase the internal optical loss in the waveguide. 
Thus, the use of a DBR with optimal geometry of the groove 
profile will allow one to create a high-efficiency reflective 
component of resonators. Our results demonstrate that, in the 
case of a DBR with a trapezoidal groove profile and the min-
imum base width (d = 0.05 mm), surface mode emission per-
sists, but the parasitic external optical loss drops to a mini-
mum.

6. Conclusions

High-order surface diffraction gratings acting as a distributed 
Bragg reflector in mesa stripe semiconductor lasers (l = 
1030 nm) have been studied theoretically and experimentally. 
It has been shown that taking into account higher order 
IRMs, which propagate off the plane of the waveguide, plays 
a key role in determining the reflection and transmission spec-
tra of a DBR. According to theoretical analysis results, the 
optical power of the higher order IRMs is determined by the 
geometry of the DBR groove profile. Nonoptimal geometry 
of the DBR groove profile raises the power of noncavity 
modes and reduces the reflectivity of the DBR by more than 
80 %. The latter is due to the increase in diffraction efficiency 
for the noncavity modes. It is the presence of higher order 
IRMs, which show up as a set of rays with a low diffraction 
divergence of emission from the DBR surface, that leads to 
parasitic light leakage losses in the laser cavity. It has been 
shown that, in experimental samples with a nonoptimal 
geometry of the DBR groove profile, the external differential 
quantum efficiency of the parasitic emission of the higher 
order IRMs reaches 45 %, so the parasitic optical loss accounts 
for more than half of the laser output power. In the case of 
DBRs with the most technologically attractive trapezoidal 
grating groove profile, maximum reflectivity can be reached 
by minimising the groove base width deep in the etch region, 
and this geometry minimises the parasitic light leakage loss.

Thus, to obtain a high-reflectivity DBR element, precision 
control over the geometry of the grating groove profile is 
required. The presence of higher order radiation modes opens 
up the possibility of creating a laser with light output through 
a surface with a low diffraction divergence of emission.
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